首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contents of cadmium (Cd), mercury (Hg), lead (Pb) and carbon(C) in the O, B and C horizons of podzolized forest soils inSweden were surveyed. Concentrations and storage of Cd, Hg andPb in the O and B horizons were high in southern Sweden and gradually decreased towards the north, though with considerablelocal variability. This pattern reflects the influence of anthropogenic emissions of these metals, as well as the effectsof soil-forming processes. Parent till material, as representedby the C horizon concentration of the respective metal, accountedfor little of the variation in metal concentration in the O horizon. For Cd and Pb, the correlations were not significant orslightly negative (R2 = 0.12 and 0.09 respectively) depending on region, while for Hg the correlation was not significant or slightly positive (R2 = 0.03 and 0.08). Furthermore, parent till material accounted for more of the variation in metal concentrations in the B horizons in the northern part of Sweden than in the middle and southernmost parts, where the concentration of total carbon had more influence. The correlation between the metal concentrationsin the B and C horizon was strongest for Pb (R2 = 0.63 and 0.36 in the two northernmost regions), lower for Cd (R2 = 0.19 and 0.16) and not significant for Hg. For allsoil horizons, total C concentration accounted for much of thevariation in Hg concentration in particular (O-horizon R2 = 0.15–0.69, B horizon R2 = 0.36–0.50, C horizon R2 = 0.23–0.50 and ns in one region). Ratios of metal concentrations between the B and C horizons were highest for Hg(maximum value of 30), indicating a relatively larger addition or retention of Hg compared to Cd and Pb (maximum value of 10)in the B horizon. This study indicate that factors other than parent material account for the large scale variation in O horizon concentrationsof metals but patterns correspond well with those of atmosphericdeposition of heavy metals and acidifying substances. Furthermore, the study highlights the importance of soil organicmatter and the intensity of pedogenic processes for the content and distribution of metals throughout the soil horizons.  相似文献   

2.
In order to understand the fate of anthropogenic lead (Pb)pollution in boreal forest soils, and to predict future trends, it is important to know where in the soil the pollution Pb is accumulated and how large the pollution and natural Pb inventories are in different soil horizons. We combined stable Pb isotope (206Pb/207Pb ratios) and concentration analyses to study Pb in podzol profiles and mor samples from old-growth forest stands at seven sites distributed from southern to northern Sweden. Additional samples were taken from managed forests, and from an agricultural field, to give some idea of the effects of land-use. Pb concentrations are typically 60–100 g g-1 dry mass in the mor layer in southern Sweden and about 30 g g-1 in northern Sweden. Pb isotope analyses show that virtually all of this Pb is pollution Pb. The isotope composition also shows that pollution Pb has penetrated downwards between 20–60 cm in the forest soils. The total pollution Pb inventories vary between 0.7–3.0 g m-2 ground surface, with larger inventories in southern compared to northern Sweden. Although the highest Pb concentrations occur in the mor layer, the largest inventories of pollution Pb are found in the Bs-horizon. The limited investigation of Pb distribution and inventories in soils from managed forests did not point to any major difference compared to the old-growth forests. The agricultural field revealed, however, a completely deviating Pb profile with all pollution Pb evenly distributed in the 20 cm thick top-soil.  相似文献   

3.
Two complementary techniques, which have been widely used to provide a general measure of microbial biomass or microbial activity in natural soils, were evaluated for their applicability to soils from the Mallard North and Mallard Lake Landfills, DuPage County, Illinois, U.S.A. Included were: (1) a potassium sulphate extraction technique with quantification of organic carbon for measurement of microbial biomass; and (2) an arginine ammonification technique for microbial activity. Four profiles consisting of replaced soils were sampled for this study; units included topsoil (mixed mollisol A and B horizons), compacted clay cover (local calcareous Wisconsinan age glacial till), and mixed soil/refuse samples. Internally consistent results across the four profiles and good correlations with other independent indicators of microbial activity (moisture, organic matter content, nitrogen, and phosphorus) suggest that, even though these techniques were developed mainly for natural mineral soils, they are also applicable to disturbed landfill soils.  相似文献   

4.
Lignite mining and processing has caused a pronounced impact both directly and indirectly on soils and ecosystems across large areas of the former GDR. We studied soils of pine forest ecosystems at sites affected by severe alkaline dust and sulphur deposition, stemming from lignite fired power plant emission, and at dumped sites from lignite mining. In this paper we summarize our main results and evaluate the long-term impact of lignite mining and combustion on the environment. The pine ecosystems on naturally developed soils show a clear effect of deposition history along a former deposition gradient with distinct changes in chemical properties of organic surface layers and mineral soil as well as in element turnover and cycling rates. Afforested sites on mining dumps are directly affected by the composition of the dumped substrates. Over a large area (800 km2) these substrates are dominated by Tertiary sediments with varying amounts of lignitic particles and pyrite that result in phytotoxic site conditions (pH < 3, high salt and metal contents). High amelioration doses of liming material (up to 200 t ha−1) were applied for restoration purposes. We studied the development of these sites over a period of 60 years using a false-time series approach. Beside the extreme soil conditions, element budgets of these sites are characterized by very high element release rates over decades caused by pyrite oxidation and primary mineral weathering.  相似文献   

5.
Factors influencing soil profile nitrogen storage (SPNS) in GB have been investigated. The SPNS values of moorland peats and podzols in the South Pennines, of permanent grassland in Yorkshire, and of adjacent arable-, semi-permanent grassland- and ancient woodland-soils in Worcestershire have been compared to assess land use effects. The soils exhibited similar SPNS values, because changes in bulk density and organic matter composition offset increases in N concentrations in highly organic soils. Data from the Soil Survey of Scotland were used to show effects of soil parent material on SPNS were also small. Data on Scottish podzol soils under heather moorland and derived from sandstone or quartzite were used to show that SPNS declined with increasing precipitation, but increased with the amount of pollutant N deposited from the atmosphere.  相似文献   

6.
Anthropogenic acid deposition causes forest soil acidification and perturbation of the soil forming processes. The impact of soil acidification on tree growth is discussed in view of the role of mycorrhizal fungi in weathering and nutrient uptake. A review has been carried out of experiments involving treatments of forest soil by lime and wood ash, where soil properties and soil solution composition have been investigated. Results from these experiments in Europe and North America are summarized. In general, the content of C in the mor layer decreased as a result of treatment due to higher microbial activity and soil respiration as well as increased leakage of DOC. In addition, the content of N in the mor layer, in general, decreased after treatment and there are occasional peaks of high NO3concentrations in soil solution. In nearly all reviewed investigations the pH of the deep mineral soil solution decreased and Al, SO4and NO3concentrations increased after treatment. These effects are probably due to the high ionic strength and increased microbial activity as a consequence of the treatments. In the soil, pH, CEC and base saturation increased in the upper horizons, but decreases in the upper mineral soil are also reported. In general, there was no increase in tree growth as a result of these treatments. The positive effects of the treatments on soil processes and tree growth are therefore questionable. In view of these conclusions, an investigation was carried out on the soil and soil solution chemistry and the role of mycorrhizal fungi in a spruce stand treated with two doses of lime and another treated with lime/ash in southern Sweden. The results of this investigation is reported in this volume.  相似文献   

7.
Chemical weathering losses were calculated for two conifer stands in relation to ongoing studies on liming effects and ash amendments on chemical status, soil solution chemistry and soil genesis. Weathering losses were based on elemental depletion trends in soil profiles since deglaciation and exposure to the weathering environment. Gradients in total geochemical composition were assumed to reflect alteration over time. Study sites were Horröd and Hasslöv in southern Sweden. Both Horröd and Hasslöv sites are located on sandy loamy Weichselian till at an altitude of 85 and 190 m a.s.l., respectively. Aliquots from volume determined samples from a number of soil levels were fused with lithium metaborate, dissolved in HNO3, and analysed by ICP – AES. Results indicated highest cumulative weathering losses at Hasslöv. The weathering losses for the elements are in the following order:Si > Al > K > Na > Ca > MgTotal annual losses for Ca+Mg+K+Na, expressed in mmolc m-2 yr-1, amounted to c. 28 and 58 at Horröd and Hasslöv, respectively. Variations between study sites could not be explained by differences in bulk density, geochemistry or mineralogy. The accumulated weathering losses since deglaciation were larger in the uppermost 15 cm than in deeper B horizons for most elements studied.  相似文献   

8.
Soil profiles at five automobile mechanic waste dumps in Port-Harcourt, Nigeria were investigated to assess the spatial distribution, chemical speciation, and likely mobility of Cd, Cu, Pb, Zn, Cr and Ni in the soil as a function of the soil properties. A sequential fractionation protocol was used that generated six different fractions into which soil metal could partition. Cadmium was associated with non-residual fractions at surface horizons, but at lower depths it was in the residual fractions. Copper and Cr partitioned into organic and residual fractions, while Pb was associated with an Fe-Mn oxide fraction and the residual fractions. Zinc in surface horizons partitioned into an Fe-Mn oxide fraction and a fraction that captured carbonate-bound species, but in subsurface horizons, it was mainly in the residual fractions. Ni was predominantly found in the residual fractions. Mobility factors were calculated, and their values tended to decrease with increasing profile depth, indicating that these metals are relatively mobile in the surface horizons compared the subsurface except for chromium in the 15-30 cm depths. The mobility factors for the heavy metals follow the order: Cd > Zn > Pb > Cu > Cr > Ni. The results suggest that there is serious contamination hazard with Cd, Pb, and Zn in the soil profiles.  相似文献   

9.
Changing of Lead and Cadmium Pools of Swedish Forest Soils   总被引:2,自引:0,他引:2  
The aims of the paper are to; i)evaluate the rate and direction of present changesin lead (Pb) and cadmium (Cd) soil pools of Swedishforests; ii) discuss processes of importance forleaching of Pb and Cd in Swedish forest soils. Thepresently ongoing changes of Pb and Cd pools ofSwedish forest soils are evaluated by compilationof data from the literature and unpublishedsources. It is concluded that Cd pools arepresently decreasing in larger areas of Sweden. Therate of decrease is mainly determined by soilacidity status; Cd leaching is regulated by ionexchange with Ca2+, Mg2+, Al3+ andH+, and is higher in acid soils. The Pb poolsare presently increasing with 0.1 to 0.3 percentannually in the soil down to 0.5 meter. Pb isredistributed from the O horizon to the B horizon,most pronounced in spruce forests; the Pb pools ofthe O horizon are presently not increasing, but isslightly decreasing by 0.1 to 0.2 percent annually. The leaching of Pb in the soil is controlled byfactors regulating the solubility of organicmatter.  相似文献   

10.
Emissions of Hg, Pb, and Cd to air aretransported over wide areas in Europe and deposited far awayfrom their sources. About 80% of the atmospheric depositionof these metals in south Sweden originate from emissions inother countries. As a result of the increased anthropogenicdeposition the concentrations of Hg, Pb, and Cd in the morlayer of forest soils have increased considerably, mainlyduring the 20th century. Although the atmosphericdeposition of these elements has declined during the mostrecent decades, the reduction of the input of Hg and Pb isnot sufficient to prevent a further accumulation. Theconcentrations of Hg and Pb are still increasing by ca. 0.5and ca. 0.2% annually in the surface layer of forest soils.In contrast, the Cd concentration is currentlydecreasing in a large part of Sweden as a result of bothdeposition decreases and enhanced leaching induced by soilacidification. The accumulation factors of Hg and Pb,especially in the forest topsoils of south Sweden, arealready above those at which adverse effects on soilbiological processes and organisms have been demonstrated instudies of gradients from local emission sources andlaboratory assessment. There are also indications of sucheffects at the current regional concentrations of Hg and Pbin mor layers from south Sweden, judging from observationsin field and laboratory studies. There is an apparent riskof Pb induced reduction in microbial activity over parts ofsouth Sweden. This might cause increased accumulation oforganic matter and a reduced availability of soil nutrients.At current concentrations of Hg in Swedish forest soils,effects similar to those of Pb are likely. Increasedconcentrations of these elements in organs of mammals andbirds have also been measured, though decreases have beendemonstrated in recent years, related to changes inatmospheric deposition rates. As a result of current andpast deposition in south Sweden, concentrations of Hg infish have increased about fivefold during the 20thcentury. This implies risks for human health, when fish frominland waters are used for food. Although the concentrationof Hg in fish has decreased ca. 20% during the last decade,probably as a result of the reduced deposition, the levelstill exceeds the general limit (0.5 mg kg-1) in about half(ca. 40 000) of the Swedish lakes. In order to reduceconcentrations in fish to the level recommended, and avoidfurther accumulation of Hg in soils, the atmosphericdeposition has to be reduced to ca. 20% of the current deposition rate. This can only be achieved by international co-operation.  相似文献   

11.
Methane oxidation in a landfill cover with capillary barrier   总被引:6,自引:0,他引:6  
The methane oxidation potential of a landfill cover with capillary barrier was investigated in an experimental plant (4.8 m x 0.8 m x 2.1m). The cover soil consisted of two layers, a mixture of compost plus sand (0.3 m) over a layer of loamy sand (0.9 m). Four different climatic conditions (summer, winter, spring and fall) were simulated. In and outgoing fluxes were measured. Gas composition, temperature, humidity, matrix potential and gas pressure were monitored in two profiles. CH4 oxidation rate within the investigated top cover ranged from 98% to 57%. The minimum was observed for a short time after irrigation. Temperature distribution, gas concentration profiles and lab-scaled batch experiments indicate that before irrigation the highest oxidising activity took place in a depth of about 30 cm. After irrigation the oxidising horizon seemed to migrate upwards since methanotrophic bacteria develop better there due to an adequate supply with oxygen. It can be assumed that the absence of oxygen is one of the most important limiting factors for the CH4 oxidation process. Abrupt cross-overs between horizons of different soil material may lead to zones of increased water saturation and decreased soil respiration.  相似文献   

12.
Pesticides can have a number of adverse impacts on crops, soil and water. In this paper, we focus on the physical and hydraulic properties of soils controlling the leaching of pesticides into the shallow groundwater of the Rattaphum Catchment in Thailand. Results from an analysis of soil physical properties, hydraulic conductivity, dye tracer and bromide tests show that the top 10–30 cm of soils in the three agro-ecosystems (vegetables, fruits and rubber) have a high clay and organic carbon content and are relatively impermeable with very low hydraulic conductivity (15–40 cm/day). Most of the dye and bromide were retained in the top clayey layer; the bromide forming a miniature bulge below 30 cm in two profiles which dissipated after 30 days, while the pesticides were mainly confined to the top 10 cm.  相似文献   

13.
Factors influencing soil profile nitrogen storage (SPNS) in GB have been investigated. The SPNS values of moorland peats and podzols in the South Pennines, of permanent grassland in Yorkshire, and of adjacent arable-, semi-permanent grassland- and ancient woodland-soils in Worcestershire have been compared to assess land use effects. The soils exhibited similar SPNS values, because changes in bulk density and organic matter composition offset increases in N concentrations in highly organic soils. Data from the Soil Survey of Scotland were used to show effects of soil parent material on SPNS were also small. Data on Scottish podzol soils under heather moorland and derived from sandstone or quartzite were used to show that SPNS declined with increasing precipitation, but increased with the amount of pollutant N deposited from the atmosphere.  相似文献   

14.
采用一维土柱装置模拟非水相液体(NAPLs)在我国两种典型土壤(北京潮土与湖南红壤)中的垂向迁移过程,以甲苯为例研究了其在两种土壤中的迁移性能;采用XRD技术测定土壤的矿物组成。实验结果表明,当潮土和红壤孔隙率均为45%时,甲苯在潮土中的迁移速率和最终迁移距离均显著高于在红壤中。甲苯在潮土中的阻滞系数(Rf=18.9)小于在红壤中(Rf=26.5),表明红壤对甲苯的吸附阻滞作用强于潮土。XRD表征结果显示,红壤中粒径小的黏粒含量较高,具有较多的黏土矿物,对甲苯具有更强的吸附阻滞能力,致使甲苯在红壤中垂向迁移速率小,最终迁移距离较短。  相似文献   

15.
Four umbric A horizons from acid forest soils were acidified in a batch type experiment and its effect in the Al pools of the solid phase analysed by means of selective dissolution methods. The results showed that Al release accounted for the consumption of 85–99% of the added protons, and causes a decrease of 2–33% of the ‘reactive’ Al pool of the soil solid phase. In these A horizons, inorganic non-crystalline Al and high stability Al-humus complexes are the main sources of the dissolved Al. The contribution of the complexes with intermediate stability only was relevant in the more acid horizon developed from phyllites (P18-A). The increase of equilibration time from 96 to 720 h did not caused significant differences in the decrease of the ‘reactive’ Al pool suggesting the acid neutralising reactions occurred in less than 96 h. In most cases the quantity of released Al is in agreement with the decrease of the different reactive Al pools of the solid phase.  相似文献   

16.
Phytoremediation of pollutants in soils is an emerging technology, using different soil-plant interaction properties. For organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), phytodegradation seems to be the most promising approach. It occurs mostly through an increase of the microbial activity in the plant rhizosphere, allowing the degradation of organic substances, a source of carbon for soil microbes. Despite a large amount of available data in the literature concerning laboratory and short term PAH phytodegradation experiments, no actual field application of such technique was previously carried out. In the present study, a soil from a former coking plant was used to evaluate the feasibility and the efficiency of PAH phytodegradation in the field during a three years trial and following a bioremediation treatment. Before the phytoremediation treatment, the soil was homogenized and split into six independent plots with no hydrological connections. On four of these plots, different types of common plant species were sowed: mixture of herbaceous species, short cut (P1), long cut (P2), ornamental plants (P3) and trees (P4). Natural vegetation was allowed to grow on the fifth plot (P5), and the last plot was weeded (P6). Each year, representative sampling of two soil horizons (0–50 and 50–100 cm) was carried out in each plot to characterize the evolution of PAHs concentration in soils and in soils solution obtained by lixiviation. Possible impact of the phytoremediation technique on ecosystems was evaluated using different eco- and genotoxicity tests both on the soil solid matrix and on the soil solution. For each soil horizon, comparable decrease of soil total PAHs concentrations were obtained for three plots, reaching a maximum value of 26% of the initial PAHs concentration. The decrease mostly concerned the 3 rings PAHs. The overall low decrease in PAHs content was linked to a drastic decrease in PAHs availability likely due to the bioremediation treatment. However, soil solutions concentration showed low values and no signficant toxicity was characterized. The mixture of the herbaceous species seemed to be the most promising plants to be used in such procedure.  相似文献   

17.
Reduced emissions of acidifying pollutants have changed the acidification process, and as a result, forest soils and surface waters are slowly recovering in Sweden. However, model calculations show that some areas may never recover completely unless further measures, such as liming, are undertaken. Liming of surface waters (lakes, rivers and wetlands) has been successfully practised in Sweden since the 1970s, but repeated treatments are necessary. A full recovery of acidified lakes and streams without frequent liming is however not possible until soil acidification is reversed in the most strongly affected areas. In this study, the recovery of acidified streams was examined using ‘the total catchment approach’ i.e. treatment of both recharge and discharge areas. The aim was to compare the quantitative effect of different treatments on run off chemistry and the recovery of brown trout. Catchments in southwest Sweden were treated with a combination of 2 tons of wood ash and 4, 6 or 12 tons of crushed limestone per hectare in 1998/1999. Treatment of both recharge and discharge areas resulted in fast and significant changes in stream water quality, e.g. increased concentrations of calcium, higher pH and ANC and a decreased concentration of inorganic aluminium. The initial changes were dependent on the distribution of the applied lime between discharge and recharge areas rather than the average dose on the total catchment. Treatment of recharge areas only, resulted in smaller but still significant effects on calcium, pH and ANC in stream water. Furthermore, there was an initial leaching of nitrate but it was only minor compared with the elevated leaching that occurs after a clear-cut. As a result of the treatments, brown trout is now successfully reproducing. Olle Westling (deceased).  相似文献   

18.
Composition and quantity per person of municipal solid waste (MSW) have been analyzed in six municipalities in southern Sweden with similar socio-economic conditions but with different collection systems. Samples of residual waste have been sorted, classified and weighed in 21 categories during 26 analyses that took place from 1998-2004. Collection data of the total waste flow, including source sorted recycling materials, in the same area have been compiled and compared. Multivariate data analyses have been applied. Weight-based billing reduced delivered amounts of residual household waste by 50%, but it is unknown to what extent improper material paths had developed. With curbside collection more metal, plastic and paper packaging was separated and left to recycling. When separate collection of biodegradables was included in the curbside system, the overall sorting of dry recyclables increased. The large uncertainty associated with waste composition analyses makes it difficult to draw strong conclusions regarding the effects on specific recyclables or the changes in the composition of the residual waste.  相似文献   

19.
Leaching experiments of rebuilt soil columns with two simulated acid rain solutions (pH 4.6–3.8) were conducted for two natural soils and two artificial contaminated soils from Hunan, south-central China, to study effects of acid rain on competitive releases of soil Cd, Cu, and Zn. Distilled water was used in comparison. The results showed that the total releases were Zn>Cu>Cd for the natural soils and Cd>Zn≫Cu for the contaminated soils, which reflected sensitivity of these metals to acid rain. Leached with different acid rain, about 26–76% of external Cd and 11–68% external Zn were released, but more than 99% of external Cu was adsorbed by the soils, and therefore Cu had a different sorption and desorption pattern from Cd and Zn. Metal releases were obviously correlated with releases of TOC in the leachates, which could be described as an exponential equation. Compared with the natural soils, acid rain not only led to changes in total metal contents, but also in metal fraction distributions in the contaminated soils. More acidified soils had a lower sorption capacity to metals, mostly related to soil properties such as pH, organic matter, soil particles, adsorbed SO4 2−, exchangeable Al3+ and H+, and contents of Fe2O3 and Al2O3.  相似文献   

20.
The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm−3, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH4 m−2 d−1, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH4 m−2 d−1 and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号