首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model predicting 137Cs uptake in plants was applied on data from artificially contaminated lysimeters. The lysimeter data involve three different crops (beans, ryegrass and lettuce) grown on five different soils between 3 and 5 years after contamination and where soil solution composition was monitored. The mechanistic model predicts plant uptake of 137Cs from soil solution composition. Predicted K concentrations in the rhizosphere were up to 50-fold below that in the bulk soil solution whereas corresponding 137Cs concentration gradients were always less pronounced. Predictions of crop 137Cs content based on rhizosphere soil solution compositions were generally closer to observations than those based on bulk soil solution composition. The model explained 17% (beans) to 91% (lettuce) of the variation in 137Cs activity concentrations in the plants. The model failed to predict the 137Cs activity concentration in ryegrass where uptake of the 5-year-old 137Cs from 3 soils was about 40-fold larger than predicted. The model generally underpredicted crop 137Cs concentrations at soil solution K concentration below about 1.0 mM. It is concluded that 137Cs uptake can be predicted from the soil solution composition at adequate K nutrition but that significant uncertainties remain when soil solution K is below 1 mM.  相似文献   

2.
137Cs and 60Co, two of the radionuclides more representative of discharges from nuclear facilities, are of interest for radiological protections because of their great mobility in biosphere and affinity with biological systems. The aim of the present work is the investigation of the possible influence of the vertical distribution of 137Cs and 60Co in soil upon their uptake by lettuce as function of plant's growth. An experiment ad hoc has been carried out in field conditions. The results show that (i) the transfer of 137Cs and 60Co from soil to lettuce is independent by their distribution in soil, (ii) the soil–plant transfer factors of 137Cs and 60Co show a similar trend vs. growth stage, (iii) the 40K transfer factor trend is different from those of anthropogenic radionuclides, and (iv) 137Cs and 60Co specific activities are about 1 Bq/kg, in the mature vegetable with soil activity from 9 to 21 kBq/m2.  相似文献   

3.
This study aims to screen plant species native to Taiwan that could be used to eliminate (137)Cs radionuclides from contaminated soil. Four kinds of vegetables and two kinds of plants known as green manures were used for the screening. The test plants were cultivated in (137)Cs-contaminated soil and amended soil which is a mixture of the contaminated one with a horticultural soil. The plant with the highest (137)Cs transfer factor was used for further examination on the effects of K addition on the transfer of (137)Cs from the soils to the plant. Experimental results revealed that plants cultivated in the amended soil produced more biomass than those in the contaminated soil. Rape exhibited the highest production of aboveground parts, and had the highest (137)Cs transfer factor among all the tested plants. The transfer of (137)Cs to the rape grown in the soil to which 100 ppm KCl commonly used in local fertilizers had been added, were restrained. Results of this study indicated that rape, a popular green manure in Taiwan, could remedy (137)Cs-contaminated soil.  相似文献   

4.
Two types of soils (Eutric Fluvisol and Chromic Luvisol) and two crops (wheat and cabbage) were investigated for determination of the transfer of 137Cs from soil to plant. Measurements were performed using gamma-spectrometry. Results for the soil characteristics, transfer factors of the radionuclides (TF), and conversion factors (CF) (cabbage/wheat) were obtained. The transfer of 137Cs was higher for Chromic Luvisol for both the plants. Statistically significant dependence of TF of 137Cs on its concentration in soil was established for cabbage. Dependence between K content in the soil and the transfer factor of 137Cs was not found due to the high concentrations of available K. Use of bioconcentration factor (BCF) (ratio between the activity concentration of a radionuclide in a reference plant to its concentration in another plant) is demonstrated and proposed for risk assessment studies.  相似文献   

5.
Rice is a staple food in Japan and other Asian countries, and the soil-to-plant transfer factor of 137Cs released into the environment is an important parameter for estimating the internal radiation dose from food ingestion. Soil and rice grain samples were collected from 20 paddy fields throughout Aomori Prefecture, Japan in 1996 and 1997, and soil-to-polished rice transfer factors were determined. The concentrations of 137Cs, derived from fallout depositions, stable Cs and K in paddy soils were 2.5-21 Bq kg(-1), 1.2-5.3 and 5000-13000 mg kg(-1), respectively. The ranges of 137Cs, stable Cs and K concentration in polished rice were 2.5-85 mBq kg(-1) dry wt., 0.0005-0.0065 and 580-910 mg kg(-1) dry wt., respectively. The geometric mean of soil-to-polished rice transfer factor of 137Cs was 0.0016, and its 95% confidence interval was 0.00021-0.012. The transfer factor of 137Cs was approximately 3 times higher than that of stable Cs at 0.00056, and they were well correlated. This implied that fallout 137Cs, mostly deposited up to the 1980s, is more mobile and more easily absorbed by plants than stable Cs in the soil, although the soil-to-plant transfer of stable Cs can be used for predicting the long-term transfer of 137Cs. The transfer factors of both 137Cs and stable Cs decreased with increasing K concentration in the soil. This suggests that K in the soil was a competitive factor for the transfers of both 137Cs and stable Cs from soil-to-polished rice. However, the transfer factors of 137Cs and stable Cs were independent of the amount of organic materials in soils.  相似文献   

6.
Gamma-ray spectra of terra rossa soil and natural-phosphate ore have been measured in order to determine Th, U, K and 137Cs contents. It has been found that the phosphate ore contains an order of magnitude lower potassium content than average (n.10?3g/g), an average content of thorium (n.10?6g/g), and a two orders of magnitude higher concentration of uranium (n.10?4g/g) than the averages found in the Earth's crust. Terra rossa contains two to three times higher concentrations of Th and U, average concentrations of K, and up to 0.2 Bq/g of 137Cs. Both materials, in our opinion, are suitable for large-sample-calibration purposes and are applicable for radioecological studies of soils.  相似文献   

7.
Long-term trends of 137Cs and 40K concentrations in meadow grass and soil-plant transfer data at eight different sites in Upper Austria are presented. Geometric means of 137Cs TF-data and Tagg values vary between 0.03-1.06 and 0.0005-0.0184 depending on site, respectively. 40K results are less variable with TF values covering a range of 0.31-2.01. Only at one site was a significant decrease of 137Cs concentration (decay-corrected) in meadow vegetation observed during the observation period 1992-1999. Seasonal trends of 40K and 137Cs were investigated at one site in 1996. Both elements show decreasing concentrations in plants from beginning of May-July, followed by a peak in September. Although this pattern was not very pronounced, there are some hints that it may explain deviations of long-term trends in 137CS levels in grass caused by unusual weather conditions as indicated by phenological climate data (beginning of sweet cherry and black elder blossoming). Finally, TF values were correlated with soil characteristics, revealing a negative correlation of radiocaesium soil-plant transfer with soil pH, exchangeable and extractable fractions of Mg, Ca and Na as well as a positive correlation with exchangeable Al.  相似文献   

8.
Transfer factors are the most important parameters required for mathematical modeling used for environmental impact assessment of radioactive contamination in the environment. In this paper soil to leaf transfer factor for the radionuclides 40K, 226Ra, 137Cs and 90Sr is estimated for Kaiga region in Karnataka state, India. Among the plants in which study is carried out, 226Ra, 40K, 137Cs and 90Sr activity in leaves of herbaceous plants is higher than that of tree leaves. Soil to leaf transfer factor for 226Ra, 40K, 137Cs and 90Sr was found to be in the range of 0.03-0.65, 0.32-8.04, 0.05-3.03 and 0.42-2.67 respectively.  相似文献   

9.
Distribution of cesium (134Cs and 137Cs) and strontium (Sr-II) between soil/water phases depends on many factors such as concentration of these ions between phases, the cation exchange capacity (CEC) of the soil as well as its clay content, chemical composition (especially Na, K, Ca, and Mg ions), grain size distribution, calcite, iron oxide content, and organic coatings. Distribution coefficients (Kd) of cesium (labeled with 137Cs) and strontium were measured on the grain size distributions ≥32 μm of four soil samples. These soils were obtained from four different locations within Inshas site in Egypt and three groundwater samples were obtained from the same site locations. X-ray diffraction showed that the soil samples consisted mainly of quartz mixed with the minor amounts of kaolonite and clay minerals. Sorption experiments were carried out at strontium aqueous concentrations range 10−7 to 10−4 mol l−1. The CEC and Kds for cesium and strontium were measured at the same metal concentrations range. Distribution coefficients of cesium were found to be influenced by the composition of the soil, while the distribution coefficients of strontium were found to depend on calcium concentrations in the soil/groundwater system. The aim of this study was to determine the safety assessment of disposal 137Cs radionuclide and Sr(II) in the aquifer regions inside the Inshas site. Sequential extraction tests showed that, strontium was associated with the carbonate fractions and majority of cesium was sorbed on the iron oxides and the residue.  相似文献   

10.
Three rates of Ca(OH)2 were applied to an acid soil and the 134Cs uptake by radish, cucumber, soybean and sunflower plants was studied. The 134Cs concentration in all plant species was reduced from 1.6-fold in the sunflower seeds to 6-fold in the soybean vegetative parts at the higher Ca(OH)2 rate. Potassium (K) concentration in plants was also reduced, but less effectively. The significantly decreased 134Cs-K soil to plant distribution factors (D.F.) clearly suggest a stronger effect of soil liming on 134Cs than on K plant uptake. This observation was discussed in terms of ionic interactions in the soil matrix and within the plants. The results also indicated that the increased Ca2+ concentration in the exchange phase and in the soil solution along with the improved root activity, due to the soil liming, enhanced the immobilization of 134Cs in the soil matrix and consequently lowered the 134Cs availability for plant uptake.  相似文献   

11.
Coconut trees growing on atolls of the Bikini Islands are on the margin of K deficiency because the concentration of exchangeable K in coral soil is very low, ranging from only 20 to 80 mg kg−1. When provided with additional K, coconut trees absorb large quantities of K and this uptake of K significantly alters the patterns of distribution of 137Cs within the plant. Following a single K fertilization event, mean total K in trunks of K-treated trees is 5.6 times greater than in trunks of control trees. In contrast, 137Cs concentration in trunks of K-treated and control trees is statistically the same while 137Cs is significantly lower in edible fruits of K-treated trees. Within one year after fertilization (one rainy season), K concentration in soil is back to naturally low concentrations. However, the tissue concentrations of K in treated trees stays very high internally in the trees for years while 137Cs concentration in treated trees remains very low in all tree compartments except for the trunk. Potassium fertilization did not change soil Cs availability.  相似文献   

12.
Evaluation of technogenic load on ecosystems of southern Primorye has shown that the soil contents of 90Sr and 137Cs vary within the ranges of 0.3–1.3 and 0.4–3.0 kBq/m2, respectively; i.e., they do not exceed the level of background radioactivity that is considered normal at latitudes between 50° and 60° N. The presence of 134Cs in the samples indicates a contribution from radionuclides discharged by the Fukushima nuclear accident. According to calculations, the additional 137Cs input into the soils of the study area varies between 0.03 and 0.30 kBq/m2. Soil analysis for heavy metals and trace elements has revealed an approximately twofold excess over safety norms (MACs) in the concentrations of technogenic Cu and Pb. For other elements, the excess is within the range of 8–32%.  相似文献   

13.
Migration of 137Cs and 90Sr in undisturbed soil was studied in large lysimeters three and four years after contamination, as part of a larger European project studying radionuclide soil–plant interactions. The lysimeters were installed in greenhouses with climate control and contaminated with radionuclides in an aerosol mixture, simulating fallout from a nuclear accident. The soil types studied were loam, silt loam, sandy loam and loamy sand. The soils were sampled to 30–40 cm depth in 1997 and 1998. The total deposition of 137Cs ranged from 24 to 45 MBq/m2, and of 90Sr from 23 to 52 MBq/m2. It was shown that migration of 137Cs was fastest in sandy loam, and of 90Sr fastest in sandy loam and loam. The slowest migration of both nuclides was found in loamy sand. Retention within the upper 5 cm was 60% for both 137Cs and 90Sr in sandy loam, while in loamy sand it was 97 and 96%, respectively. In 1998, migration rates, calculated as radionuclide weighted median depth (migration centre) divided by time since deposition were 1.1 cm/year for both 137Cs and 90Sr in sandy loam, 0.8 and 1.0 cm/year, respectively, in loam, 0.6 and 0.8 cm/year in silt loam, and 0.4 and 0.6 cm/year for 137Cs and 90Sr, respectively, in loamy sand. A distinction is made between short-term migration, caused by events soon after deposition and less affected by soil type, and long-term migration, more affected by e.g. soil texture. Three to four years after deposition, effects of short-term migration is still dominant in the studied soils.  相似文献   

14.
Plant uptake of 134Cs in relation to soil properties and time   总被引:1,自引:0,他引:1  
134Cs uptake by sunflower and soybean plants grown on seven different soils and its relation to soil properties were studied in a greenhouse pot experiment. Soil in each pot was contaminated by dripping the 134Cs in layers, and sunflower and soybean plants were grown for three and two successive periods, respectively. 134Cs plant uptake was expressed as the transfer factor (TF) (Bq kg(-1) plant/Bq kg(-1) soil) and as the daily plant uptake (flux) (Bq pot(-1) day(-1)) taking into account biomass production and growth time. For the studied soils and for both plants, no consistent trend of TFs with time was observed. The use of fluxes, in general, provided less variable results than TFs and stronger functional relationships. A negative power functional relationship between exchangeable potassium plus ammonium cations expressed as a percentage of cation exchange capacity of each soil and 134Cs fluxes was found for the sunflower plants. A similar but weaker relationship was observed for soybean plants. The significant correlation between sunflower and soybean TFs and fluxes, as well as the almost identical highest/lowest 134Cs flux ratios, in the studied soils, indicated a similar effect of soil characteristics on 134Cs uptake by both plants. In all the studied soils, sunflower 134Cs TFs and fluxes were significantly higher than the respective soybean values, while no significant difference was observed in potassium content and daily potassium plant uptake (flux) of the two plants.  相似文献   

15.
A mathematical model was constructed to simulate the processes of 137Cs migration in peat soils and its uptake by vegetation. Model parameters were assessed and the pattern of 137Cs distribution over soil profile was predicted in case of peat soils, which are typical of the Russian regions contaminated after the Chernobyl accident. The ecological half-life of 137Cs in the plant-root soil zone was calculated, and a long-term prognosis of the radionuclide uptake by plants was made.  相似文献   

16.
An analysis of sporocarps of ectomycorrhizal fungi Suillus variegatus assessed whether cesium (133Cs and 137Cs) uptake was correlated with potassium (K) or rubidium (Rb) uptake. The question was whether intraspecific correlations of Rb, K and 133Cs mass concentrations with 137Cs activity concentrations in sporocarps were higher within, rather than among, different fungal species, and if genotypic origin of sporocarps within a population affected uptake and correlation. Sporocarps (n = 51) from a Swedish forest population affected by the fallout after the Chernobyl accident were studied. The concentrations were 31.9 ± 6.79 g kg−1 for K (mean ± SD, dwt), 0.40 ± 0.09 g kg−1 for Rb, 8.7 ± 4.36 mg kg−1 for 133Cs and 63.7 ± 24.2 kBq kg−1 for 137Cs. The mass concentrations of 133Cs correlated with 137Cs activity concentrations (r = 0.61). There was correlation between both 133Cs concentrations (r = 0.75) and 137Cs activity concentrations (r = 0.44) and Rb, but the 137Cs/133Cs isotopic ratio negatively correlated with Rb concentration. Concentrations of K and Rb were weakly correlated (r = 0.51). The 133Cs mass concentrations, 137Cs activity concentrations and 137Cs/133Cs isotopic ratios did not correlate with K concentrations. No differences between, within or, among genotypes in S. variegatus were found. This suggested the relationships between K, Rb, 133Cs and 137Cs in sporocarps of S. variegatus is similar to other fungal species.  相似文献   

17.
Specific features of 137Cs accumulation, transformation, and migration in humus-peaty and peaty-gley soils of transitional bogs are discussed with reference to the southwestern part of the Russian Federation, which was most heavily contaminated after the Chernobyl accident. The influence of physicochemical soil properties and concentrations of typomorphic elements on these processes is characterized. It is concluded that bog soils accumulate 137Cs in the form of hardly movable compounds and, as a consequence, transitional bogs are transformed into critical ecosystems.  相似文献   

18.
A model predicting plant uptake of radiocaesium based on soil characteristics is described. Three soil parameters required to determine radiocaesium bioavailability in soils are estimated in the model: the labile caesium distribution coefficient (kd1), K+ concentration in the soil solution [mK] and the soil solution-->plant radiocaesium concentration factor (CF, Bq kg-1 plant/Bq dm-3). These were determined as functions of soil clay content, exchangeable K+ status, pH, NH4+ concentration and organic matter content. The effect of time on radiocaesium fixation was described using a previously published double exponential equation, modified for the effect of soil organic matter as a non-fixing adsorbent. The model was parameterised using radiocaesium uptake data from two pot trials conducted separately using ryegrass (Lolium perenne) on mineral soils and bent grass (Agrostis capillaris) on organic soils. This resulted in a significant fit to the observed transfer factor (TF, Bq kg-1 plant/Bq kg-1 whole soil) (P < 0.001, n = 58) and soil solution K+ concentration (mK, mol dm-3) (P < 0.001, n = 58). Without further parameterisation the model was tested against independent radiocaesium uptake data for barley (n = 71) using a database of published and unpublished information covering contamination time periods of 1.2-10 years (transfer factors ranged from 0.001 to 0.1). The model accounted for 52% (n = 71, P < 0.001) of the observed variation in log transfer factor.  相似文献   

19.
Fertilization with 2.5 t/ha limestone: (83% CaCO3, 8% MgO, 6% K2O, 3% P2O5) reduces the 137Cs transfer from spruce forest soil into plants like fern (Dryopteris carthusiana) and blackberry (Rubus fruticosus) by a factor of 2–5 during at least 11 years as measured by the aggregated transfer factor Tag. In 1997 and 2006 these results were confirmed by additional measurements of the 137Cs transfer factor TF, related to the root zone (Oh horizon), which were explained by the selective sorption of 137Cs in the root zone by measurements of the Radiocaesium Interception Potential (RIP) in fertilized (RIP > 179 meq/kg) and non-fertilized soils (RIP < 74 meq/kg).  相似文献   

20.
The vertical distribution of 137Cs activity in peat soil profiles and 137Cs activity concentration in plants of various species was studied in samples collected at two sites on a raised bog in central Sweden. One site (open bog) was in an area with no trees and only a few sparsely growing plant species, while the other (low pine) was less than 100 m from the open bog site and had slowly growing Scots pine, a field layer dominated by some ericaceous plants and ground well-covered by plants. The plant samples were collected in 2004–2007 and were compared with samples collected in 1989 from the same open bog and low pine sites. Ground deposition of 137Cs in 2005 was similar at both sites, 23?000 Bq m−2. In the open bog peat profile it seems to be an upward transport of caesium since a clear peak of 137Cs activity was found in the uppermost 1–4 cm of Sphagnum layers, whereas at the low pine site 137Cs was mainly found in deeper (10–12 cm) layers. The migration rate was 0.57 cm yr−1 at the open bog site and the migration centre of 137Cs was at a depth of 10.7, while the rate at the low pine site was 0.78 cm yr−1 and the migration centre was at 14.9 cm. Heather (Calluna vulgaris) was the plant species with the highest 137Cs activity concentrations at both sites, 43.5 k Bq−1 DM in 1989 decreasing to 20.4 in 2004–2007 on open bog and 22.3 k Bq kg−1 DM in 1989 decreasing to 11.2 k Bq−1 DM by the period 2004–2007 on the low pine site. 137Cs transfer factors in plants varied between 0.88 and 1.35 on the open bog and between 0.48 and 0.69 m2 kg−1 DM at the low pine site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号