首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sustained decline in marine fisheries worldwide underscores the need to understand and monitor fisheries trends and fisher behavior. Recreational fisheries are unique in that they are not subject to the typical drivers that influence commercial and artisanal fisheries (e.g., markets or food security). Nevertheless, although exposed to a different set of drivers (i.e., interest or relaxation), recreational fisheries can contribute to fishery declines. Recreational fisheries are also difficult to assess due to an absence of past monitoring and traditional fisheries data. Therefore, we utilized a nontraditional data source (a chronology of spearfishing publications) to document historical trends in recreational spearfishing in Australia between 1952 and 2009. We extracted data on reported fish captures, advertising, and spearfisher commentary and used regression models and ordination analyses to assess historical change. The proportion of coastal fish captures reported declined approximately 80%, whereas the proportion of coral reef and pelagic fish reports increased 1750% and 560%, respectively. Catch composition shifted markedly from coastal temperate or subtropical fishes during the 1950s to 1970s to coral reef and pelagic species in the 1990s to 2000s. Advertising data and commentary by spearfishers indicated that pelagic fish species became desired targets. The mean weight of trophy coral reef fishes also declined significantly over the study period (from approximately 30–8 kg). Recreational fishing presents a highly dynamic social–ecological interface and a challenge for management. Our results emphasize the need for regulatory agencies to work closely with recreational fishing bodies to observe fisher behavior, detect shifts in target species or fishing intensity, and adapt regulatory measures. Tendencias Dinámicas de Captura en la Historia de la Pesca Recreativa con Arpón en Australia  相似文献   

2.
Recent calls for the development of ecosystem-based fisheries management compel the development of resource management tools and linkages between existing fisheries management tools and other resource tools to enable assessment and management of multiple impacts on fisheries resources. In this paper, we describe the use of the Chesapeake Bay Fisheries Ecosystem Model (CBFEM), developed using the Ecopath with Ecosim (EwE) software, and the Chesapeake Bay Water Quality Model (WQM) to demonstrate how linkages between available modeling tools can be used to inform ecosystem-based natural resource management. The CBFEM was developed to provide strategic ecosystem information in support of fisheries management. The WQM was developed to assess impacts on water quality. The CBFEM was indirectly coupled with the WQM to assess the effects of water quality and submerged aquatic vegetation (SAV) on blue crabs. The output from two WQM scenarios (1985-1994), a baseline scenario representing actual nutrient inputs and another with reduced inputs based on a tributary management strategy, was incorporated into the CBFEM. The results suggested that blue crab biomass could be enhanced under management strategies (reduced nutrient input) when the effective search rate of blue crab young-of-the-year's (YOY's) predators or the vulnerability of blue crab YOY to its predators was adjusted by SAV. Such model linkages are important for incorporating physical and biological components of ecosystems in order to explore ecosystem-based fisheries management options.  相似文献   

3.
A fundamental challenge to estimating population size with mark-recapture methods is heterogeneous capture probabilities and subsequent bias of population estimates. Confronting this problem usually requires substantial sampling effort that can be difficult to achieve for some species, such as carnivores. We developed a methodology that uses two data sources to deal with heterogeneity and applied this to DNA mark-recapture data from grizzly bears (Ursus arctos). We improved population estimates by incorporating additional DNA "captures" of grizzly bears obtained by collecting hair from unbaited bear rub trees concurrently with baited, grid-based, hair snag sampling. We consider a Lincoln-Petersen estimator with hair snag captures as the initial session and rub tree captures as the recapture session and develop an estimator in program MARK that treats hair snag and rub tree samples as successive sessions. Using empirical data from a large-scale project in the greater Glacier National Park, Montana, USA, area and simulation modeling we evaluate these methods and compare the results to hair-snag-only estimates. Empirical results indicate that, compared with hair-snag-only data, the joint hair-snag-rub-tree methods produce similar but more precise estimates if capture and recapture rates are reasonably high for both methods. Simulation results suggest that estimators are potentially affected by correlation of capture probabilities between sample types in the presence of heterogeneity. Overall, closed population Huggins-Pledger estimators showed the highest precision and were most robust to sparse data, heterogeneity, and capture probability correlation among sampling types. Results also indicate that these estimators can be used when a segment of the population has zero capture probability for one of the methods. We propose that this general methodology may be useful for other species in which mark-recapture data are available from multiple sources.  相似文献   

4.
Abstract: Increasing migration into urbanized centers in the Solomon Islands poses a great threat to adjacent coral reef fisheries because of negative effects on the fisheries and because it further erodes customary management systems. Parrotfish fisheries are of particular importance because the feeding habits of parrotfish (scrape and excavate coral) are thought to be critical to the resilience of coral reefs and to maintaining coral reef health within marine protected areas. We investigated the ecological impact of localized subsistence and artisanal fishing pressure on parrotfish fisheries in Gizo Town, Western Solomon Islands, by analyzing the density and size distribution of parrotfish with an underwater visual census (UVC), recall diary (i.e., interviews with fishers), and creel surveys to independently assess changes in abundance and catch‐per‐unit‐effort (CPUE) over 2 years. We then compared parrotfish data from Gizo Town with equivalent data from sites open to and closed to fishing in Kida and Nusa Hope villages, which have different customary management regimes. Results indicated a gradient of customary management effectiveness. Parrotfish abundance was greater in customary management areas closed to fishing, especially with regard to larger fish sizes, than in areas open to fishing. The decline in parrotfish abundance from 2004 to 2005 in Gizo was roughly the same magnitude as the difference in abundance decline between inside and outside customary management marine reserves. Our results highlight how weak forms of customary management can result in the rapid decline of vulnerable fisheries around urbanized regions, and we present examples in which working customary management systems (Kinda and Nusa Hope) can positively affect the conservation of parrotfish—and reef fisheries in general—in the highly biodiverse Coral Triangle region.  相似文献   

5.
The Baja California Peninsula is considered México's most productive in terms of commercial fisheries. Very few quantitative assessments of the economic importance of this region exist, especially considering artisanal fisheries and their relationships with ecological data. Datasets from government records on shrimp capture in Magdalena Bay, an arid coastal lagoon of Baja California Sur were collected, analysed and correlated with ecological data. Over the 10-year period analysed, fisheries from Magdalena Bay made up 27.5% of the shrimp capture of the state, contributing over US$15.5 million to the economy of the country. The impressive value of this resource warrants considerable attention in the design of land-use plans for the future of the region. Analysis of ecological and economical data on shrimp fishery activities in the Magdalena Bay region enables us to propose recommendations to enhance the sustainable development of the local inhabitants. A thorough assessment of the potential value of alternative economic activities should be conducted to determine their potential to provide similar productive use of the natural resources of the region as the shrimp fishery. Also, from a more specific management viewpoint, harvest rates of small shrimp in the channels should be reduced.  相似文献   

6.
用于水产养殖的微生态制剂的研究和应用进展   总被引:5,自引:0,他引:5  
随着人们对水产养殖可持续发展的需求不断提高,微生态制剂在其中的应用也越来越广泛.本文综述了近年来国内外应用于水产养殖中的各种微生态制剂的研究及应用情况.从提高水产动物生长性能、改善免疫特性和改善养殖环境等方面总结了微生态制剂中主要益生菌、益生元及合生素等在水产养殖中的应用.同时概述了微生态制剂的安全性问题.对微生态制剂的生产与应用中存在的问题进行了讨论,提出选育优良生产菌株、优化改良生产工艺并加强对水产动物自身肠道菌群、添加剂和环境之间的关系研究有利于促进微生态制剂的生产和应用.  相似文献   

7.
Aquaculture in many countries around the world has become the biggest source of seafood for human consumption. While it alleviates the pressure on wild capture fisheries, the long-term impacts of large-scale, intensive aquaculture on natural coastal systems need to be better understood. In particular, aquaculture may alter habitat and exceed the carrying capacity of coastal marine ecosystems. In this paper, we develop a high-resolution numerical model for Sanggou Bay, one of the largest kelp and shellfish aquaculture sites in Northern China, to investigate the effects of aquaculture on nutrient transport and residence time in the bay. Drag from aquaculture is parameterized for surface infrastructure, kelp canopies, and bivalve cages. A model for dissolved inorganic nitrogen (DIN) includes transport, vertical turbulent mixing, sediment and bivalve sources, and a sink due to kelp uptake. Test cases show that, due to drag from the dense aquaculture and thus a reduction of horizontal transport, kelp production is limited because DIN from the Yellow Sea is consumed before reaching the interior of the kelp farms. Aquaculture drag also causes an increase in the nutrient residence time from an average of 5 to 10 days in the middle of Sanggou Bay, and from 25 to 40 days in the shallow inner bay. Low exchange rates and a lack of DIN uptake by kelp make these regions more susceptible to phytoplankton blooms due to high nutrient retention. The risk is further increased when DIN concentrations rise due to river inflows.  相似文献   

8.
Small-scale fisheries collectively have a large ecological footprint and are key sources of food security, especially in developing countries. Many of the data-intensive approaches to fishery management are infeasible in these fisheries, but a strategy that has emerged to overcome these challenges is the establishment of territorial user rights for fisheries (TURFs). In this approach, exclusive fishing zones are established for groups of stakeholders, which eliminates the race to fish with other groups. A key challenge, however, is setting the size of TURFs—too large and the number of stakeholders sharing them impedes collective action, and too small and the movement of target fish species in and out of the TURFs effectively removes the community's exclusive access. We assessed the size of 137 TURFs from across the globe relative to this design challenge by applying theoretical models that predict their performance. We estimated that roughly two-thirds of these TURFs were sized ideally to overcome the challenges posed by resource movement and fisher group size. However, for most of the remaining TURFs, all possible sizes were either too small to overcome the resource-movement challenge or too large to overcome the collective action challenge. Our results suggest these fisheries, which target mobile species in densely populated regions, may need additional interventions to be successful.  相似文献   

9.
Developing-world shark fisheries are typically not assessed or actively managed for sustainability; one fundamental obstacle is the lack of species and size-composition catch data. We tested and implemented a new and potentially widely applicable approach for collecting these data: mandatory submission of low-value secondary fins (anal fins) from landed sharks by fishers and use of the fins to reconstruct catch species and size. Visual and low-cost genetic identification were used to determine species composition, and linear regression was applied to total length and anal fin base length for catch-size reconstruction. We tested the feasibility of this approach in Belize, first in a local proof-of-concept study and then scaling it up to the national level for the 2017–2018 shark-fishing season (1,786 fins analyzed). Sixteen species occurred in this fishery. The most common were the Caribbean reef (Carcharhinus perezi), blacktip (C. limbatus), sharpnose (Atlantic [Rhizoprionodon terraenovae] and Caribbean [R. porosus] considered as a group), and bonnethead (Sphyrna cf. tiburo). Sharpnose and bonnethead sharks were landed primarily above size at maturity, whereas Caribbean reef and blacktip sharks were primarily landed below size at maturity. Our approach proved effective in obtaining critical data for managing the shark fishery, and we suggest the tools developed as part of this program could be exported to other nations in this region and applied almost immediately if there were means to communicate with fishers and incentivize them to provide anal fins. Outside the tropical Western Atlantic, we recommend further investigation of the feasibility of sampling of secondary fins, including considerations of time, effort, and cost of species identification from these fins, what secondary fin type to use, and the means with which to communicate with fishers and incentivize participation. This program could be a model for collecting urgently needed data for developing-world shark fisheries globally. Article impact statement: Shark fins collected from fishers yield data critical to shark fisheries management in developing nations.  相似文献   

10.
Abstract: Freshwater biodiversity conservation is generally perceived to conflict with human use and extraction (e.g., fisheries). Overexploited fisheries upset the balance between local economic needs and endangered species’ conservation. We investigated resource competition between fisheries and Ganges river dolphins (Platanista gangetica gangetica) in a human‐dominated river system in India to assess the potential for their coexistence. We surveyed a 65‐km stretch of the lower Ganga River to assess habitat use by dolphins (encounter rates) and fishing activity (habitat preferences of fishers, intensity of net and boat use). Dolphin abundance in the main channel increased from 179 (SE 7) (mid dry season) to 270 (SE 8) (peak dry season), probably as a result of immigration from upstream tributaries. Dolphins preferred river channels with muddy, rocky substrates, and deep midchannel waters. These areas overlapped considerably with fishing areas. Sites with 2–6 boats/km (moderately fished) were more preferred by dolphins than sites with 8–55 boats/km (heavily fished). Estimated spatial (85%) and prey–resource overlap (75%) between fisheries and dolphins (chiefly predators of small fish) suggests a high level of competition between the two groups. A decrease in abundance of larger fish, indicated by the fact that small fish comprised 74% of the total caught, may have intensified the present competition. Dolphins seem resilient to changes in fish community structure and may persist in overfished rivers. Regulated fishing in dolphin hotspots and maintenance of adequate dry season flows can sustain dolphins in tributaries and reduce competition in the main river. Fish‐stock restoration and management, effective monitoring, curbing destructive fishing practices, secure tenure rights, and provision of alternative livelihoods for fishers may help reconcile conservation and local needs in overexploited river systems.  相似文献   

11.
The growing demand for fish around the world is an immediate threat to marine megafauna that are unintentionally captured in commercial and artisanal fishery operations. Bycatch mitigation strategies, such as turtle excluder devices, circle hooks, and net illumination, have successfully reduced this risk in some fisheries. We explored the effectiveness of gillnet illumination to reduce sea turtle captures in 2 artisanal fisheries (Mankoadze and Winneba, Ghana) under normal fishing conditions. We first quantified sea turtle bycatch in Ghana's artisanal gillnet fishery from 15 boats for 12 months. We then quantified catch of targeted species and sea turtle bycatch from 20 boats for 15 months (7427 net sets). For 10 of these boats, we placed a Centro Economy green light (1 LED) at each 10-m interval on the net. We also quantified target catch and sea turtle bycatch from 30 boats for 8 months (2250 net sets). In 15 of these boats, a Centro Deluxe green light (3 LEDs) was installed at 15-m intervals. Boats with economy lights and those with deluxe lights both exhibited an 81% decrease in sea turtle captures (W = 1, p < 0.001, n = 20; W = 215, p < 0.001, n = 30, respectively) compared with control boats without lights. Illuminated nets resulted in fewer turtle catches for leatherback (Dermochelys coriacea), olive ridley (Lepidochelys olivacea), and green sea turtles (Chelonia mydas) (p < 0.05 for all species). Target catch (mass) (W = 53, p = 0.853 n = 20; W = 76, p = 0.449, n = 23) and value (W = 50, p = 1, n = 20; W = 69, p = 0.728, = 23) were not different across treatments. Our study affirms net illumination can reduce capture rates of 3 species of sea turtles, including the imperiled leatherback. Gear modification methods can successfully reduce bycatch if they are affordable and have broad applications for multiple species in different fisheries.  相似文献   

12.
Canopy-forming plants and algae commonly contribute to spatial variation in habitat complexity for associated organisms and thereby create a biotic patchiness of communities. In this study, we tested for interaction effects between biotic habitat complexity and resource availability on net biomass production and species diversity of understory macroalgae by factorial field manipulations of light, nutrients, and algal canopy cover in a subtidal rocky-shore community. Presence of algal canopy cover and/or artificial shadings limited net biomass production and facilitated species diversity. Artificial shadings reduced light to levels similar to those under canopy cover, and net biomass production was significantly and positively correlated to light availability. Considering the comparable and dependent experimental effects from shadings and canopy cover, the results strongly suggest that canopy cover controlled net biomass production and species diversity by limiting light and thereby limiting resource availability for community production. Canopy cover also controlled experimental nutrient effects by preventing a significant increase in net biomass production from nutrient enrichment recorded in ambient light (no shading). Changes in species diversity were mediated by changes in species dominance patterns and species evenness, where canopy cover and shadings facilitated slow-growing crust-forming species and suppressed spatial dominance by Fucus vesiculosus, which was the main contributor to net production of algal biomass. The demonstrated impacts of biotic habitat complexity on biomass production and local diversity contribute significantly to understanding the importance of functionally important species and biodiversity for ecosystem processes. In particular, this study demonstrates how loss of a dominant species and decreased habitat complexity change the response of the remaining assembly to resource loading. This is of potential significance for marine conservation since resource loading often promotes low habitat complexity and canopy species are among the first groups lost in degraded aquatic systems.  相似文献   

13.
Abstract: Many populations of marine megafauna, including seabirds, sea turtles, marine mammals, and elasmobranchs, have declined in recent decades due largely to anthropogenic mortality. To successfully conserve these long‐lived animals, efforts must be prioritized according to feasibility and the degree to which they address threats with the highest relative impacts on population dynamics. Recently, Wilcox and Donlan (2007, Frontiers in Ecology and the Environment) and Donlan and Wilcox (2008, Biological Invasions) proposed a conservation strategy of “compensatory mitigation” in which fishing industries offset bycatch of seabirds and sea turtles by funding eradication of invasive mammalian predators from the terrestrial reproductive sites of these marine animals . Although this is a creative and conceptually compelling approach, we find it flawed as a conservation tool because it has narrow applicability among marine megafauna, it does not address the most pervasive threats to marine megafauna, and it is logistically and financially infeasible. Invasive predator eradication does not adequately offset the most pressing threat to most marine megafauna populations—fisheries bycatch. For seabird populations, fisheries bycatch and invasive predators infrequently are overlapping threats. Invasive predators have limited population‐level impacts on sea turtles and marine mammals and no impacts on elasmobranchs, all of which are threatened by bycatch. Implementing compensatory mitigation in marine fisheries is unrealistic due to inadequate monitoring, control, and surveillance in the majority of fleets. Therefore, offsetting fisheries bycatch with eradication of invasive predators would be less likely to reverse population declines than reducing bycatch. We recommend that efforts to mitigate bycatch in marine capture fisheries should address multiple threats to sensitive bycatch species groups, but these efforts should first institute proven bycatch avoidance and reduction methods before considering compensatory mitigation.  相似文献   

14.
A number of models have been proposed to provide adaptive explanations of sex-ratio variation in mammals. Two models have been applied commonly to primates and ungulates with varying success—the Trivers-Willard (TW) hypothesis, and the local resource competition (LRC) hypothesis. For polygynous, sexually dimorphic mammals, where males are larger and disperse more readily, these models predict opposite outcomes of sex-ratio adjustment within the same environmental context (high-resource years: TW—more sons; LRC—more daughters). However, many of the predictions of these two models can vary depending on factors influencing resource availability, such as environmental stochasticity, resource predictability, and population density. The New Zealand fur seal (Arctocephalus forsteri) is a polygynous mammal showing marked sexual dimorphism (larger males), with higher variation in male reproductive success expected. We provide clear evidence of male-biased sex ratios from a large sample of A. forsteri pups captured around South Island, New Zealand during 1996/1998, even after accounting for a sex bias in capture probability. The extent of the bias depended upon year and, in 1998, strong climatic perturbations (El Niño/Southern Oscillation, ENSO) probably reduced food availability. Significant male-biased sex ratios were found in all years; however, there was a significant decline in the male bias in 1998. There was no relationship between sex ratio and population density. We suggest that the sex-ratio bias resulted from the production of relatively more male pups. Under the density-independent scenario, the strong male bias in A. forsteri sex ratios is support for the TW model within an environment of high resource predictability. We suggest that some plasticity in the determination of pup sex among years is a mechanism by which A. forsteri females in New Zealand, and perhaps other otariid seals, can maximise fitness benefits when living in regions of high, yet apparently predictable, environmental variability. We also suggest that much of the inconsistency in the reported sex ratios for otariid seals results from the complex interaction of population density and environmental stochasticity influencing relative food availability over time.  相似文献   

15.
In Southeast Asia, elasmobranchs are particularly threatened. We synthesized knowledge from the peer-reviewed and gray literature on elasmobranchs in the region, including their fisheries, status, trade, biology, and management. We found that 59% of assessed species are threatened with extinction and 72.5% are in decline; rays were more threatened than sharks. Research and conservation is complicated by the socioeconomic contexts of the countries, geopolitical issues in the South China Sea, and the overcapacity and multispecies nature of fisheries that incidentally capture elasmobranchs. The general paucity of data, funds, personnel, and enforcement hinders management. Reduced capacity in the general fishery sector and marine protected areas of sufficient size (for elasmobranchs and local enforcement capabilities) are among recommendations to strengthen conservation.  相似文献   

16.
Ocean acidification is increasingly recognized as a component of global change that could have a wide range of impacts on marine organisms, the ecosystems they live in, and the goods and services they provide humankind. Assessment of these potential socio-economic impacts requires integrated efforts between biologists, chemists, oceanographers, economists and social scientists. But because ocean acidification is a new research area, significant knowledge gaps are preventing economists from estimating its welfare impacts. For instance, economic data on the impact of ocean acidification on significant markets such as fisheries, aquaculture and tourism are very limited (if not non-existent), and non-market valuation studies on this topic are not yet available. Our paper summarizes the current understanding of future OA impacts and sets out what further information is required for economists to assess socio-economic impacts of ocean acidification. Our aim is to provide clear directions for multidisciplinary collaborative research.  相似文献   

17.
A good understanding of social factors that lead to marine ecological change is important to developing sustainable global fisheries. We used balanced panel models and conducted cross‐national time‐series analyses (1970–2010) of 122 nations to examine how economic prosperity and population growth affected the sustainability of marine ecosystems. We used catches in economic exclusive zone (EEZ); mean trophic level of fishery landings (MTL); primary production required to sustain catches (expressed as percentage of local primary production [%PPR]); and an index of ecosystem overfishing (i.e., the loss in secondary production index [L index]) as indicators of ecological change in marine ecosystems. The EEZ catch, %PPR, and L index declined gradually after gross domestic product (GDP) per capita reached $15,000, $14,000, and $19,000, respectively, and MTL increased steadily once GDP per capita exceeded $20,000. These relationships suggest that economic growth and biodiversity conservation are compatible goals. However, increasing human populations would degrade marine ecosystems. Specifically, a doubling of human population caused an increase in the %PPR of 17.1% and in the L index of 0.0254 and a decline in the MTL of 0.176. A 1% increase in human population resulted in a 0.744% increase in EEZ catch. These results highlight the importance of considering social and economic factors in developing sustainable fisheries management policy.  相似文献   

18.
Comparing resource pulses in aquatic and terrestrial ecosystems   总被引:3,自引:0,他引:3  
Nowlin WH  Vanni MJ  Yang LH 《Ecology》2008,89(3):647-659
Resource pulses affect productivity and dynamics in a diversity of ecosystems, including islands, forests, streams, and lakes. Terrestrial and aquatic systems differ in food web structure and biogeochemistry; thus they may also differ in their responses to resource pulses. However, there has been a limited attempt to compare responses across ecosystem types. Here, we identify similarities and differences in the causes and consequences of resource pulses in terrestrial and aquatic systems. We propose that different patterns of food web and ecosystem structure in terrestrial and aquatic systems lead to different responses to resource pulses. Two predictions emerge from a comparison of resource pulses in the literature: (1) the bottom-up effects of resource pulses should transmit through aquatic food webs faster because of differences in the growth rates, life history, and stoichiometry of organisms in aquatic vs. terrestrial systems, and (2) the impacts of resource pulses should also persist longer in terrestrial systems because of longer generation times, the long-lived nature of many terrestrial resource pulses, and reduced top-down effects of consumers in terrestrial systems compared to aquatic systems. To examine these predictions, we use a case study of a resource pulse that affects both terrestrial and aquatic systems: the synchronous emergence of periodical cicadas (Magicicada spp.) in eastern North American forests. In general, studies that have examined the effects of periodical cicadas on terrestrial and aquatic systems support the prediction that resource pulses transmit more rapidly in aquatic systems; however, support for the prediction that resource pulse effects persist longer in terrestrial systems is equivocal. We conclude that there is a need to elucidate the indirect effects and long-term implications of resource pulses in both terrestrial and aquatic ecosystems.  相似文献   

19.
The 1992 collapse of the northern cod fishery at Newfoundland, Canada and the subsequent closure of a majority of the inshore ground fishery has placed a focus on the development of aquaculture within the province. In May 1995 Innovative Fisheries Inc. of St. John's, Newfoundland, conducted field studies to evaluate the soft-shell clam (edible bivalve molluscs) resources on three sand flats near Burgeo, Newfoundland. GIS can be used to examine issues regarding the development and management of the soft-shell clam beds. GIS can also be applied to examine the issue of ‘competing uses’ for the proposed soft-shell clam aquaculture site. The information presented in this study indicates that GIS is an important tool for the aquaculture industry. These systems can be used to monitor, quantify and evaluate the soft-shell beds near Burgeo. Management issues such as water quality, resource sustainability as well as the economic viability of the clam resource can be assessed within a GIS environment. The results of the analysis in this study suggest potential problems with faecal coliform contamination from local cottages. Finally, data collection for aquaculture site assessment is required if a resource is to be managed effectively. GIS applications provide insights into the quality of the physical environment as well as the sustainability of a resource. However, it is the aquaculture operators who ultimately make the final decisions.  相似文献   

20.
This paper surveys developments in fisheries economics and fisheries policy over the past half century. Early work clarified the nature of the economic issues associated with open access, laying the groundwork for changes in policies after coastal nations expanded their jurisdictions in 1976. Perhaps the most important point made by economists is that property rights matter and that open-access conditions create economic as well as biological problems. The policy process has begun to create property rights systems, although many of the world's fisheries still operate under mixed systems of regulations and open access incentives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号