首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conservation focuses on maintaining biodiversity and ecosystem functioning, but gaps in our knowledge of species biology and ecological processes often impede progress. For this reason, focal species and habitats are used as surrogates for multispecies conservation, but species‐based approaches are not widely adopted in marine ecosystems. Reserves in the Solomon Islands were designed on the basis of local ecological knowledge to conserve bumphead parrotfish (Bolbometopon muricatum) and to protect food security and ecosystem functioning. Bumphead parrotfish are an iconic threatened species and may be a useful surrogate for multispecies conservation. They move across tropical seascapes throughout their life history, in a pattern of habitat use that is shared with many other species. We examined their value as a conservation surrogate and assessed the importance of seascape connectivity (i.e., the physical connectedness of patches in the seascape) among reefs, mangroves, and seagrass to marine reserve performance. Reserves were designed for bumphead parrotfish, but also enhanced the abundance of other species. Integration of local ecological knowledge and seascape connectivity enhanced the abundance of 17 other harvested fish species in local reserves. This result has important implications for ecosystem functioning and local villagers because many of these species perform important ecological processes and provide the foundation for extensive subsistence fisheries. Our findings suggest greater success in maintaining and restoring marine ecosystems may be achieved when they are managed to conserve surrogate species and preserve functional seascape connections. Incorporación de Especies Sustitutas y de Conectividad Marina para Mejorar los Resultados de Conservación  相似文献   

2.
Abstract: Habitat maps are often the core spatially consistent data set on which marine reserve networks are designed, but their efficacy as surrogates for species richness and applicability to other conservation measures is poorly understood. Combining an analysis of field survey data, literature review, and expert assessment by a multidisciplinary working group, we examined the degree to which Caribbean coastal habitats provide useful planning information on 4 conservation measures: species richness, the ecological functions of fish species, ecosystem processes, and ecosystem services. Approximately one‐quarter to one‐third of benthic invertebrate species and fish species (disaggregated by life phase; hereafter fish species) occurred in a single habitat, and Montastraea‐dominated forereefs consistently had the highest richness of all species, processes, and services. All 11 habitats were needed to represent all 277 fish species in the seascape, although reducing the conservation target to 95% of species approximately halved the number of habitats required to ensure representation. Species accumulation indices (SAIs) were used to compare the efficacy of surrogates and revealed that fish species were a more appropriate surrogate of benthic species (SAI = 71%) than benthic species were for fishes (SAI = 42%). Species of reef fishes were also distributed more widely across the seascape than invertebrates and therefore their use as a surrogate simultaneously included mangroves, sea grass, and coral reef habitats. Functional classes of fishes served as effective surrogates of fish and benthic species which, given their ease to survey, makes them a particularly useful measure for conservation planning. Ecosystem processes and services exhibited great redundancy among habitats and were ineffective as surrogates of species. Therefore, processes and services in this case were generally unsuitable for a complementarity‐based approach to reserve design. In contrast, the representation of species or functional classes ensured inclusion of all processes and services in the reserve network.  相似文献   

3.
Larval dispersal connectivity is typically integrated into spatial conservation decisions at regional or national scales, but implementing agencies struggle with translating these methods to local scales. We used larval dispersal connectivity at regional (hundreds of kilometers) and local (tens of kilometers) scales to aid in design of networks of no-take reserves in Southeast Sulawesi, Indonesia. We used Marxan with Connectivity informed by biophysical larval dispersal models and remotely sensed coral reef habitat data to design marine reserve networks for 4 commercially important reef species across the region. We complemented regional spatial prioritization with decision trees that combined network-based connectivity metrics and habitat quality to design reserve boundaries locally. Decision trees were used in consensus-based workshops with stakeholders to qualitatively assess site desirability, and Marxan was used to identify areas for subsequent network expansion. Priority areas for protection and expected benefits differed among species, with little overlap in reserve network solutions. Because reef quality varied considerably across reefs, we suggest reef degradation must inform the interpretation of larval dispersal patterns and the conservation benefits achievable from protecting reefs. Our methods can be readily applied by conservation practitioners, in this region and elsewhere, to integrate connectivity data across multiple spatial scales.  相似文献   

4.
Modeling the beta diversity of coral reefs   总被引:1,自引:0,他引:1  
Quantifying the beta diversity (species replacement along spatiotemporal gradients) of ecosystems is important for understanding and conserving patterns of biodiversity. However, virtually all studies of beta diversity focus on one-dimensional transects orientated along a specific environmental gradient that is defined a priori. By ignoring a second spatial dimension and the associated changes in species composition and environmental gradients, this approach may provide limited insight into the full pattern of beta diversity. Here, we use remotely sensed imagery to quantify beta diversity continuously, in two dimensions, and at multiple scales across an entire tropical marine seascape. We then show that beta diversity can be modeled (0.852 > or = r2 > or = 0.590) at spatial scales between 0.5 and 5.0 km2, using the environmental variables of mean and variance of depth and wave exposure. Beta diversity, quantified within a "window" of a given size, is positively correlated to the range of environmental conditions within that window. For example, beta diversity increases with increasing variance of depth. By analyzing such relationships across seascapes, this study provides a framework for a range of disparate coral reef literature including studies of zonation, diversity, and disturbance. Using supporting evidence from soft-bottom communities, we hypothesize that depth will be an important variable for modeling beta diversity in a range of marine systems. We discuss the implications of our results for the design of marine reserves.  相似文献   

5.
Larval dispersal is an important component of marine reserve networks. Two conceptually different approaches to incorporate dispersal connectivity into spatial planning of these networks exist, and it is an open question as to when either is most appropriate. Candidate reserve sites can be selected individually based on local properties of connectivity or on a spatial dependency-based approach of selecting clusters of strongly connected habitat patches. The first acts on individual sites, whereas the second acts on linked pairs of sites. We used a combination of larval dispersal simulations representing different seascapes and case studies of biophysical larval dispersal models in the Coral Triangle region and the province of Southeast Sulawesi, Indonesia, to compare the performance of these 2 methods in the spatial planning software Marxan. We explored the reserve design performance implications of different dispersal distances and patterns based on the equilibrium settlement of larvae in protected and unprotected areas. We further assessed different assumptions about metapopulation contributions from unprotected areas, including the case of 100% depletion and more moderate scenarios. The spatial dependency method was suitable when dispersal was limited, a high proportion of the area of interest was substantially degraded, or the target amount of habitat protected was low. Conversely, when subpopulations were well connected, the 100% depletion was relaxed, or more habitat was protected, protecting individual sites with high scores in metrics of connectivity was a better strategy. Spatial dependency methods generally produced more spatially clustered solutions with more benefits inside than outside reserves compared with site-based methods. Therefore, spatial dependency methods potentially provide better results for ecological persistence objectives over enhancing fisheries objectives, and vice versa. Different spatial prioritization methods of using connectivity are appropriate for different contexts, depending on dispersal characteristics, unprotected area contributions, habitat protection targets, and specific management objectives. Comparación entre los métodos de priorización de la conservación espacial con sitio y la conectividad espacial basada en la dependencia  相似文献   

6.
Although larval dispersal is crucial for the persistence of most marine populations, dispersal connectivity between sites is rarely considered in designing marine protected area networks. In particular the role of structural characteristics (known as topology) for the network of larval dispersal routes in the conservation of metapopulations has not been addressed. To determine reserve site configurations that provide highest persistence values with respect to their connectivity characteristics, we model nine connectivity topological models derived from graph theory in a demographic metapopulation model. We identify reserve site configurations that provide the highest persistence values for each of the metapopulation connectivity models. Except for the minimally connected and fully connected populations, we observed two general ‘rules of thumb’ for optimising the mean life time for all topological models: firstly place the majority of reserves, so that they are neighbours of each other, on the sites where the number of connections between the populations is highest (hub), secondly when the reserves have occupied the majority of the vertices in the hub, then select another area of high connectivity and repeat. If there are no suitable hubs remaining then distribute the remaining reserves to isolated locations optimising contact with non-reserved sites.  相似文献   

7.
Although the concept of connectivity is decades old, it remains poorly understood and defined, and some argue that habitat quality and area should take precedence in conservation planning instead. However, fragmented landscapes are often characterized by linear features that are inherently connected, such as streams and hedgerows. For these, both representation and connectivity targets may be met with little effect on the cost, area, or quality of the reserve network. We assessed how connectivity approaches affect planning outcomes for linear habitat networks by using the stock‐route network of Australia as a case study. With the objective of representing vegetation communities across the network at a minimal cost, we ran scenarios with a range of representation targets (10%, 30%, 50%, and 70%) and used 3 approaches to account for connectivity (boundary length modifier, Euclidean distance, and landscape‐value [LV]). We found that decisions regarding the target and connectivity approach used affected the spatial allocation of reserve systems. At targets ≥50%, networks designed with the Euclidean distance and LV approaches consisted of a greater number of small reserves. Hence, by maximizing both representation and connectivity, these networks compromised on larger contiguous areas. However, targets this high are rarely used in real‐world conservation planning. Approaches for incorporating connectivity into the planning of linear reserve networks that account for both the spatial arrangement of reserves and the characteristics of the intervening matrix highlight important sections that link the landscape and that may otherwise be overlooked. El Efecto de la Planeación para la Conectividad en Redes de Reservas Lineales  相似文献   

8.
The Benguela Current Large Marine Ecosystem off southwest Africa is a regionally valued system because of its biological productivity, which supports high biomass throughout the foodweb, and a rich diversity of habitats and species. However, the region is exposed to numerous anthropogenic pressures that are likely to escalate under future economic growth. In response, the Benguela Current Commission called for a spatial biodiversity assessment (BCC-SBA) to identify conservation priorities, including potential areas for marine protected areas. The systematic conservation-planning approach to this assessment requires a fine-scale map of coastal habitats, which was not previously available for the region. Our aim was to undertake this mapping, within tight logistic and resource limitations. We used a previously derived methodology for mapping the distribution of coastal habitats from aerial imagery. The Benguela coast is approximately 5,047 km long. Half of this extent is sandy beach, a third is rocky and mixed shores, 13 % comprises lagoonal features, and the remainder (4 %) comprises estuaries and offshore islands. The distribution and extent of these coastal habitats differs substantially alongshore (i.e. with latitude), with conditions ranging north–south from hot, humid mangrove-lined lagoons, to hyper-arid coastal desert sandy beaches. Patterns in regional geology, climate and oceanography are proposed as the main drivers of spatial heterogeneity in coastal habitat types. The resulting ecological and socio-economic wealth requires proactive protection (supported through the BCC-SBA, for example), to ensure sustainable utilization of the rich natural resources, and persistence of these resources for the benefit of current and future generations.  相似文献   

9.
Large-scale catastrophic events, although rare, lie generally beyond the control of local management and can prevent marine reserves from achieving biodiversity outcomes. We formulate a new conservation planning problem that aims to minimize the probability of missing conservation targets as a result of catastrophic events. To illustrate this approach we formulate and solve the problem of minimizing the impact of large-scale coral bleaching events on a reserve system for the Great Barrier Reef, Australia. We show that by considering the threat of catastrophic events as part of the reserve design problem it is possible to substantially improve the likely persistence of conservation features within reserve networks for a negligible increase in cost. In the case of the Great Barrier Reef, a 2% increase in overall reserve cost was enough to improve the long-run performance of our reserve network by >60%. Our results also demonstrate that simply aiming to protect the reefs at lowest risk of catastrophic bleaching does not necessarily lead to the best conservation outcomes, and enormous gains in overall persistence can be made by removing the requirement to represent all bioregions in the reserve network. We provide an explicit and well-defined method that allows the probability of catastrophic disturbances to be included in the site selection problem without creating additional conservation targets or imposing arbitrary presence/absence thresholds on existing data. This research has implications for reserve design in a changing climate.  相似文献   

10.
Abstract: Quantifying the extent to which existing reserves meet conservation objectives and identifying gaps in coverage are vital to developing systematic protected‐area networks. Despite widespread recognition of the Philippines as a global priority for marine conservation, limited work has been undertaken to evaluate the conservation effectiveness of existing marine protected areas (MPAs). Targets for MPA coverage in the Philippines have been specified in the 1998 Fisheries Code legislation, which calls for 15% of coastal municipal waters (within 15 km of the coastline) to be protected within no‐take MPAs, and the Philippine Marine Sanctuary Strategy (2004), which aims to protect 10% of coral reef area in no‐take MPAs by 2020. We used a newly compiled database of nearly 1000 MPAs to measure progress toward these targets. We evaluated conservation effectiveness of MPAs in two ways. First, we determined the degree to which marine bioregions and conservation priority areas are represented within existing MPAs. Second, we assessed the size and spacing patterns of reserves in terms of best‐practice recommendations. We found that the current extent and distribution of MPAs does not adequately represent biodiversity. At present just 0.5% of municipal waters and 2.7–3.4% of coral reef area in the Philippines are protected in no‐take MPAs. Moreover, 85% of no‐take area is in just two sites; 90% of MPAs are <1 km2. Nevertheless, distances between existing MPAs should ensure larval connectivity between them, providing opportunities to develop regional‐scale MPA networks. Despite the considerable success of community‐based approaches to MPA implementation in the Philippines, this strategy will not be sufficient to meet conservation targets, even under a best‐case scenario for future MPA establishment. We recommend that implementation of community‐based MPAs be supplemented by designation of additional large no‐take areas specifically located to address conservation targets.  相似文献   

11.
Marine fisheries in coastal ecosystems in many areas of the world have historically removed large-bodied individuals, potentially impairing ecosystem functioning and the long-term sustainability of fish populations. Reporting on size-based indicators that link to food-web structure can contribute to ecosystem-based management, but the application of these indicators over large (cross-ecosystem) geographical scales has been limited to either fisheries-dependent catch data or diver-based methods restricted to shallow waters (<20 m) that can misrepresent the abundance of large-bodied fished species. We obtained data on the body-size structure of 82 recreationally or commercially targeted marine demersal teleosts from 2904 deployments of baited remote underwater stereo-video (stereo-BRUV). Sampling was at up to 50 m depth and covered approximately 10,000 km of the continental shelf of Australia. Seascape relief, water depth, and human gravity (i.e., a proxy of human impacts) were the strongest predictors of the probability of occurrence of large fishes and the abundance of fishes above the minimum legal size of capture. No-take marine reserves had a positive effect on the abundance of fishes above legal size, although the effect varied across species groups. In contrast, sublegal fishes were best predicted by gradients in sea surface temperature (mean and variance). In areas of low human impact, large fishes were about three times more likely to be encountered and fishes of legal size were approximately five times more abundant. For conspicuous species groups with contrasting habitat, environmental, and biogeographic affinities, abundance of legal-size fishes typically declined as human impact increased. Our large-scale quantitative analyses highlight the combined importance of seascape complexity, regions with low human footprint, and no-take marine reserves in protecting large-bodied fishes across a broad range of species and ecosystem configurations.  相似文献   

12.
Fishing the line near marine reserves in single and multispecies fisheries.   总被引:3,自引:0,他引:3  
Throughout the world "fishing the line" is a frequent harvesting tactic in communities where no-take marine reserves are designated. This practice of concentrating fishing effort at the boundary of a marine reserve is predicated upon the principle of spillover, the net export of stock from the marine reserve to the surrounding unprotected waters. We explore the consequences and optimality of fishing the line using a spatially explicit theoretical model. We show that fishing the line: (1) is part of the optimal effort distribution near no-take marine reserves with mobile species regardless of the cooperation level among harvesters; (2) has a significant impact on the spatial patterns of catch per unit effort (CPUE) and fish density both within and outside of the reserve; and (3) can enhance total population size and catch simultaneously under a limited set of conditions for overexploited populations. Additionally, we explore the consequences of basing the spatial distribution of fishing effort for a multispecies fishery upon the optimality of the most mobile species that exhibits the greatest spillover. Our results show that the intensity of effort allocated to fishing the line should instead be based upon more intermediate rates of mobility within the targeted community. We conclude with a comparison between model predictions and empirical findings from a density gradient study of two important game fish in the vicinity of a no-take marine-life refuge on Santa Catalina Island, California (USA). These results reveal the need for empirical studies to account for harvester behavior and suggest that the implications of spatial discontinuities such as fishing the line should be incorporated into marine-reserve design.  相似文献   

13.
The persistence of species in reserves depends in large part on the persistence of functional ecological interactions. Despite their importance, however, ecological interactions have not yet been explicitly incorporated into conservation prioritization methods. We develop here a general method for incorporating consumer–resource interactions into spatial reserve design. This method protects spatial consumer–resource interactions by protecting areas that maintain the connectivity between the distribution of consumers and resources. We illustrate our method with a conservation planning case study of a mammalian predator, American marten (Martes americana), and its two primary prey species, Red-backed vole (Clethrionomys rutilus) and Deer mouse (Peromyscus maniculatus). The conservation goal was to identify a reserve for marten that comprised 12% of a forest management unit in the boreal forest in Québec, Canada. We compared reserves developed using analysis variants that utilized different levels of information about predator and prey habitat distributions, species-specific connectivity requirements, and interaction connectivity requirements. The inclusion of consumer–resource interactions in reserve-selection resulted in spatially aggregated reserves that maintained local habitat quality for the species. This spatial aggregation was not induced by applying a qualitative penalty for the boundary length of the reserve, but rather was a direct consequence of modelling the spatial needs of the interacting consumer and resources. Our method for maintaining connectivity between consumers and their resources within reserves can be applied even under the most extreme cases of either complete spatial overlap or complete spatial segregation of consumer–resource distributions. The method has been made available via public software.  相似文献   

14.
Ecological distance-based spatial capture–recapture models (SCR) are a promising approach for simultaneously estimating animal density and connectivity, both of which affect spatial population processes and ultimately species persistence. We explored how SCR models can be integrated into reserve-design frameworks that explicitly acknowledge both the spatial distribution of individuals and their space use resulting from landscape structure. We formulated the design of wildlife reserves as a budget-constrained optimization problem and conducted a simulation to explore 3 different SCR-informed optimization objectives that prioritized different conservation goals by maximizing the number of protected individuals, reserve connectivity, and density-weighted connectivity. We also studied the effect on our 3 objectives of enforcing that the space-use requirements of individuals be met by the reserve for individuals to be considered conserved (referred to as home-range constraints). Maximizing local population density resulted in fragmented reserves that would likely not aid long-term population persistence, and maximizing the connectivity objective yielded reserves that protected the fewest individuals. However, maximizing density-weighted connectivity or preemptively imposing home-range constraints on reserve design yielded reserves of largely spatially compact sets of parcels covering high-density areas in the landscape with high functional connectivity between them. Our results quantify the extent to which reserve design is constrained by individual home-range requirements and highlight that accounting for individual space use in the objective and constraints can help in the design of reserves that balance abundance and connectivity in a biologically relevant manner.  相似文献   

15.
Protected Areas and Prospects for Endangered Species Conservation in Canada   总被引:3,自引:0,他引:3  
Abstract:  Reserve networks figure prominently in conservation strategies that aim to reduce extinction rates. We tested the effectiveness of the current reserve network at protecting species at risk in Canada, where relatively extensive wilderness areas remain. We compared numbers of terrestrial species at risk included in existing reserves to randomly generated networks with the same total area and number of reserves. Existing reserve networks rarely performed better than randomly selected areas and several included fewer endangered species than expected by chance, particularly in the most biologically imperiled regions. The extent of protected area and density of species at risk were unrelated at either broad (countrywide) or finer spatial scales (50 × 50 km grids), although there was a tendency for the most threatened regions of the country to have few or no protected areas (1.5% of areas with >30 endangered species were in reserves). Although reserves will play a useful role in conserving endangered species that occur within them, reducing extinction rates in a region with much of the world's remaining wilderness will require integrating conservation strategies with agricultural and urban land-use plans outside formally protected areas.  相似文献   

16.
Discussions on the use of marine reserves (no-take zones) and, more generally, spatial management of fisheries are, for the most part, devoid of analyses that consider the ecological and economic effects simultaneously. To fill this gap, we develop a two-patch ecological-economic model to investigate the effects of spatial management on fishery profits. Because the fishery effects of spatial management depend critically on the nature of the ecological connectivity, our model includes both juvenile and adult movement, with density dependence in settlement differentiating the two types of dispersal. Rather than imposing a reserve on our system and measuring its effect on profits, we ask: "When does setting catch levels to maximize system-wide profits imply that a reserve should be created?" Closing areas to fishing is an economically optimal solution when the value derived from spillover from the reserve outweighs the value of fishing in the patch. The condition, while simple to state in summary form, is complex to interpret because it depends on the settlement success of the dispersing organisms, the nature of the costs of the fishing, the economic and ecological heterogeneity of the system, the discount rate, and growth characteristics of the fish population. The condition is more likely to be satisfied when the closed area is a net exporter of biomass and has higher costs of fishing, and for fish populations with density-independent settlement ("adult movement") than with density-dependent settlement ("larval dispersal"). Rather surprisingly, there are circumstances whereby closing low biological productivity areas, and even sometimes low cost areas to fish, can result in greater fishing profits than when both areas are open to fishing.  相似文献   

17.
Increasingly, large-scale conservation initiatives (e.g. through protected area networks and transboundary connectivity initiatives) are growing in prevalence as their diverse sustainability benefits are further understood. Conventional, centralized approaches to conservation, often featuring unconnected discrete ‘patches’, are no longer sufficient for achieving effective, long-term protection. The purpose of this study was to gain a better understanding of how to achieve effective large-scale conservation initiatives by addressing the following objectives: (1) To assess the degree to which local actors are involved in coastal and marine conservation practices, with a focus on large-scale conservation initiatives (LCIs); and, (2) To identify barriers and opportunities for achieving effective large-scale conservation. This paper presents findings from research in the Dominican Republic where social-ecological components of coastal and marine systems are considered from multiple perspectives to advance management and increase effectiveness of LCIs. Data were acquired through semi-structured interviews with 35 coastal and marine actors (e.g. fishers, ministers, non-governmental organizations, practitioners, academics) working at local to international scales. Interview data were analysed through thematic coding using QSR-Nvivo 12 software. Respondents expressed that non-governmental actors (e.g. private organizations, coastal communities) should have an increased role in developing, implementing and managing coastal and marine LCIs. Additionally, respondents commented on strategies to enhance social connectivity (i.e. sharing experiences, programs and expertise) within coastal and marine practices to enhance effectiveness and facilitate learning. Findings contribute to the understanding of complex coastal and marine social-ecological systems of the Dominican Republic and provide further support for involving multiple actors in governance processes.  相似文献   

18.
As coastal populations expand, demands for recreational opportunities on beaches and coastal dunes grow correspondingly. Although dunes are known to be sensitive to direct human disturbance and provide irreplaceable ecosystem services (e.g. erosion control, critical habitat and nesting sites), dunes serve as campsites for large numbers of people (∼90,000 p.a.) on the ocean-exposed shores of Fraser Island, Australia. Campsites are located in the established dunes and can only be accessed with 4WD vehicles along tracks cut directly from the beach through the foredunes. Here we quantified the extent of physical damage to foredunes caused by this practice, and tested whether human-induced physical changes to foredunes translate into biological effects. Of the 124 km of ocean-exposed beaches, 122 km (98%) are open to vehicles driven on the beaches, and camping zones cover 28.7 km or 23% of the dunes. A total of 235 vehicle tracks are cut across the foredunes at an average density of eight tracks per km of beach. These tracks have effectively destroyed one-fifth (20.2%) of the dune front in camping zones, deeply incising the dune-beach interface. There is evidence of accelerated erosion and shoreline retreat centred around vehicle tracks, resulting in a “scalloping” of the shoreline. No dune vegetation remains in the tracks and the abundance of ghost crabs (Ocypode spp.) is significantly reduced compared with the abutting dunes. Because current levels of environmental change caused by dune camping may not be compatible with the sustainable use of coastal resources and conservation obligations for the island (listed as a World Heritage Area and gazetted as a National Park), restoration and mitigation interventions are critical. These will require spatial prioritisation of effort, and we present a multi-criteria ranking method, based on quantitative measures of environmental damage and ecological attributes, to objectively target rehabilitation and conservation measures. Ultimately, coastal management needs to develop and implement strategies that reconcile demands for human recreation, including beach camping, with conservation of coastal dune ecosystems.  相似文献   

19.
Marine reserves can help in maintaining biodiversity and potentially be useful as a fishery management tool by removing human-mediated impacts. Intertidal, soft-sediment habitats can often support robust recreational and commercial shellfish harvests, especially for clams; however, there is limited research on the effects of reserves in these habitats. In San Juan County, Washington, several reserves prohibit recreational clam digging. We examined the effects of these reserves on infaunal community composition through comparison with non-reserve beaches during a 6-week period. Clam abundance, overall species richness and total polychaete family richness were greater on reserve beaches compared to non-reserve beaches. Additionally, an experiment within a reserve demonstrated negative impacts of digging on non-target infauna. These effects probably resulted from local disruption and disturbance of the sediment habitat and not from increased post-digging predation, which was controlled. Intertidal reserves could play an important role in sustaining local and potentially regional biodiversity.  相似文献   

20.
When designing a conservation reserve system for multiple species, spatial attributes of the reserves must be taken into account at species level. The existing optimal reserve design literature considers either one spatial attribute or when multiple attributes are considered the analysis is restricted only to one species. We built a linear integer programing model that incorporates compactness and connectivity of the landscape reserved for multiple species. The model identifies multiple reserves that each serve a subset of target species with a specified coverage probability threshold to ensure the species' long‐term survival in the reserve, and each target species is covered (protected) with another probability threshold at the reserve system level. We modeled compactness by minimizing the total distance between selected sites and central sites, and we modeled connectivity of a selected site to its designated central site by selecting at least one of its adjacent sites that has a nearer distance to the central site. We considered structural distance and functional distances that incorporated site quality between sites. We tested the model using randomly generated data on 2 species, one ground species that required structural connectivity and the other an avian species that required functional connectivity. We applied the model to 10 bird species listed as endangered by the state of Illinois (U.S.A.). Spatial coherence and selection cost of the reserves differed substantially depending on the weights assigned to these 2 criteria. The model can be used to design a reserve system for multiple species, especially species whose habitats are far apart in which case multiple disjunct but compact and connected reserves are advantageous. The model can be modified to increase or decrease the distance between reserves to reduce or promote population connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号