首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2012年灰霾试点监测结果表明,灰霾日天数有明显减少。细颗粒物(PM2.5)浓度限值增加,使仅因重庆城市地域和气候原因造成部分相对湿度较低,而实际环境空气质量较好的灰霾日排除在外,更客观评价灰霾日发生规律。结合气象条件和颗粒物质量浓度对比情况表明,局域气候条件的变化将促使PM2.5和PM1吸湿增长明显,一定程度上促使粗颗粒物PM10质量浓度增加,局域污染物传输扩散不利,能见度减低,灰霾现象频增。  相似文献   

2.
分析呼和浩特市2011年8月到2012年7月逐日的PM10,PM2.5的质量浓度监测值,结果表明,呼和浩特市PM10和PM2.5污染在春季和冬季较夏季、秋季严重;PM10和PM2.5有良好的线性关系;PM2.5/PM10(β)平均值为0.55.  相似文献   

3.
广东佛山交通扬尘排放特征研究   总被引:1,自引:0,他引:1  
交通扬尘中部分细颗粒可经呼吸道危害人体健康。通过对佛山市10条典型道路尘负荷采样分析,采用AP-42模型计算不同类型道路的交通扬尘排放因子,结合道路信息计算交通扬尘排放量,并用ArcMap软件生成排放空间分布图。结果表明,佛山市区道路尘负荷为支路最大,为4.30 g/m2。高速路PM2.5的排放因子最大,为0.58 g/VKT。国道PM2.5的排放强度最大,为20.0 kg/(km·d)。市区交通扬尘PM30年排放量为36 582 t。采用COPERT模型计算机动车直接排放的PM2.5和PM10,得出佛山市机动车排放的PM2.5与交通扬尘PM2.5的比值为16%,机动车直接排放的PM10与交通扬尘PM10的比值为8%。佛山市区东部由于道路密集致其交通扬尘排放量较高。经对比知,中国南北方城市呈现交通扬尘排放因子范围相似性,且中国城市交通扬尘排放水平与美国相近。  相似文献   

4.
在北京市的海淀区、朝阳区、丰台区和昌平区选择了 49个公共场所 (包括办公室、宾馆、图书馆、超市等等 ) ,分别对其室内空气中TSP ,PM10 ,PM2 5 和PM1的浓度进行了测定 ,并且对室内空气中粉尘含量的影响因素进行了分析和探讨 .研究结果表明 ,繁忙的交通状况和建筑施工将明显增加公共场所室内空气中TSP ,PM10 ,PM2 5 和PM1浓度 .频繁的室内清扫有助于降低室内空气中颗粒物的浓度 .在室内空气中 ,PM10 浓度与TSP浓度呈现明显的正向线性相关性 ,而PM2 5 和PM1的浓度与PM10 浓度的相关性较差  相似文献   

5.
利用银川市2013年的气溶胶和气象要素观测资料,分析银川市不同粒径颗粒物浓度变化特征及其与气象条件的关系,结果表明:PM10、PM2.5、PM1的季节变化规律基本一致,夏季浓度低变幅小、其他季节浓度高变幅大;PM1、PM2.5存在明显的7 d周期,PM10存在10~12 d的周期。PM1、PM2.5、PM103种粒径的气溶胶浓度具有高度相关性,PM1与PM2.5相关性最好,PM10浓度高、变率大,与细粒子相关性有所降低。PM1和PM2.5的时变化均呈双峰双谷型,PM10的时变化在非采暖期近似于双峰双谷型,采暖期呈单峰型。银川市气溶胶浓度与能见度相关性最好,细颗粒物对能见度影响比粗粒子更为严重。气温与气溶胶浓度呈一致的负相关。风速与细颗粒物PM1、PM2.5浓度呈负相关,与粗颗粒物PM10的相关性较差。银川市相对湿度与粗颗粒物浓度PM10呈较好的负相关,与PM1正相关,与PM2.5相关不显著。  相似文献   

6.
以空气中可吸入颗粒物(PM2.5和PM10)为研究对象,分析了采暖期和非采暖期不同监测点位PM10与PM2.5的相关性。结果表明,采暖期和非采暖期不同高度PM10与PM2.5的相关性均相当明显,可吸入颗粒物中PM2.5占绝大比重;采暖期不同高度PM10与PM2.5的相关系数大于非采暖期,季节变化规律明显。  相似文献   

7.
通过对PM_(2.5)和PM_(10)的浓度特征分析,探讨下沙空气中可吸入颗粒物污染特征。根据2013~2015年下沙空气连续自动监测数据,对浓度变化特征分析发现,PM_(2.5)和PM_(10)的季节变化明显,冬季最高,夏季最低。PM_(2.5)与PM_(10)的月均浓度存在线性回归关系,回归方程为y=1.0759x+0.02532,相关系数方值为0.857。PM_(2.5)与PM_(10)的浓度比值P主要集中在0.5~0.8之间。  相似文献   

8.
利用2013年1-12月重庆市北碚区国控点实时发布的颗粒物污染监测数据,对PM2.5和PM10的达标情况、变化趋势及其两者之间相关性进行了分析。研究表明:2013年北碚区PM10年均值为100.2μg·m-3,超过了新国标Ⅱ级标准,PM10日均值超标天数为57天,全年达标天数比例为84.4%;北碚区PM2.5年均值为67.9μg·m-3,超过了新国标Ⅱ级标准,PM2.5日均值超标天数为94天,全年达标天数比例为74.2%;PM10和PM2.5有明显的季变性特征,其中春季PM2.5与PM10的污染最重,污染日分别占全年的58.5%和56.1%。PM2.5占PM10比例较高,PM2.5/PM10平均值为66.6%。PM2.5与PM10回归线性较好,y=0.7900x-11.280,R2=0.930;PM2.5和PM10的Pearson相关系数为0.964;PM2.5与PM10日均值呈显著线性相关。  相似文献   

9.
根据2006-2011年静安区PM2.5连续自动监测数据,通过对其浓度变化特征进行趋势性分析发现,2006-2011年静安区环境空气中PM2.5浓度呈逐步下降趋势,但浓度年均值仍超过国家环境空气质量二级标准限值.PM2.5污染季节变化特征明显,冬春较高、夏秋较低.PM10与PM2.5的回归方程为y=1.5585x+0.0108,相关系数为0.78,显著性水平为0.01.PM2.5与PM 10浓度的比值(p)主要集中在0.5-0.7之间.  相似文献   

10.
鞍山大气颗粒物浓度的变化特征   总被引:1,自引:1,他引:1  
利用鞍山大气成分监测站Grimm180观测的2007年颗粒物数浓度,ρ(PM10),ρ(PM2.5)和ρ(PM1.0)以及台站的常规气象观测资料,分析了该地区颗粒物数浓度的谱分布、质量浓度的变化特征及与气象条件的相关性. 结果表明:颗粒物数浓度谱分布符合Junge分布;参数υ与能见度呈负相关,υ值越大且PM0.45占PM10的数浓度比例小于90%,能见度较差;颗粒物质量浓度日变化呈双峰特征,ρ(PM10),ρ(PM2.5)和ρ(PM1.0)之间有很好的相关性,ρ(PM2.5)/ρ(PM10)平均值为0.654,ρ(PM1.0)/ρ(PM2.5)的平均值为0.832,ρ(PM1.0)/ρ(PM10)平均值为0.545;鞍山地区年主导风向为SE,颗粒物质量浓度变化受辽宁沙尘移动路径的影响较小,主要受排放累积型污染影响,其中大雾天气条件下颗粒物质量浓度较高,大雾期间的回归方程截距较年平均回归方程的大,这对研究颗粒物质量浓度的突变特性具有指示作用.   相似文献   

11.
收集了采暖季太原市环境监测中心站公布的PM2.5和其它污染物(PM10、SO2、NO2、CO和O3)逐时监测数据,分析了PM2.5的月、日及小时浓度分布特征和变化规律,结果表明:太原市采暖季PM2.5的小时浓度范围为9~364μg/m3,日浓度范围为19~208μg/m3,PM2.5最大日均值出现在2014年1月份,PM2.5小时浓度日变化规律呈单峰双谷趋势,PM2.5与PM10比值在0.30~0.77之间,二者相关性显著,相关系数为0.925。  相似文献   

12.
石家庄市采暖期大气细颗粒物中PAHs污染特征   总被引:4,自引:2,他引:2       下载免费PDF全文
采集2015年12月-2016年2月采暖期石家庄市文教区、交通密集区、居民区和商业交通混合区大气细颗粒物样品,依据HJ 646-2013《环境空气和废气气相和颗粒物中多环芳烃的测定气相色谱-质谱法》分析石家庄市大气细颗粒物中PAHs污染水平及分布特征、气象参数与PAHs相关性,并解析PAHs污染来源.结果表明:石家庄市冬季采暖期大气细颗粒物PM10、PM2.5和PM1.0中ρ(PAHs)的日均值分别为397.66、349.09和272.35 ng/m3,分别是采暖期前(11月1-15日)的6.16、4.62和4.82倍,并且呈交通密集区>居民区>文教区>商业交通混合区的空间分布特点.相对湿度与细颗粒物PM10、PM2.5和PM1.0中ρ(PAHs)均呈显著正相关,R2分别为0.30、0.37和0.33,而风速与三者呈显著负相关,R2分别为-0.39、-0.53和-0.26;PM1.0中具有显著相关的PAHs单体数量多于PM10和PM2.5.根据PAHs环数分布特征及特征化合物比值判断,石家庄市冬季采暖期PAHs污染为燃煤与机动车尾气复合型污染特征,同时餐饮油烟也有一定的贡献.   相似文献   

13.
南京市大气中PM10、PM2.5日污染特征   总被引:16,自引:0,他引:16  
于2001年秋季(11月)、夏季(8月)对南京市五大典型功能区的大气颗粒物(PMl0、PM2.5)进行了监测研究。结果发现,南京市颗粒物污染严重,PMl0、PM2.5的超标率分别达到了65%、85%;颗粒物浓度季节变化大,11月污染物浓度明显大于8月,PMl0、PM2.5分别相差l68.44μg/m^3、190.1μg/m^3;PMl0中PM2.5比重较大,大约为75.9%,对人体健康潜在危害大。  相似文献   

14.
通过对太原市2013年冬季SO2、PM10和PM2.524小时浓度均值实时数据的整理和分析,结果表明,各项污染物浓度在城区和郊区差异显著。由于城郊地形条件、气象条件基本一致,各项污染物24小时浓度月变化曲线趋势基本相同。城郊PM2.5和PM10浓度比值范围与均值差别较小,比值月变化曲线趋势基本相同,城郊颗粒物污染物来源相同或相近。相关性分析表明PM2.5分别与PM10和SO2浓度均为高度正相关关系,三者污染源存在较大一致性,冬季区域污染主要以燃煤排放大气污染物为主要特征。  相似文献   

15.
利用2013年唐山市全年六个监测点的PM10和PM2.5的24小时连续监测数据,分析了唐山市大气中PM10和PM2.5的浓度时间变化特征,讨论了两者之间的相关性。  相似文献   

16.
2010年1月上海市政府颁布了《崇明生态岛建设纲要(2010-2020)》,本文从2013年9月1日至2014年8月31日运用颗粒物采集仪器于森林公园、绿华、现代农业园区、城桥四个空气自动监测点位监测PM10和PM2.5,分析PM10和PM2.5的浓度与风向的关系得出PM10和PM2.5污染与江对面的吴淞工业区、宝钢、石洞口电厂、罗店工业区乃至江苏太仓沿江工业区的污染物排放密切相关,在相当大的程度上主要是来自于他们的贡献.  相似文献   

17.
利用均匀分布于烟台市区的10个空气自动监测点位2013年的数据研究了PM10和PM2.5浓度的季节性变化特征.对PM10 、PM2.5质量浓度分别进行了月均值和季节性均值变化特征分析,研究了不同季节和雾霾天气情况下,PM2.5在PM10中含量的变化情况.结果表明:烟台市区细颗粒物污染较严重,各采样点各月均值中超过二级标准的比例达到88.3%;2013年烟台市区PM 10、PM2.5质量浓度均呈现出春冬季节较高、夏秋季节较低、采暖季明显高于非采暖季,PM10浓度风沙季明显高于其他季节的特点;PM2.5对PM10的贡献呈现明显的季节性变化规律,在雾霾天气情况下明显偏高.  相似文献   

18.
为研究廉江市大气颗粒物污染特征,于2014年11月~12月采集TSP、PM10、PM2.5样品,用重量法分析质量浓度,并对相关性进行分析.结果表明,用环境空气质量标准(GB 3095-2012)来衡量,廉江市冬季大气颗粒物TSP、PM10、PM2.5的日均浓度均符合标准,环境空气状况良好;三个代表性采样点在监测周期内TSP、PM10、PM2.5的浓度变化趋势大体一致,监测结果能客观反映该区域颗粒物的污染状况;PM2.5与PM10,PM10与TSP之间均存在着显著相关性,回归方程相关性较好.  相似文献   

19.
通过对2011年唐山市中心区大气中PM2.5和PM10浓度分析可知,冬春季节,由于气候干燥多风,加上采暖影响,PM2.5和PM10浓度明显比夏秋季节要高;且12个月当中PM2.5占PM10浓度的比例绝大部分都在65%以上,可见,PM2.5已经成为影响唐山人民健康不容忽视的因素。  相似文献   

20.
通过对阜康市2015年1个区控点的PM_(2.5)和PM_(10)的连续自动监测数据分析得出:2015年阜康市大气颗粒物中PM_(2.5)、PM_(10)浓度日均值和小时值的最大值均出现在4月,日均值均超过了环境空气质量标准的二级标准限值;月均值最大值均出现在12月;PM_(2.5)的年均值超过了环境空气质量标准的二级标准限值;PM_(2.5)和PM_(10)冬季的日变化浓度高于其他三季,夏季最低。超标天数高值出现在1、2、11、12月,PM_(2.5)的污染程度比PM10严重;PM_(2.5)和PM_(10)的比值1、11、12月较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号