首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benthic community respiration was measured in situ at 9 stations along the Gay Head-Bermuda transect from depths of 40 to 5200 m. Three methods were used; bell jar respirometers, grab respirometers, and free vehicle respirometers. Benthic community respiration rates spanned three orders of magnitude, decreasing from 21.5 ml O2 m-2 h-1 at 40 m in November to 0.02 ml O2 m-2 h-1 at 5200 m. Rates decreased two orders of magnitude between 40 and 1800 m and then significantly declined again between the continental rise (3650 m) and the abyssal plain stations. Predictive equations for benthic community respiration along the transect reflect a strong correlation with depth of water. Of lesser significance are the correlations with water temperature, dissolved oxygen, benthic animal biomass, surface primary productivity and sediment organic matter. Calculations show that annual benthic respiration can utilize 1 to 2% of the surface primary productivity. Of the 2 to 7% organic carbon fixed at the surface which supposedly reaches the bottom, only 15 to 29% is utilized by the benthic community at 2200, 3000, and 3650 m. The energy requirements of other biological components of deep-sea benthic communities, such as benthopelagic and macro-epibenthic animals, not included in these measurements, must also be considered in calculating a balance of carbon.Contribution from Scripps Institution of Oceanography.  相似文献   

2.
Automatic potentiometric determination of dissolved oxygen   总被引:2,自引:0,他引:2  
Commercially available automatic titration systems were tested in 1988 for potentiometric titration of liberated iodine by the Winkler method of oxygen determination. The potentiometric equivalence point was also compared to the manual starch end point. Finally the automatic method was used in order to estimate belowhalocline respiration in the Kattegat, Sweden. Standard deviations of 0.007 ml O2 l–1 or 0.1 to 0.3% coefficients of variation (% standard deviation of the mean) were achieved when titrating 25 ml from replicate 60-ml oxygen bottles using the automatic method, or 50 ml manually. The precision for replicate titrations of 50-ml aliquots of 0.001N KIO3 was <0.05% (0.002 ml 0.01N Na2S2O3) for the automatic method. Titration time for 25-ml aliquots was 2 to 4 min, somewhat longer than for manual titrations (1 to 1.5 min). However, during titration the operator is free to perform other tasks. It is not possible to use automatic sample changers, due to rapid iodine volatilization. The equipment can be handled by relatively unskilled analysts and is suitable for use on board research vessels or in field stations [weight for a MettlerTM titrator (Mettler Instrumente AG, Greifensee, Switzerland) <10 kg, volume <0.1 m3]. Below-halocline oxygen consumption in the SE Kattegat ranged from 0 to 6 ml O2 m–3 h–1 (mean values for September and October 1988=1.69 and 0.66 ml O2 m–3 h–1, respectively, with 95% confidence limits of ca. ±0.6 ml O2 m–3 h–1).  相似文献   

3.
T. Dale 《Marine Biology》1978,49(4):333-341
Measurements of total, chemical and biological oxygen consumption were made at 5 stations situated between 22 and 35 m in Lindåspollene, Norway. The results from each station did not reveal any clear seasonal variation, but the pooled data showed highest values in September, and lowest in January. Problems concerning interpretion of results of biological and chemical O2 consumption obtained by a poisoning technique (using formaldehyde) are discussed. The time-weighted mean of the annual total O2 consumption based on all stations was 10.67 ml m-2 h-1 or 92.2 l m-2 year-1. This corresponds to a consumption of 34.5g C m-2 year-1 (respiratory quotient=0.7), or 34 to 37% of the net annual primary production of phytoplankton.  相似文献   

4.
Pronounced seasonal cycles in the rates of oxygen consumption and feeding were found for Cardium (=Cerastoderma) edule L. measured in the field under ambient conditions. The cockles had a maximum rate of oxygen consumption (0.89 ml O2 g-1 h-1) in April which declined to a minimum of 0.35 ml O2 g-1 h-1 in March. Their feeding rate was variable but had a maximum value (3.91 l g-1 h-1) in April and a minimum value (0.73 l g-1 h-1) in October. There was no apparent seasonal variation in absorption efficiency, with a mean value of 67.6%. Gametogenesis was initiated in January and the population reached a peak in reproductive condition in April/May, followed by a 3 month spawning period. Carbohydrate reserves were synthesised during spawning, and were then utilised during the winter and early spring. An adaptive function for a reduction in time spent feeding is postulated, and correlations between the rates of certain physiological processes and some exogenous and endogenous variables are discussed.  相似文献   

5.
Community metabolism of intertidal flats in the Ems-Dollard estuary   总被引:4,自引:0,他引:4  
To obtain an insight into the flux of carbon through intertidal sediments of the Ems-Dollard estuary, the annual cycles of gross benthic primary production and community respiration were measured at six stations, together with a set of environmental parameters. In a stepwise multiple regression analysis it was shown that temperature alone and temperature plus viable bacteria explained 50 and 70% respectively of the observed variation in community respiration. Other variables, including the rate of primary production and amount of organic carbon in the sediment were less important. The rate of primary production could not be fitted adequately into a multiple regression equation. The annual values of community respiration (177–794 gO2·m-2·yr-1) and primary production (82–628 gO2·m-2·yr-1) were within the range of published values. except for one station in the vicinity of a wastewater outfall, which had an extreme production (average 984 gO2·m-2·yr-1). At four stations, annual community respiration exceeded primary production by 40%. It is concluded that the main carbon flux within the sediment, from CO2 to benthic primary producers, to benthic consumers and from there to CO2 again,was completed within a month or so, leaving untouched the large bulk of organic matter within the sediment. Possible effects of wastewater discharges on community metabolism are discussed.Publication No. 43 of the project Biological Research in the Ems-Dollard Estuary  相似文献   

6.
Pelagic primary production and benthic and pelagic aerobic metabolism were measured monthly at one site in the estuarine plume region of the nearshore continental shelf in the Georgia Bight. Benthic and water-column oxygen uptake were routinely measured and supplemented with seasonal measures of total carbon dioxide flux. Average respiratory quotients were 1.18:1 and 1.02:1 for the benthos and water column, respectively. Benthic oxygen uptake ranged from 1.23 to 3.41 g O2 m-2 d-1 and totalled 756 g O2 m-2 over an annual period. Water column respiration accounted for 60% of total system metabolism. Turnover rates of organic carbon in sediment and the water column were 0.09 to 0.18 yr-1 and 6.2 yr-1, respectively. Resuspension appeared to control the relative amounts of organic carbon, as well as the sites and rates of organic matter degradation in the benthos and water column. Most of the seasonal variation in benthic and pelagic respiration could be explained primarily by temperature and secondarily by primary productivity. On an annual basis, the shelf ecosystem appeared to be heterotrophic; primary production was 73% of community metabolism, which was 749 g C m-2 yr-1. The timing of heterotrophic periods through the year appeared to be closely related to both river discharge and the periodicity of growth and death of marsh macrophytes in the adjacent estuary. The results of this study support the estuarine outwelling hypothesis of Odum (1968).This is Contribution No. 530 from the University of Georgia Marine Institute. This work was supported by the Georgia Sea Grant College Program maintained by the National Oceanic and Atmospheric Administration, US Department of Commerce  相似文献   

7.
Special hydrodynamic-chemical conditions at the East Flower Garden brine seep have provided the opportunity to examine the community structure of the thiobios and the oxybiotic-thiobiotic boundary. The boundary between the thiobios, whose population maxima occur in sulfidedependent chemoclines and which presumably have an ecologic requirement for sulfide, and the oxybios, which occur in oxidized zones above the chemocline, is controlled by sulfide, not oxygen. The boundary, which may not be at zero sulfide, is determined by a time-concentration phenomenon based on a dynamic interplay of sulfide and oxygen supply rates and the biota's sulfide detoxification capabilities. In Gollum's Canyon, where oxygen is plentiful, the boundary is at 10–40 μg-atoms·l-1 sulfide. Total abundances of organisms at thiobiotic stations were comparable to total abundances at oxybiotic stations. Highest thiobiotic abundance was 202 051 organisms per m2; highest oxybiotic abundance was 240 572 organisms per m2. The thiobios is dominated by representatives of the lower Bilateria (viz. Gnathostomulida, Platyhelminthes and Aschelminthes). These groups accounted for 50–80% of all the organisms present in the thiobiotic stations but less than 20% of all organisms in the oxybiotic stations. At two thiobiotic stations, over 50% of all organisms were gnathostomulids. Thiobios included macrofaunal as well as meiofaunal components. Peak abundances of amphipods were associated with the thiobiotic environment.  相似文献   

8.
Metabolism of two abundant echinoderm species constituting 99.6% of the epibenthic megafauna in the Santa Catalina Basin, off southern California, USA was measured at 1 300 m during the 1979 “Bathyal Expedition”. Specimens of the ophiuroid Ophiophthalmus normani and the holothurian Scotoplanes globosa, collected by the submersible “Alvin”, were individually placed in respirometers, and measured in situ for O2 consumption and ammonium excretion rates. For O. normani, weight-specific O2 consumption rates decreased with increasing weight and were of comparable magnitude to rates of deep-sea and shallow-water ophiuroids; excretion rates were highly variable. Population O2 consumption and excretion rates for O. normani (estimated from size-frequency distribution, abundance, and rate regression equations) were 1 129.28 μl O2 m-2 h-1 and 27.30 nmol NH 4 + m-2 h-1. Weight-specific O2 consumption and ammonium excretion rates of S. globosa decreased with increasing weight and were of comparable magnitude to rases of shallow-water holothurians. Population O2 constimption and excretion rates of S. globosa were 1.38 μl O2 m-2 h-1 and 4.86 nmol NH 4 + m-2 h-1. Combined population O2 consumption rates for O. normani and S. globosa are of comparable magnitude to that of the sediment community and plankton in the benthic boundary layer (sediment and overlying 50 m water column) of the Santa Catalina Basin.  相似文献   

9.
Nitrogenous excretion by meiofauna from coral reef sediments: Mecor 5   总被引:1,自引:0,他引:1  
Nitrogenous excretion rates of meiofauna from coral sediments of the Great Barrier Reef, Australia were studied at winter temperatures. Data on single taxa fitted a geometric regression: Log N excretion=-0.206+0.865 log x where log x=dry weight in g. Abundance and biomass data on meiofaunal taxa were obtained from Lizard Island, Orpheus Island and Davies Reef. Using excretion rates and biomass data, meiofauna were calculated as contributing 10.18, 12.32, and 1.60 mg N m-2 h-1 at the above areas respectively.Contribution No. 5 from the workshop Microbial Ecology of coral Reefs (MECOR), sponsored by the Australian Institute of Marine Sciences and the US National Science Foundation, July–August 1984  相似文献   

10.
The effects of mass transfer resistance due to the presence of a diffusive boundary layer on the photosynthesis of the epilithic algal community (EAC) of a coral reef were studied. Photosynthesis and respiration of the EAC of dead coral surfaces were investigated for samples from two locations: the Gulf of Aqaba, Eilat (Israel), and One Tree Reef on the Great Barrier Reef (Australia). Microsensors were used to measure O2 and pH at the EAC surface and above. Oxygen profiles in the light and dark indicated a diffusive boundary layer (DBL) thickness of 180–590 μm under moderate flow (~0.08 m s?1) and >2,000 μm under quasi-stagnant conditions. Under light saturation the oxygen concentration at the EAC surface rose within a few minutes to 200–550% air saturation levels under moderate flow and to 600–700% under quasi-stagnant conditions. High maximal rates of net photosynthesis of 8–25 mmol O2 m?2 h?1 were calculated from measured O2 concentration gradients, and dark respiration was 1.3–3.3 mmol O2 m?2 h?1. From light–dark shifts, the maximal rates of gross photosynthesis at the EAC surface were calculated to be 16.5 nmol O2 cm?3 s?1. Irradiance at the onset of saturation of photosynthesis, E k, was <100 µmol photons m?2 s?1, indicating that the EAC is a shade-adapted community. The pH increased from 8.2 in the bulk seawater to 8.9 at the EAC surface, suggesting that very little carbon in the form of CO2 occurs at the EAC surface. Thus the major source of dissolved inorganic carbon (DIC) must be in the form of HCO3 ?. Estimates of DIC fluxes across the DBL indicate that, throughout most of the daytime under in situ conditions, DIC is likely to be a major limiting factor for photosynthesis and therefore also for primary production and growth of the EAC.  相似文献   

11.
Oxygen and pH microelectrodes were used to investigate the microenvironment of the planktonic foraminifer Orbulina universa and its dinoflagellate endosymbionts. A diffusive boundary layer surrounds the foraminiferal shell and limits the O2 and proton transport from the shell to the ambient seawater and vice versa. Due to symbiont photosynthesis, high O2 concentrations of up to 206% air saturation and a pH of up to 8.8, i.e. 0.5 pH units above ambient seawater, were measured at the shell surface of the foraminifer at saturating irradiances. The respiration of the host–symbiont system in darkness decreased the O2 concentration at the shell surface to <70% of the oxygen content in the surrounding air-saturated water. The pH at the shell surface dropped to 7.9 in darkness. We measured a mean gross photosynthetic rate of 8.5 ± 4.0 nmol O2 h−1 foraminifer−1. The net photosynthesis averaged 5.3 ± 2.7 nmol O2 h−1. In the light, the calculated respiration rates reached 3.9 ± 1.9 nmol O2 h−1, whereas the dark respiration rates were significantly lower (1.7 ± 0.7 nmol O2 h−1). Experimental light–dark cycles demonstrated a very dynamic response of the symbionts to changing light conditions. Gross photosynthesis versus scalar irradiance curves (P vs E o curves) showed light saturation irradiances (E k) of 75 and 137 μmol photons m−2 s−1 in two O. universa specimens, respectively. No inhibition of photosynthesis was observed at irradiance levels up to 700 μmol photons m−2 s−1. The light compensation point of the symbiotic association was 50 μmol photons m−2 s−1. Radial profile measurements of scalar irradiance (E o) inside the foraminifera showed a slight increase at the shell surface up to 105% of the incident irradiance (E d). Received: 26 January 1998 / Accepted: 11 April 1998  相似文献   

12.
Primary productivity and the flux of DO14C, dissolved saccharides (DSAC) and dissolved free primary amines (DFPA) were followed in the Sargasso Sea, Caribbean and upwelling waters of Peru. Average carbon fixation rates were 42.8, 292.8 and 4791.6 mg C m-2 d-1, respectively, with nocturnal respiration rates ranging from 9.8–16.3% of gross photosynthesis for the 3 areas. The release of DO14C, as a percentage of the total carbon fixed in photosynthesis, was non-detectable in the Sargasso Sea, and 3.2 and 4.4% for the Caribbean and Peruvian phytoplankton communities. Few significant changes in DSAC concentrations were recorded over a 36-h incubation period in the Sargasso Sea and Caribbean stations, whereas light-dependent accumulations of DSAC and DFPA were noted in Peruvian stations which were strongly correlated with total phytoplankton productivity. In the Peruvian stations, the average accumulation rate was 234 mg DSAC-C m-2h-1 while the average rate of nocturnal decomposition was 141 mg DSAC-C m-2h-1; diurnal and nocturnal rates of DFPA accumulation and decomposition were similar (2 mg DFPA-C m-2h-1). These data were used to calculate bacterial production in the upwelling waters of Peru. A general discussion of 14C-technique and routine analytical techniques for DSAC analysis is presented, as DSAC flux exceeded DO14C flux by 17-fold in coastal Peruvian stations.  相似文献   

13.
Effects of benthic macrofauna (Corophium volutator, Hydrobia sp., Nereis virens) on benthic community metabolism were studied over a 65-d period in microcosms kept in either light/dark cycle (L/D-system) or in continuous darkness (D-system). Sediment and animals were collected in January 1986 in the shallow mesohaline estuary, Norsminde Fjord, Denmark. The primary production in the L/D-system after 10 d acted as a stabilizing agent on the O2 and CO2 flux rates, whereas the D-system showed decreasing O2 and CO2 flux throughout the period. Mean O2 uptake over the experimental period ranged from 0.38 to 1.24 mmol m–2 h–1 and CO2 release varied from 0.80 to 1.63 mmol m–2 h–1 in both systems. The presence of macrofauna stimulated community respiration rates measured in darknes, 1.4 to 3.0 and 0.9 to 2.0 times for O2 and CO2, respectively. In contrast, macrofauna lowered primary production. Gross primary production varied from 1.06 to 2.26 mmol O2 m–2 h–1 and from 1.26 to 2.62 mmol CO2 m–2 h–1. The community respiratory quotient (CRQ, CO2/O2) was generally higher in the begining of the experiment (0–20 d, mean 1.89) than in the period from Days 20 to 65 (mean 1.38). The L/D-system exhibited lower CRQ (ca. 1) than the D-system. The community photosynthetic quotient varied for both net and gross primary production from 0.64 to 1.03, mean 0.81. The heterotrophic D-system revealed a sharp decrease in the sediment content of chlorophyll a as compared to the initial content. In the autotrophic L/D-system, a significant increase in chlorophyll a concentration was observed in cores lacking animals and cores with C. volutator (The latter species died during the experiment). Due to grazing and other macrofauna activities other cores of the L/D-system exhibited no significant change in chlorophyll a concentration. Community primary production was linearly correlated to the chlorophyll a content in the 0 to 0.5 cm layer. Fluxes of DIN (NH4 ++NO2 +NO3 ) did not reveal significant temporal changes during the experiment. Highest rates were found for the cores containing animals, mainly because of an increased NH4 + flux. The release of DIN decreased significantly due to uptake by benthic microalgae in the L/D-system. No effects of the added macrofauna were found on particulate organic carbon (POC), particulate organic nitrogen (PON), total carbon dioxide (TCO2) and NH4 + in the sediment. The ratio between POC and PON was nearly constant (9.69) in all sediment dephts. The relationship between TCO2 and NH4 + was more complex, with ratios below 2 cm depth similar to those for POC/PON, but with low ratios (3.46) at the sediment surface.  相似文献   

14.
Colonies of the temperate coral Astrangia danae occur naturally with and without zooxanthellae. Basal nitrogen excretion rates of nonsymbiotic colonies increased with increasing feeding frequency [average excretion rate was 635 ng-at N (mg-at tissue-N)-1 h-1]. Reduced excretion rates of symbiotic colonies were attributed to N uptake by the zooxanthellae. Nitrogen uptake rates of the zooxanthellae averaged 8 ng-at N (106 cells)-1 h-1 in the dark and 21 ng-at N (106 cells)-1 h-1 at 200 Ein m-2 s-1. At these rates the zooxanthellae could provide 54% of the daily basal N requirement of the coral if all of the recycled N was translocated. Basal respiration rates were 172 nmol O2 cm-2 h-1 for starved colonies and 447 nmol O2 cm-2 h-1 for colonies fed three times per week. There were no significant differences between respiration rates of symbiotic and nonsymbiotic colonies. N excretion and respiration rates of fed (symbiotic and nonsymbiotic) colonies increased greatly soon after feeding. N absorption efficiencies decreased with increasing feeding frequency. A N mass balance, constructed for hypothetical situations of nonsymbiotic and symbiotic (3×106 zooxanthellae cm-2) colonies, starved and fed 15 g-at N cm-2wk-1, showed that the presence of symbionts could double the N growth rate of feeding colonies, and reduce the turnover-time of starved ones, but could not provide all of the N requirements of starved colonies. Rates of secondary production, estimated from rates of photosynthesis and respiration were similar to those estimated for reef corals.  相似文献   

15.
Quantitative (0.25 m2) samples of macrofaunal (>1.0 mm) invertebrates were taken in each season from one habitat of an intertidal sandbar in the North Inlet estuary near Georgetown, South Carolina, USA. During all seasons the community inhabiting the sample site was numerically dominated by two species of haustoriid amphipods (Acanthohaustorius millsi and Pseudohaustorius caroliniensis). Seasonal changes at the community level were clearly controlled by the population dynamics of the numerically dominant species, and qualitative information on life histories was important to the interpretation of analyses' results.This work was supported by the Environmental Technology Center of Martin Marietta Corporation and the Belle W. Baruch Institute for Marine Biology and Coastal Research. It is Contribution No. 138 of the Belle W. Baruch Institute for Marine Biology and Coastal research.  相似文献   

16.
A. Migné  D. Davoult 《Marine Biology》1997,127(4):699-704
As part of the evaluation of fluxes between the water column and a rich benthic community of the Dover Strait (Eastern English Channel), laboratory measurements of oxygen consumption were carried out on a common ophiurid, Ophiothrix fragilis (Abildgaard), from February 1993 to February 1995. The mean O2-consumption rate was evaluated at 0.31 mg O2 g−1 h−1 (ash-free dry weight). Simultaneous measurements of O2 consumption and CO2 production using the pH-alkalinity method revealed an average respiratory quotient of 0.69 proved suitable for converting oxygen demand to carbon flux. A seasonal trend in respiration data was demonstrated by sinusoidal curves fitted to O2-uptake and CO2-release data as a function of time. The influence on respiration rate of two seasonal parameters (temperature and food availability) is discussed; linear regression indicated a highly significant relationship between O2 consumption (or CO2 production) and temperature; both O2-consumption and CO2-production rates decreased with starvation. The average O:N ratio was estimated at 8.46, close to the theoretical value when proteins constitute the catabolic substrate. The annual carbon respired by the O. fragilis community examined and the estimated annual primary production by phytoplankton indicate that the respiration of the O. fragilis community could supply 35% of phytoplankton carbon requirements. Received: 1 August 1996 / Accepted: 4 September 1996  相似文献   

17.
Laboratory measurements of oxygen consumption were made on Penaeus monodon (Fabricius) from protozoea to adult stage at temperatures between 15° and 35°C. The logarithmic relationship between weight-specific respiration rate (WRt) and temperature (T) for two size groups, Protozoea 1 (PZ1) to Postlarva 1 (PL1) and PL to adult, are given as; WRt=100.431+0.0146 (T) (ml O2 g-1 h-1) and WRt=10-0.948+0.0338 (T) (ml O2 g-1 h-1), respectively. Additionally, equations relating metabolic rate, temperature and size for the two size groups are; PZ1-PL1: log M=0.431+0.0146T+(1.25 (log TL)+0.579), and PL1-adult: log M=-0.948+0.0338T+(2.60(log CL)-0.683), where M=oxygen consumption in ml O2 individual -1h-1, T=temperature in °C, TL=total length in cm, and CL=carapace length in cm. Activation energies of 6 186.75 J for PZ1-PL1 and 14 066.62 J for PL-adults point to different metabolic pathways or to differences in the ratio between the metabolic pathways used.  相似文献   

18.
Diurnal variation of nitrogen cycling in coastal,marine sediments   总被引:6,自引:0,他引:6  
A closed chamber technique was developed to determine the emission of microbially produced N2O from an estuarine sediment. A diurnal variation was observed; maximum emissions of 0.4 to 4.0 mol N2O–N m-2 h-1 were recorded at night whereas the rates were low or even negative, -0.4 to 0.4 mol N2O–N m-2 h-1, during the day. The bacterial denitrification located in the uppermost centimeter was apparently the major source of the emitted N2O. The diurnal emission pattern was thus inversely related to the O2 availability at the sediment surface; in the dark, the lack of O2 production by benthic photosynthesis allowed the denitrification to occur closer to the sediment-water interface and was likely to enhance the release of N2O to the water. The daily averages for the emission were about 40 mol N2O–N m-2 d-1 for three investigation periods in autumn (November), winter (February) and spring (April), whereas no significant emission was recorded in the NO 3 - -depleted sediment in early summer (June). In this estuary, the N2O emissions from the sediment were significant contributions to the overall release of N2O to the atmosphere.  相似文献   

19.
Coral reef lagoons are generally regarded as zones of net heterotrophy reliant on organic detritus generated in more productive parts of the reef system, such as the seaward reef flat. The abundance and biomass of sediment infauna were measured seasonally for one year (1986) within the lagoon of Davies Reef, central Great Barrier Reef, to test the hypothesis that macrofaunal biomass and production of coral reef lagoons would decrease with distance from the reef flat and would change seasonally. In general, there were no simple relationships between infaunal standing stock or production and distance from the reef flat or season. Bioturbation by callianassid shrimps negatively affected the abundance of smaller infauna, suggesting a community limited by biogenic disturbance rather than by supply of organic material. Polychaetes and crustaceans were dominant amongst the smaller infauna (0.5 to 2mm) while larger animals (> 2 mm) were mostly polychaetes and molluscs. Mean biomass of infauna at both sites and all seasons was 3 181 mg C m?2. The smaller animals (0.5 to 2 mm) contributed about 40% of total macrofaunal respiration and production although they represented only 15% of the total macrofaunal biomass. The biomass of macrofauna was about equal to that of the bacteria and meiofauna, while respiration represented 10 to 20% of total community respiration. Consumption by macrofauna accounts for only 3 to 11% of total organic inputs to sediment, with a further 14 to 17% being lost by macrofaunal respiration.  相似文献   

20.
Oxygen consumption rates of the deep-sea fish Sebastolobus altivelis were measured in situ on pelagic juveniles at mesopelagic depths (608 m) and on demersal adults at bathyal depths (1 300 m) in the Santa Catalina Basin in March 1982. Two pelagic juveniles were individually collected, and respiration was measured continuously for approximately 2 d with a slurp gun respirometer manipulated from the submersible “Alvin”. Oxygen consumption rates of these juveniles were highly variable and were 1.5 to 1.8 times higher during the night than during the day. Gut contents of the juveniles were mainly euphausiids (Euphausia pacifica and Nematoscelis difficilis). Four demersal adults were collected by “Alvin” and individually placed in fish-trap respirometers on the bottom where respiration was measured continuously for approximately 1 d. Weight-specific O2 consumption rates for adults decreased with increasing body weight and were consistent in magnitude throughout the incubation period. Population O2 consumption for demersal S. altivelis (calculated from abundance, size-frequency distribution, and O2 consumption regression equation) was 11.01 μl O2 m-2 h-1, which is two orders of magnitude less than the O2 consumption rate for the population of the most abundant epibenthic megafaunal species in the Santa Catalina Basin, the ophiuroid Ophiophthalmus normani. O. normani is a principal prey for adults of S. altivelis based on gutcontent analysis. Given the population O2 consumption rate as an estimate of food energy demand, the demersal population of S. altivelis would assimilate only 0.007% of the standing crop of O. normani per day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号