首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Twenty years of environmental monitoring data around the Swedish nuclear power plants and the Studsvik research facilities have been evaluated. In the marine environment, Fucus vesiculosus generally has high activity concentrations and the presence of a large variety of radionuclides in comparison with other bioindicators. However, for single nuclides the detection frequency was higher for 110mAg in Littorina spp and for 152Eu in Macoma baltica in comparison with other bioindicators. Close to the discharge point the activity concentration of 60Co in F. vesiculosus and in the discharge water were correlated. In the terrestrial environment, few radionuclides were detected and the activity concentrations were generally low. Of the terrestrial indicators, mosses had the highest activity concentrations and also comprised the largest variety of radionuclides. The radiation doses to humans based on measurements of released activity were small. Based on the results from the evaluation, alternative sampling strategies for the monitoring program are discussed.  相似文献   

2.
In the framework of the developments of the European system RODOS (Real-time On-line DecisiOn support System) for emergency response to nuclear accident, the computer code POSEIDON, that was developed to assess the radiological consequences of radioactive releases into marine environment, was adapted to cope with emergency conditions, in situations of radioactive discharges into the oceans from direct deposition from the atmosphere, sunken ships and containers, from discharges of rivers and estuaries and from coastal run-off. Based on the box model developed within the 'Marina' project, POSEIDON can calculate the dose effects from radionuclide releases in the coastal waters of Europe integrated over long time periods. A dynamic food chain model was implemented to deal with the short-term dynamical uptake of radioactivity by specific marine plants and organisms. POSEIDON has been installed on a UNIX platform to be fully compatible with RODOS input/output databases and on a Windows platform with an interface based on web technology. The 3D hydrodynamic model THREETOX is a part of the POSEIDON/RODOS system. It has been applied to coastal areas of the Baltic Sea, the Black Sea, and the North Sea. to derive the parameters for a flexible system of well-defined model compartments to be adapted to emergency conditions. The activity concentrations in water and in the marine food web were calculated by means of POSEIDON for radioactive fallout resulting from bomb testing, from the Chernobyl accident, and from routine discharges from nuclear facilities. POSEIDON's model results were compared with measurement data, and with calculation results from THREETOX. The model results agreed with the measurement data sufficiently.  相似文献   

3.
The United States Department of Energy (DOE) currently has in place a radiation dose standard for the protection of aquatic animals, and is considering additional dose standards for terrestrial biota. These standards are: 10 mGy/d for aquatic animals, 10 mGy/d for terrestrial plants, and, 1 mGy/d for terrestrial animals. Guidance on suitable approaches to the implementation of these standards is needed. A screening methodology, developed through DOE's Biota Dose Assessment Committee (BDAC), serves as the principal element of DOE's graded approach for evaluating radiation doses to aquatic and terrestrial biota. Limiting concentrations of radionuclides in water, soil, and sediment were derived for 23 radionuclides. Four organism types (aquatic animals; riparian animals; terrestrial animals; and terrestrial plants) were selected as the basis for development of the screening method. Internal doses for each organism type were calculated as the product of contaminant concentration, bioaccumulation factor(s) and dose conversion factors. External doses were calculated based on the assumption of immersion of the organism in soil, sediment, or water. The assumptions and default parameters used provide for conservative screening values. The screening methodology within DOE's graded approach should prove useful in demonstrating compliance with biota dose limits and for conducting screening assessments of radioecological impact. It provides a needed evaluation tool that can be employed within a framework for protection of the environment.  相似文献   

4.
The sensitivity of a marine dispersion model for non-conservative radionuclides, previously developed and validated for the English Channel, to parameters describing the exchanges between the liquid and solid phases (suspended matter and bottom sediments) has been studied using a Monte Carlo method. A probability distribution is assigned to each parameter. They are sampled to obtain a set of model parameters and a model run is carried out. This process is repeated to obtain a distribution of model outputs. Partial correlation coefficients are calculated to assess the relative influence of each parameter on model output. Errors are also assigned to model results. Three situations are studied: an instantaneous release of radionuclides, a continuous release and the case of a contaminated sediment behaving as a long-term source of radionuclides. Calculations have also been carried out for two radionuclides with different geochemical behaviour: (137)Cs and (239,240)Pu. The results indicate that all parameters are relevant, depending on the phase we are interested in obtaining the result and on the source term (instantaneous, continuous or due to sediments). However, parameters that are, in general, more influential are kinetic rates, mixing depth in the sediment and mean radius of suspended and sediment particles. This suggests that including several particle sizes in future radionuclide dispersion models could lead to an improvement in model results. Differences have also been found with respect to the relevance of some parameters depending on the geochemical behaviour of the radionuclide.  相似文献   

5.
One of the general assumptions for box modelling of the dispersion of radionuclides in marine systems relates to instantaneous mixing in each box which, in turn, results in practical calculations involving instantaneous mixing in the whole of oceanic space. A new approach to box modelling, which includes dispersion of radionuclides as a function of time, was therefore developed in order to provide a better and more realistic/physical approximation to reality relative to traditional box modelling. The novel and significant practical features of the approach are discussed. Calculations of concentrations of radionuclides in the marine environment and doses to man for some scenarios indicate differences of up to orders of magnitude between the traditional and new approaches to box modelling.  相似文献   

6.
Long-term safety assessments for geological disposal of radioactive waste in Switzerland involve the demonstration that the annual radiation dose to humans due to the potential release of radionuclides from the waste repository into the biosphere will not exceed the regulatory limit of 0.1 mSv. Here, we describe the simple but robust approach used by Nagra (Swiss National Cooperative for the Disposal of Radioactive Waste) to quantify the dose to humans as a result to time-dependent release of radionuclides from the geosphere into the biosphere. The model calculates the concentrations of radionuclides in different terrestrial and aquatic compartments of the surface environment. The fluxes of water and solids within the environment are the drivers for the exchange of radionuclides between these compartments. The calculated radionuclide concentrations in the biosphere are then used to estimate the radiation doses to humans due to various exposure paths (e.g. ingestion of radionuclides via drinking water and food, inhalation of radionuclides, external irradiation from radionuclides in soils). In this paper we also discuss recent new achievements and planned future work.  相似文献   

7.
The Chernobyl accident and unfortunately the recent accident at the Fukushima 1 Nuclear Power Plant are the most serious accidents in the history of the nuclear technology and industry. Both of them have a huge and prolonged impact on environment as well as human health. Therefore, any technological developments and strategies that could diminish the consequences of such unfortunate events are undisputedly the most important issues of research. Numerical simulations of dispersion of radionuclides in the atmosphere after an accidental release can provide with a reliable prediction of the path of the plume. In this study we present a short (one month) and a long (11 years) term statistical study for the Fukushima 1 Nuclear Power Plant to estimate the most probable dispersion directions and plume structures of radionuclides on local scale using a Gaussian dispersion model. We analyzed the differences in plume directions and structures in case of typical weather/circulation pattern and provided a statistical-climatological method for a “first-guess” approximation of the dispersion of toxic substances. The results and the described method can support and used by decision makers in such important cases like the Fukushima accident.  相似文献   

8.
The main purpose of this study is to examine possible impacts and consequences of a hypothetical accident at the Kola nuclear plant in north-west Russia on different geographical regions: Scandinavia, central Europe, European FSU and Taymyr. The period studied is 1991-1996. An isentropic trajectory model has been used to calculate forward trajectories that originated over the nuclear accident region. Atmospheric transport patterns were identified using the isentropic trajectories and a cluster analysis technique. From the trajectory model results, a number of cases were chosen for examination in detail using more complete transport models. For this purpose, the models MATHEW/ADPIC, DERMA and a newly developed FOA Random Displacement Model have been used to simulate the radionuclide transport and contamination in the case of a nuclear accident and their results have been compared with those of the trajectory modelling. Estimation of the long-term consequences for populations after an accident has been performed for several specific dates by empirical models and correlation between fallout and doses to humans on the basis of the Chernobyl accident exposures in Scandinavia.  相似文献   

9.
A generic approach has been developed to simulate dynamically the uptake and turnover of radionuclides by marine biota. The approach incorporates a three-compartment biokinetic model based on first order linear kinetics, with interchange rates between the organism and its surrounding environment. Model rate constants are deduced as a function of known parameters: biological half-lives of elimination, concentration factors and a sample point of the retention curve, allowing for the representation of multi-component release. The new methodology has been tested and validated in respect of non-dynamic assessment models developed for regulatory purposes. The approach has also been successfully tested against research dynamic models developed to represent the uptake of technetium and radioiodine by lobsters and winkles. Assessments conducted on two realistic test scenarios demonstrated the importance of simulating time-dependency for ecosystems in which environmental levels of radionuclides are not in equilibrium.  相似文献   

10.
Since 2011, the scientific community has worked to identify the exact transport and deposition patterns of radionuclides released from the accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in Japan. Nevertheless, there still remain many unknowns concerning the health and environmental impacts of these radionuclides. The present paper reviews the current understanding of the FDNPP accident with respect to interactions of the released radionuclides with the environment and impacts on human and non-human biota. Here, we scrutinize existing literature and combine and interpret observations and modeling assessments derived after Fukushima. Finally, we discuss the behavior and applications of radionuclides that might be used as tracers of environmental processes. This review focuses on 137Cs and 131I releases derived from Fukushima. Published estimates suggest total release amounts of 12–36.7 PBq of 137Cs and 150–160 PBq of 131I. Maximum estimated human mortality due to the Fukushima nuclear accident is 10,000 (due to all causes) and the maximum estimates for lifetime cancer mortality and morbidity are 1500 and 1800, respectively. Studies of plants and animals in the forests of Fukushima have recorded a range of physiological, developmental, morphological, and behavioral consequences of exposure to radioactivity. Some of the effects observed in the exposed populations include the following: hematological aberrations in Fukushima monkeys; genetic, developmental and morphological aberrations in a butterfly; declines in abundances of birds, butterflies and cicadas; aberrant growth forms in trees; and morphological abnormalities in aphids. These findings are discussed from the perspective of conservation biology.  相似文献   

11.
The need to compare potential health risks to the public associated with different activities that can result in releases of hazardous substances to the environment is becoming increasingly important in decision-making. In making such comparisons, it is desirable to use equivalent indicators of potential health risks for radionuclides, chemical carcinogens, and noncarcinogenic hazardous chemicals. Current approaches to risk assessment that were developed for purposes of protecting human health do not provide equivalent indicators of potential risks from exposure to radionuclides and hazardous chemicals. Comparisons of environmental concentrations or calculated exposures or risks with standards for protection of public health also do not provide equivalent indicators of potential risks. We propose a simple approach to comparative risk assessments in which calculated exposures to any hazardous substances are expressed relative to no-observed-effect levels (NOELs) or, preferably, lower confidence limits of benchmark doses (BMDLs) in humans. This approach provides an equivalent, science-based indicator of the relative risks posed by different exposures to any hazardous substances.  相似文献   

12.
The radiological status of the Greek marine environment, prior to the Chernobyl accident, was characterized mainly by the fallout from nuclear weapon tests. However, the release of radioactivity into the environment from the accident in the Chernobyl Nuclear Power Plant and its deposition in the Greek marine environment resulted in an increase of the 137Cs activity concentration by approximately one order of magnitude. In addition, the direct transport of radiocaesium into the North Aegean Sea has been further influenced by the late impact of the Chernobyl accident on the Greek marine environment, related to the transfer of 137Cs, mainly through the Dnieper but also the Danube rivers, to the Black Sea and further to the North Aegean Sea through the Straits of Dardanelles. The aim of this work is to provide a present day picture of the geographic variation of the concentration of 137Cs in the surface layer of the Greek marine environment and hence, to evaluate the annual committed effective dose delivered to humans through the ingestion pathway from marine sources.  相似文献   

13.
The radionuclide (99)Tc had been discharged from the nuclear reprocessing facility in Sellafield (UK) into the Irish Sea in increased amounts in the 1990s. We compare the simulated dispersion of (99)Tc in surface water as calculated by a hydrodynamic model and an assessment box model with field-observations from 1996 to 1999 to study concentrations, pathways and travel times. The model results are consistent with the observations and show the typical pathway of dissolved radionuclides from the Irish Sea via the North Sea along the Norwegian Coast. Subsequently the contaminated water separates into three branches of which the two Arctic branches bear the potential for future monitoring of the signal in the next decades. The results of the hydrodynamic model indicate a large variability of surface concentrations in the West Spitsbergen Current which has implications for future monitoring strategies. According to the observed and simulated distributions we suggest an improved box model structure to better capture the pattern for concentrations at the surface.  相似文献   

14.
Assessment of the environmental and radiological consequences of a nuclear accident requires the management of a great deal of data and information as well as the use of predictive models. Computerised Decision Support Systems (CDSS) are essential tools for this kind of complex assessment and for assisting experts with a rational decision process. The present work focuses on the assessment of the main features of selected state-of-the-art CDSS for off-site management of freshwater ecosystems contaminated by radionuclides. This study involved both developers and end-users of the assessed CDSS and was based on practical customisation exercises, installation and application of the decision systems. Potential end-users can benefit from the availability of several ready-to-use CDSS that allow one to run different kinds of models aimed at predicting the behaviour of radionuclides in aquatic ecosystems, evaluating doses to humans, assessing the effectiveness of different kinds of environmental management interventions and ranking these interventions, accounting for their social, economic and environmental impacts. As a result of the present assessment, the importance of CDSS “integration” became apparent: in many circumstances, different CDSS can be used as complementary tools for the decision-making process. The results of this assessment can also be useful for the future development and improvement of the CDSS.  相似文献   

15.
The necessity to provide information about radionuclide concentrations in Arctic marine species has been heightened in recent years due to a number of accidents in Arctic regions involving nuclear vessels and the presence of a large number of potential radioactive contamination sources. The provision for such information is largely dependent on the use of radionuclide uptake and transfer models. The uptake of radionuclides in Arctic seal species in this study has been modelled using a probabilistic biokinetic approach. In this paper, model results are compared with empirical data from relevant samples taken within the Arctic region. Results indicate that the model performs well when estimating concentrations of (137)Cs in two seal species for both median values and reproduction of the distribution of data values, but not as well for a third seal species. Likely factors affecting the results are the probability density functions used for the input parameters.  相似文献   

16.
134Cs and 137Cs from the Chernobyl reactor accident were detected in UK shoreline seawater very quickly after activity from the accident reached this country. Concentrations were highest in areas adjacent to those where deposition over land was highest, but they declined quickly and did not reach radiologically significant levels in terms of public radiation exposure. Subsequently, the distribution in seawater was investigated further afield. Radiocaesium attributable to the Chernobyl accident was found to be widespread: it was readily distinguished from other sources by having a different 137Cs:134Cs ratio (about 2:1). Its presence was especially noticeable in northern UK waters rather than those to the south; much of the North Sea has been surveyed as well as the Norwegian Sea. Evidence of Chernobyl radiocaesium was found as far north as 70°N and in many of these areas, including the northern North Sea, it overshadowed the effect of BNFL (British Nuclear Fuels plc) Sellafield discharges, previously the main source of these radionuclides.  相似文献   

17.
The dose conversion coefficients (DCCs) for the assessment of internal absorbed dose rate in reference animals and plants have been generally calculated assuming a homogeneous distribution of radionuclides within the body. Realistic scenarios of internal exposure must account for some radionuclides which tend to concentrate in specific organs or tissues. To study the effect of such inhomogeneous distributions, internal DCCs have been calculated assuming both a central and an eccentric point source. The analysis of the results showed that uncertainties of the whole body DCC due to non-homogeneous radionuclide distribution are less than 30% for photons and electrons for all considered organisms. For electrons, the uncertainties are negligible below certain energies, dependent on the size of the organisms. Additionally, the organ doses due to the accumulation of the radionuclide in an organ are also described and organ/whole body doses ratios are estimated.  相似文献   

18.
Surficial and subsurficial sediment samples derived from gravity cores, selected from the harbour of Patras, Greece, were analyzed for grain size, water content, bulk density, specific gravity, organic carbon content and specific activities of natural radionuclides and (137)Cs. The specific activities of (232)Th, (226)Ra, (40)K and (137)Cs were measured radiometrically. The radionuclides (238)U and (232)Th were also analyzed using the INAA. The differences found between the specific activities of the natural radionuclides measured by the two methods are of no statistical significance. The sediment cores selection was based on a detailed bathymetric and marine seismic survey. Through the study of the detailed bathymetric map and the seismic profiles it was shown that ship traffic is highly influential to the harbour bathymetry. The granulometric and geotechnical properties of the sediments and therefore the specific activities of the natural radionuclides and (137)Cs seem to be controlled by the ship traffic. Relationship between radionuclide activity concentrations and granulometric/geotechnical parameters was defined after the treatment of all the analyses using R-mode factor analysis. The natural radionuclide activities are related to the fine fraction and bulk density of the sediments, while (137)Cs is mainly influenced by the organic carbon content. In addition, (238)U and (226)Ra seem to be in close relation with the heavy minerals fraction in coarse-grained sediments with high specific gravity.  相似文献   

19.
The radiation protection community has only recently started the important work of preparedness for long-term post-accidental management of radioactively contaminated areas, like for instance the EC projects STRATEGY, FARMING and EURANOS and the French authorities' CODIRPA and PAREX programmes. There are, however, different views concerning how long a long-term management might last. Based on the Norwegian and former Soviet Union experience after the Chernobyl accident, it is clear that a nuclear accident can entail decades of necessary management and rehabilitation of living conditions. The time period is dependent on a number of factors, e.g. amount of fallout, type of radionuclides, land use of contaminated area, number and density of people affected and available techniques and resources for implementing countermeasures. This paper discusses the management strategy implemented in Norway after the Chernobyl accident, the need for changing strategy over time and the important involvement of affected groups. Careful planning and reflections should be undertaken before actions are taken in the recovery phase, keeping in mind the possibility of decades with problems.  相似文献   

20.
Enhanced levels of naturally occurring radioactive materials (NORM) are produced through various industrial operations and may lead to discharges to the marine environment. A recent study, called MARINA II, carried out for the European Commission considered discharges of radionuclides from the NORM industries to north European marine waters and their consequences. There are two main sources that were considered in the study. The use of phosphogypsum during the production of phosphoric acid by the fertiliser industry and the pumping of oil and gas from the continental shelf in the North Sea which produces large quantities of water contaminated with enhanced levels of naturally occurring radionuclides. Discharges of alpha emitting radionuclides from these two industries have contributed significantly to the total input of alpha emitters to north European waters over the period 1981-2000 (data were not available prior to 1981). Discharges due to the use of phosphogypsum have declined since the early 1990s and are now very low. Discharges from the oil and gas industries stabilised in the second half of the 1990s and are now the major contributor to alpha discharges to the region. As most European countries do not report discharges of radioactivity with the water produced during extraction, there is considerable uncertainty in the discharges used in the study. The impact of the discharges has been estimated both in terms of the effect on non-human biota and the radiological impact for people. In the 1980s the radiation dose rates to marine biota in the region around a phosphate plant on the north-west coast of England were as high due to the discharges from the phosphate plant as those near to the Sellafield reprocessing plant due to its discharges. In recent years the additional dose to marine biota in this region due to the past NORM discharges is of the same order of magnitude as the natural background. The collective dose rate was estimated to determine the radiological impact on people. The peak collective dose rate from the NORM industries occurred in 1984 and was just over 600 manSv y(-1). The collective dose rate fell with time as discharges from the phosphate industry reduced and was estimated as under 200 manSv y(-1) in 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号