首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In summer 1998, shallow water corals at Sesoko Island, Japan (26°38′N, 127°52′E) were damaged by bleaching. In August 2003, partially damaged colonies of the massive Porites lutea and the branching P. cylindrica were collected at depths of 1.0–2.5 m. The species composition of epilithic algal communities on dead skeletal surfaces of the colonies (‘red turfs’, ‘green turfs’, ‘red crusts’) and the endolithic algae (living in coral skeletons) growing close to and away from living coral polyps was determined. Carbon and nitrogen stable isotope values of organic matter (δ13C and δ15N) from all six of these biological entities were determined. There were no significant differences in the isotope composition of coral tissues of the two corals, with P. lutea having δ13C of −15.3 to −9.6‰ and δ15N of 4.7–6.1‰ and P. cylindrica having similar values. Polyps in both species living close to an interface with epilithic algae had similar isotope values to polyps distant from such an interface. Despite differences in the relative abundance of the algal species in red turfs and crusts, their δ13C and δ15N values were not significantly different from each other (−18.2 to −13.9, −20.6 to −16.2, 1.1–4.3, and 3.3 to 4.9‰, respectively). The green algal turf had significantly higher δ13C values (−14.9 to −9.3‰) than that of red turfs and crusts but similar δ15N (1.2–4.1‰) to the red algae. The data do not suggest that adjoining associations of epilithic algae and coral polyps exchange carbon- and nitrogen-containing metabolites to a significant extent. The endolithic algae in the coral skeletons had δ13C values of −14.8 to −12.3‰ and δ15N of 4.0–5.4‰. Thus they did not differ significantly from the coral polyps in their carbon and nitrogen isotope values. The similarity in carbon isotope values between the coral polyps and endolithic algae may be attributed to a common source of CO2 for zooxanthellae and endolithic algae, namely, from respiration by the coral host. While it is difficult to fully interpret similarity in the nitrogen isotope composition of coral tissue and of green endolithic algae and the difference in δ15N between green epilithic and endolithic algae, the data are consistent with nitrogen-containing metabolites from the scleractinian coral serving as a significant source of nitrogen for the endolithic algae.  相似文献   

2.
Stable isotope (SI) ratios of carbon (δ13C) and nitrogen (δ15N) were measured in omnivorous and carnivorous deep-sea copepods of the families Euchaetidae and Aetideidae across the Atlantic sector of the Southern Ocean to establish their trophic positions. Due to high and variable C/N ratios related to differences in lipid content, δ13C was corrected using a lipid-normalisation model. δ15N signals ranged from 3.0–6.9‰ in mesopelagic species to 7.0–9.5‰ in bathypelagic congeners. Among the carnivorous Paraeuchaeta species, the epi- to mesopelagic species Paraeuchaeta antarctica had lower δ15N values than the mesopelagic P. rasa and bathypelagic P. barbata. The same trend was observed among omnivorous Aetideidae, but was not significant. In the most abundant species P. antarctica, individuals from the western Atlantic had higher δ13C and δ15N values than specimens at the eastern stations. These longitudinal changes in δ13C and δ15N values were attributed to regional differences in hydrography and sea surface temperature (SST), in particular related to a northward extension of the Antarctic Polar Front (APF) at the easternmost stations. The results indicate that even in a mesopelagic carnivorous species, the changes in surface stable isotope signatures are pronounced.  相似文献   

3.
In an intertidal Zostera noltii Hornem seagrass bed, food sources used by sediment meiofauna were determined seasonally by comparing stable isotope signatures (δ13C, δ15N) of sources with those of nematodes and copepods. Proportions of different carbon sources used by consumers were estimated using the SIAR mixing model on δ13C values. Contrary to δ15N values, food source mean δ13C values encompassed a large range, from −22.1 ‰ (suspended particulate organic matter) to −10.0 ‰ (Z. noltii roots). δ13C values of copepods (from −22.3 to −12.3 ‰) showed that they use many food sources (benthic and phytoplanktonic microalgae, Z. noltii matter). Nematode δ13C values ranged from −14.6 to −11.4 ‰, indicating a strong role of microphytobenthos and/or Z. noltii matter as carbon sources. The difference of food source uses between copepods and nematodes is discussed in light of source accessibility and availability.  相似文献   

4.
Fundamental to the accuracy of stable isotope analysis in trophodynamic studies is the ability to predict discrimination between a consumer and its diet. Despite the widespread use of stable isotope analysis in trophic ecology, uncertainty still surrounds the factors affecting consumer-diet discrimination. Here we present evidence that diet quality and location of muscle tissue analysed affects the consumer-diet discrimination for the western rock lobster, Panulirus cygnus. Consumer-diet δ15N and δ13C discrimination for western rock lobster tail tissue were 1.67–2.97 and 2.92–3.60‰, respectively, with δ13C discrimination differing to values reported in the literature. Differences in nitrogen and carbon discrimination were observed between tail and leg tissue of lobsters of 1.22 and 1.13‰, respectively. Diet quality was also found to affect consumer-diet discrimination, with high protein pilchard diet leading to lower δ15N and higher δ13C discrimination. Diet quality should be considered as a factor that has the potential to affect consumer-diet discrimination when interpreting results from stable isotope studies.  相似文献   

5.
δ13C was used to identify seasonal variations in the importance of autochthonous and allochthonous sources of productivity for fish communities in intermittently connected estuarine areas of Australia’s dry tropics. A total of 224 fish from 38 species were collected from six intermittently connected estuarine pools, three in central Queensland (two dominated by C3 forest and one by C4 pasture) and three in north Queensland (one dominated by C3 and two by C4 vegetation). Samples were collected before and after the wet season. Fish collected in the two forested areas in central Queensland had the lowest δ13C, suggesting a greater incorporation of C3 terrestrial material. A seasonal variation in δ13C was also detected for these areas, with mean δ13C varying from −20 to −23‰ from the pre- to the post-wet season, indicating a greater incorporation of terrestrial carbon after the wet season. Negative seasonal shifts in fish δ13C were also present at the pasture site, suggesting a greater dependence on carbon of riparian vegetation (C3 Juncus sp.) in the post-wet season. In north Queensland, terrestrial carbon seemed to be incorporated by fish in the two C4 areas, as δ13C of most species shifted towards slightly heavier values in the post-wet season. A two-source, one-isotope mixing model also indicated a greater incorporation of carbon of terrestrial origin in the post-wet season. However, no seasonal differences in δ13C were detected for fish from the forested area of north Queensland. Overall, hydrologic connectivity seemed to be a key factor in regulating the ultimate sources of carbon in these areas. It is therefore important to preserve the surrounding habitats and to maintain the hydrologic regimes as close to natural conditions as possible, for the conservation of the ecological functioning of these areas.  相似文献   

6.
Seasonal variations and the effect of reproductive development on resource acquisition by two intertidal fucoid species, the iteroparous Fucus serratus L. and the semelparous Himanthalia elongata (L.) S. F. Gray were examined. The oxygen-exchange characteristics of vegetative apical tissue of both non-fertile and fertile plants and receptacle tissue were compared at monthly intervals throughout reproductive development. Respiratory rates in non-fertile F. serratus varied seasonally between 1.5 and 8.0 μmol g−1 fresh wt h−1; in fertile plants the receptacle had a significantly lower respiratory rate than the vegetative tissue. The respiratory rate of the vegetative button of fertile H. elongata displayed less seasonal variation and was lower than that of the receptacle, which varied from a maximum of 9.5 μmol g−1 fresh wt h−1 at receptacle initiation in October to a minimum of 2.0 μmol g−1 fresh wt h−1 in February. The maximum photosynthetic rate (P max) of non-fertile plants of both species did not vary in a distinct seasonal manner (∼60 μmol g−1 fresh wt h−1 for F. serratus and ∼12 μmol g−1 fresh wt h−1 for H. elongata). In fertile plants, the P max of the receptacle tissue was (∼50% lower in F. serratus, and at its peak three times higher in H. elongata, than that of vegetative tissue. The stable carbon-isotope ratio (δ13C) did not differ between different tissue types in F. serratus, but values did vary seasonally, being less negative in the summer than in the winter (−13.5‰ compared to −18‰). The receptacle tissue of H. elongata also displayed a distinct seasonal variation in δ13C values (−12‰ in summer, −16‰ in winter), whilst the δ13C of the vegetative button did not vary seasonally. The rate of uptake of inorganic nitrogen by the vegetative thallus was lower in H. elongata than in F. serratus. The receptacle tissue of F. serratus had lower uptake rates than the vegetative tissue, whilst the uptake rate by H. elongata receptacle tissue was higher than that of the vegetative button. Received: 14 March 1997 / Accepted: 22 April 1997  相似文献   

7.
Analysis of stable isotopes of oxygen and carbon in the otolith carbonate of pink snapper, Pagrus auratus, from several locations in Shark Bay, Western Australia, indicated that snapper are highly location specific. The hypersaline (36 to >60‰) Shark Bay, on the coast of Western Australia, generated strongly characteristic isotopic signatures in the otolith carbonate of snapper collected from the various locations indicating low levels of individual movement of the species. Oxygen isotopes showed enrichment in 18O in otolith carbonate with salinity (0.10: Δ δ18O/Δ salinity ‰) typical for the evaporation of seawater. The enrichment in 13C (up to 1.75‰) was attributed to the incorporation of metabolically derived CO2 from an enrichment of 13C in the food web within Shark Bay. This was possibly a result of lower concentrations of dissolved CO2 with increasing salinity causing a reduction in isotope fractionation during photosynthesis. Results complement recent genetic and tagging studies and provide further evidence of the complex nature of snapper stock structure in the Shark Bay region. Published online: 17 July 2002  相似文献   

8.
Morphology, elemental content and isotopic composition of leaves of the seagrasses Posidonia oceanica and Cymodocea nodosa were highly variable across the Illes Balears, a Spanish archipelago in the western Mediterranean, and varied seasonally at one site in the study area. The data presented in this paper generally expand the reported ranges of nitrogen, phosphorus, iron and arsenic content and δ13C and δ15N for these species. Nitrogen and phosphorus content of P. oceanica leaves also showed significant seasonal variability; on an annual basis, P. oceanica leaves averaged 1.55% N and 0.14% P at this monitoring site. Both N and P were more concentrated in the leaves in winter than in summer, with winter maxima of 1.76% N and 0.17% P and summer minima of 1.34% N and 0.11% P. There was no significant annual pattern observed in the δ13C of P. oceanica leaves, but there was a repeated 0.6‰ seasonal fluctuation in δ15N. Mean annual δ15N was 4.0‰; δ15N was lowest in May and it increased through the summer and autumn to a maximum in November. Over the geographic range of our study area, there were interspecific differences in the carbon, nitrogen and phosphorus content of the two species. Posidonia oceanica N:P ratios were distributed around the critical value of 30:1 while the ratios for C. nodosa were lower than this value, suggesting P. oceanica we collected was not consistently limited by N or P while C. nodosa tended toward nitrogen limitation. Nutrient content was significantly correlated to morphological indicators of plant vigor. Fe content of P. oceanica leaves varied by a factor of 5×, with a minimum of 31.1 μg g−1 and a maximum of 167.7 μg g−1. Arsenic was present in much lower tissue concentrations than Fe, but the As concentrations were more variable; the maximum concentration of 1.60 μg g−1 was eight times as high as the minimum of 0.20 μg g−1. There were interspecific differences in δ13C of the two species; C. nodosa was consistently more enriched (δ13C = −7.8 ± 1.7‰) than P. oceanica (−13.2 ± 1.2‰). The δ13C of both species decreased significantly with increasing water depth. Depth related and regional variability in the δ13C and δ15N of both species were marked, suggesting that caution needs to be exercised when applying stable isotopes in food web analyses.  相似文献   

9.
The feeding ecology of the green tiger shrimp Penaeus semisulcatus was studied in inshore fishing grounds off Doha, Qatar, using a combination of stable isotope (δ13C and δ15N) analysis and gut contents examination. Samples of post-larvae, juvenile and adult shrimp and other organisms were collected from intertidal and subtidal zones during the spawning season (January–June). Shrimp collected from shallow water seagrass beds were mostly post-larvae and juveniles and were significantly smaller than the older juveniles and adults caught in deeper macroalgal beds. Gut content examination indicated that post-larvae and juvenile shrimp in seagrass beds fed mainly on benthos such as Foraminifera, polychaetes, benthic diatoms and small benthic crustaceans (amphipods, isopods and ostracoda), whereas larger shrimp in the macroalgal beds fed mainly on bivalve molluscs and to a lesser extent polychaetes. In shrimp from both seagrass and algal beds, unidentifiable detritus was also present in the gut (18, 32%). δ13C values for shrimp muscle tissue ranged from −9.5 ± 0.26 to −12.7 ± 0.05‰, and δ15N values increased with increasing shrimp size, ranging from 4.1 ± 0.03 to 7.7 ± 0.11‰. Both δ15N values and δ13C values for shrimp tissue were consistent with the dietary sources indicated by gut contents and the δ13C and δ15N values for primary producers and prey species. The combination of gut content and stable isotope data demonstrates that seagrass beds are important habitats for post-larvae and juvenile P. semisulcatus, while the transition to deeper water habitats in older shrimp involves a change in diet and source of carbon and nitrogen that is reflected in shrimp tissue stable isotope ratios. The results of the study confirm the linkage between sensitive shallow water habitats and the key life stages of an important commercially-exploited species and indicate the need for suitable assessment of the potential indirect impacts of coastal developments involving dredging and land reclamation.  相似文献   

10.
Frolan A. Aya  Isao Kudo 《Marine Biology》2010,157(10):2157-2167
Use of stable isotope signatures to trace diet patterns in cultured marine bivalves, particularly when changing culture habitat, requires knowledge of the isotopic shift and enrichment between diet and consumer’s tissues. The aim of this study was to determine the patterns of isotope change and the variability of enrichment values (∆δ13C and ∆δ15N) in different tissues (muscle, gonad, digestive gland) of the Japanese scallop (Mizuhopecten yessoensis). It was hypothesized that the isotopic signatures of a consumer’s tissues changed during settlement and that the changes were related to variations in the isotopic signatures of food sources and gut contents. Particular attention was paid to the isotope enrichment between the diet and a consumer’s tissues using isotope analysis of gut content. Muscle δ15N values decreased significantly 3–5 months post-settlement in a nearshore seabed, concomitant with the ingestion of lower δ15N food. For juvenile scallops, sinking particles (SP) were considered a more important dietary source than suspended particulate organic matter (SPOM), based on the correspondence between SP and gut contents δ13C. Enrichment values (∆δ13C and ∆δ15N) varied with tissue and season. ∆δ15N was 2.4‰ in muscle, 1.2‰ in gonad, and 0.7‰ in the digestive gland. ∆δ13C was 3.2‰ in muscle, 2.3‰ in gonad, and −0.5‰ in the digestive gland. ∆δ15N was the lowest in summer (0.3‰), and ∆δ13C was the highest in autumn (2.8‰). ∆δ15N values were significantly influenced by age, but not ∆δ13C. Patterns of isotope ratios and enrichment values may be related to physiological attributes and differences in diet. This is the first study to demonstrate isotopic shift and enrichment encountered in different tissues of a cultured scallop when changing culture habitat.  相似文献   

11.
The alvinocaridid shrimp Rimicaris exoculata is an abundant component of the biota of Mid-Atlantic Ridge hydrothermal vents. To determine the nutritional strategy of this organism, we analysed the molecular abundance and carbon isotopic composition of its phospholipid fatty acids. High abundances of n-7 fatty acids (>40% total fatty acids) were observed in R. exoculata muscle tissues, in bacterial epibionts scraped from its gill bailers, and from the bacterially infested metal sulphides that the shrimp ingest. The phospholipid fatty acid abundance data indicates that the bacteria in the sulphides are closely related to the bacterial epibiota inhabiting the shrimp gill bailers, carapace and other body parts. Compound specific δ13C analyses of the phospholipid fatty acids gave average values of −12‰ for the epibiont bacteria and −21‰ for the sulphide bacteria. This difference may be largely due to the expression of different forms of RuBisCO (Forms I and II) which fractionate against 13C to different extents. Carbon limitation within the shrimp epibiont population may be an additional factor. The δ13C values (mean = −13‰) of the saturated and monounsaturated fatty acids isolated from the muscle tissues of R. exoculata were very close to those of the epibionts, indicating that the predominant source of dietary carbon for the shrimp is their epibionts, with a lesser contribution from free-living bacteria. The δ13C values (−26‰) of shrimp cholesterol were much more negative than those of the fatty acids, and this cholesterol is likely to have derived from the oceanic photic zone. Received: 26 June 1997 / Accepted: 6 November 1998  相似文献   

12.
The spatial relationships and linkage of the detrital flows among the water column, the sediment and the oyster Crassostrea gigas cultured in the water column were examined by using stable carbon isotopes (δ13C) in a tropical shallow lagoon from October 1996 to June 1997. The lagoon is located in southwestern Taiwan and is isolated from the sea by sand barriers except at two tidal inlets. It receives freshwater mainly from two rivers. A total of 12 stations were set up along three transect lines, each running across the lagoon from riverine to tidal inlet localities. The δ13C values of the water-column POM exhibited a marked sea–river gradient, with values depleted from a high of −21.7‰ at seaward stations to a low of −28.2‰ at riverine stations; those in the sedimentary POM (<62 μm grain size) also revealed this trend, but to a lesser extent. Oysters of two known ages, 6 months old (“old oysters”) and newly settled individuals (“young oysters”), were transplanted from one station to each of the remaining stations, while some were left at the original station. Values of δ13C in the muscle of transplanted oysters changed in parallel with the sea–river gradient of δ13C in POM (decreasing from −16.0 to −18.5‰ in old oysters and from −16.8 to −21.9‰ in young ones). The spatial sea–river gradient of the oyster's δ13C is related not only to the distance between the site that the oyster inhabits and sea or riverine environment, but also to the tidal flow pattern that surrounds its feeding place. Although the δ13C value of the sedimentary POM was correlated with that of the water-column POM, the δ13C value of the oyster tissue was significantly correlated with that of the water-column POM, but not with that of the sedimentary POM. This suggests that the oyster feeds primarily on water-column rather than sedimentary POM. Received: 30 April 1999 / Accepted: 15 December 1999  相似文献   

13.
Oceanographic sampling is often limited to local and temporally concise assessments of complex, transient, and widespread phenomena. However, long-lived, migratory pelagic vertebrates such as leatherback turtles (Dermochelys coriacea, Vandelli 1761) can provide important integrated information about broad-scale oceanographic processes. Therefore, the present study analyzed stable carbon and nitrogen isotope ratios (δ13C and δ15N) of egg yolk and red blood cells from nesting leatherback populations from Costa Rica in the eastern Pacific in 2003–2004 and 2004–2005 and from St. Croix in the North Atlantic in 2004 and 2005 to establish differences between nutrient sourcing and its influence on higher trophic level consumers in both ocean basins. Whereas δ13C signatures were similar between Costa Rica (−19.1±0.7‰) and St. Croix (−19.4±1.0‰) leatherbacks, reflecting the pelagic foraging strategy of the species, Costa Rica leatherback δ15N signatures (15.4±1.8‰) were significantly enriched relative to St. Croix leatherback δ15N signatures (9.8±1.5‰). This δ15N difference likely reflects inter-basin differences in nitrogen cycling regimes and their influence on primary productivity being transferred through several trophic levels. Thus, high-order marine consumer movements, habitat preferences, and stable isotope signatures can be combined with ocean sampling to elucidate interactions between oceanographic processes and marine megafauna.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
Analysis of the isotope composition of calcareous structures of marine organisms has proved useful in providing biological data. The present study constitutes the first detailed work undertaken on the isotope composition of coleoid cephalopods. We analysed the carbon- and oxygen-isotope composition [δ13C (CO2− 3) and δ18O (CO2− 3), respectively] of the cuttlebone aragonite of wild and cultivated specimens of Sepia officinalis Linnaeus, 1758. δ13C (CO2− 3) ranged from −2.94 to 1.00‰, δ18O (CO2− 3) from −0.18 to 2.08‰. The carbon-isotope composition is not in equilibrium with the carbon species of the ambient seawater, and does not reflect the deposition of CaCO3 in seawater. The potential influence of environmental factors and biological processes on the carbon-isotope composition of the cuttlebone is discussed. In contrast to δ13C, the oxygen-isotope composition of cuttlebone aragonite appears to be in isotopic equilibrium with the ambient seawater. Seasonal changes in isotopic temperature revealed by our analyses agreed with changes in the temperature of the ambient seawater. CaCO3 was deposited all year round. A maximum life span of 2 yr, a year-round spawning season, and variable growth rates among and within individuals have been inferred from the isotopic temperatures. Received: 14 April 1998 / Accepted: 26 November 1998  相似文献   

15.
 The diet of juvenile pink shrimp (Farfantepenaeus duorarum Burkenroad, previously Penaeus duorarum) from Long Key Bight, Florida Keys, was studied using stomach content examination, pigment measurements, and stable isotope (δ13C and δ15N) analysis. Samples were taken over approximately 24 h on four occasions from December 1997 to June 1998. Juvenile F. duorarum fed nocturnally, the main prey being the seagrass shrimp Thor floridanus (Decapoda: Caridea: Hippolytidae), which accounted for 34% of the stomach content volume. Other common components of the diet were bivalves (mainly Tellina sp.) with 15% volume, calcareous algae (8%), plant detritus (5%), copepods (3%), and seagrass fragments (2%). Pigment concentrations (chlorophyll a plus phaeopigments) in F. duorarum stomachs ranged from 7 to 73 mg l−1 or 40 to 310 ng stomach−1. The exponential gastric evacuation rate was determined experimentally at 1.3 ± 0.5 h−1. Daily rations (in percent body weight) calculated from time series of stomach fullness ranged between 11 and 16% d−1. Total consumption by the population (in wet weight) ranged between 0.05 and 0.3 g m−2 d−1. Stable isotope measurements confirmed that T. floridanus was the main food source for F. duorarum. δ13C-values of whole animals of both species were identical at −10.0 ± 1.6‰ PDB. δ15N-values of both species were also not significantly different (pooled mean: 5.9 ± 1.7‰). Stomach contents of wild-caught F. duorarum and stomach contents of F. duorarum fed T. floridanus also showed similar stable isotope values. Received: 12 August 1999 / Accepted: 21 March 2000  相似文献   

16.
To determine the habitat and resource use of Dosidicus gigas in the Northern Humboldt Current System, we analysed carbon and nitrogen stable isotopes of 234 individuals collected during 2008–2010. Large variations in mantle stable isotope ratios were recorded, with values ranging from −19.1 to −15.1 ‰ (δ13C) and from 7.4 to 20.5 ‰ (δ15N). Most of the variation was explained by latitude, followed by distance to shelf break for carbon and by squid size for nitrogen. Latitudinal variations with increasing values from north to south were also found in zooplankton samples and were related to changes in isotope baseline values probably due to oxygen minimum zones that occur off Peru. This similar latitudinal trend in both zooplankton and D. gigas samples reveals that D. gigas is a relatively resident species at the scale of its isotopic turnover rate (i.e. a few weeks), even if this is not necessarily the case at the scale of its life. A small but significant size effect on δ13C values suggests that jumbo squid perform offshore–onshore ontogenic migration, with juveniles distributed offshore. For nitrogen, the high inter-individual variability observed with mantle length indicates that D. gigas can prey on a high variety of resources at any stage of their life cycle. This large-scale study off the coast of Peru provides further evidence that D. gigas have the capability to explore a wide range of habitats and resources at any stage of their life.  相似文献   

17.
Isotopic niches of emperor and Adélie penguins in Adélie Land,Antarctica   总被引:2,自引:1,他引:1  
Yves Cherel 《Marine Biology》2008,154(5):813-821
The emperor and Adélie penguins are the only two species of penguins that co-occur at high-Antarctic latitudes. We first measured and compared their isotopic niches on the same year in Adélie Land in spring, when the two species co-exist. Emperor and Adélie penguins segregated by their blood isotopic signatures, with adult δ13C values (−24.5 ± 0.2 and −25.4 ± 0.2‰, respectively) suggesting that emperor penguins foraged in more neritic waters than Adélie penguins in spring. At that time, difference in their δ15N values (4.1‰, 12.0 ± 0.4 vs. 7.9 ± 0.1‰) encompassed more than one trophic level, indicating that emperor penguins preyed mainly upon fish (and squids), while Adélie penguins fed exclusively on euphausiids. Second, we compared the food of breeding adults and chicks. The isotopic signatures of adults and chicks of emperor penguins were not statistically different, but δ15N value of Adélie penguin chicks was higher than that of adults (10.2 ± 0.8 vs. 9.0 ± 0.2‰). The difference showed that adult Adélie penguins captured higher trophic level prey, i.e. higher-quality food, for their chicks. Third, the isotopic signatures of Adélie penguins breeding in Adélie Land showed that adults fed on Antarctic krill in oceanic waters in spring and shifted to neritic waters in summer where they preyed upon ice krill for themselves and upon fish and euphausiids for their chicks. A comparison of isotopic niches revealed large overlaps in both blood δ13C and δ15N values within the community of Antarctic seabirds and pinnipeds. The continuum in δ15N values nevertheless encompassed more than one trophic level (5.2‰) from Adélie penguin and crabeater seal to the Weddell seal. Such a broad continuum emphasizes the fact that all Antarctic seabirds and marine mammals feed on varying proportions of a few crustacean (euphausiids) and fish (Antarctic silverfish) species that dominate the intermediate trophic levels of the pelagic neritic and oceanic ecosystems.  相似文献   

18.
Stable isotope analysis is increasingly used in ecological studies. Because lipid content influences δ13C, lipids should be removed from lipid-rich samples before δ13C analysis. To account for differences in δ13C arising from differences in lipid content, relationships between lipid content, C:N ratio and Δδ13C with lipid removal can be used to normalise lipid content to uniform levels. We investigate these relationships for salmonid muscle and evaluate the suitability of previously published normalisation equations for these fish. Salmonids with a wide range of condition (muscle lipid content = 3–35% of dry weight) were considered. There were no consistent relationships between lipid content or C:N ratio and Δδ15N. There were linear relationships between C:N ratio and lipid content (L = −16.53 + 6.27 × C:N); C:N ratio and Δδ13C (Δδ13C = −1.87 + 0.65 × C:N); and lipid content and Δδ13C (Δδ13C = 0.01 + 0.10 × L), which should be used on salmonid stable isotope studies.  相似文献   

19.
The Strait of Gibraltar is inhabited throughout the year by a group of pilot whales (Globicephala melas), but their spatial distribution varies between Summer and Autumn. In this paper, we have used carbon (13C/12C) and nitrogen (15N/14N) stable isotope signatures to investigate the differences in diet amongst seasons, sex and stable social units. Skin samples were collected from 56 individually photo-identified pilot whales during Autumn 2005 and Summer 2006. These individuals were genetically sexed and their isotopic signature determined. The level of inter-individual association both within and between stable social units were compared to Euclidean distances between individual isotopes signatures. No differences in either δ15N or δ13C were found according to the sex of individuals, but significant seasonal differences were found in δ15N, although not in the δ13C values. This suggests that pilot whales are resident year round in the Strait, a finding supported by independent photo-identification. The variation in δ15N could reflect a shift in pilot whale diet through the year, with pilot whales feeding at a higher trophic level in Autumn compared to Summer. This could also represent a change in the diet of pilot whale prey species. The δ13C values were significantly different amongst the four stable social units sampled and individual δ13C values were significantly related to the level of inter-individual association, while no relationship was found for δ15N. These results suggest that within the same general area (i.e. the Strait of Gibraltar), there is some level of specialisation in habitat or prey choice between pilot whales social units.  相似文献   

20.
Microbial oxidation of organic compounds (including methane), in freshwater sediments, may result in precipitation of carbonates, which may become an important geochemical archive of paleoenvironmental variations. Most probably low δ13C value in calcite in eutrophic systems results from an advanced oxidation of organic compounds in turbulent or/and sulphate-rich conditions. Likewise, high δ13C value in calcite from organic-rich sediments may evidence low redox potential of the freshwater system. Oxidation of methane and organic matter results in significant isotope effects in sulphates dissolved in water. Therefore, to better understand the origin of carbon isotope signal in carbonates, concentration and stable isotope measurements in dissolved sulphate (water column), bubble methane and calcite (freshwater sediments) have been carried out in 24 lakes, 2 ponds and 4 rivers in Poland. The highest concentration of sulphate has been detected in rivers (85.47 SO4 2− mg/l) and an artificial lake (70.30 SO4 2− mg/l) located in the extremely SO4 2−-polluted region called the “Black Triangle”. The lowest concentration of sulphate is found in dystrophic and mountain lakes (from 0.5 SO4 2− to about 3 mg/l). The lowest δ34S(SO4 2−) and δ18O(SO4 2−) values occur in unpolluted lakes in eastern Poland (−0.94 and 1.38‰, respectively). The highest S and O isotopic ratios are found in a polluted lake in western Poland (δ14S(SO4 2)=12.95‰) and in a dystrophic lake in eastern Poland (δ18O(SO4 2) = 16.15‰) respectively. It is proposed that δ34SO4 2− and (18O(SO4 2−) values in lakes represent a good tool to assess and quantify anthropogenic impact by acid precipitation and to monitor variations in the trophic state and redox processes controlled by biodegradation of organic compounds in sediments and water column. In general, increasing depth (up to 12 m) of the water column is associated with decreasing trend the δ13C(CH4) value from about –35 to about –78‰. However, δ13C value in sedimentary calcite (δ13C vary from –10 to 0.5‰) shows opposite trends as compared to the corresponding methane. This is probably due to redox processes and distribution of heavy isotopes between methane and calcite. Likewise, turbulent water (river) show high δ13C value in methane and low δ13C value in calcite—this is probably due to an enhanced oxidation of methane producing 13C-depleted CO2. In contrast to clean lakes, it is observed that an increase of the δ13C(CH4) value occurs with increasing depth of the water column in a strongly SO4 2−-contaminated lake. This is probably due to a loss of biological buffering potential of the lake accompanied by an active oxidation of methane precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号