首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对现行玉米淀粉废水处理工艺出水氮、磷易超标的问题,提出2种提高脱氮除磷潜能的解决方案:在预处理阶段设置混凝工艺强化去除部分污染物;在反硝化阶段引入部分竖流沉淀池(初沉池)出水作为补充碳源。通过设计单因素混凝试验,对比氯化铁、硫酸铝、壳聚糖、海藻酸钠4种絮凝剂对污染物的去除效果。结果表明:氯化铁较适合作玉米淀粉废水处理絮凝剂,当氯化铁投加量为0.40 g/L,pH为4,温度为35 ℃时,TP、SS、TN和CODCr的去除率分别为93.5%、94.8%、10.8%和10.7%。采用序批式反应器,研究了以淀粉废水处理过程中的初沉池出水作为反硝化碳源的污染物降解特性与动力学特性;分别采用基于Monod方程的微分方程模型和分段零级反应动力学模型拟合试验数据。结果表明:反硝化过程中存在$NO_{2}^{-}$-N积累现象,$NO_{2}^{-}$-N最大积累率为61%;采用基于Monod方程的微分方程模型,能够很好地拟合水解酸化段废水作为碳源的反硝化过程中$NO_{3}^{-}$-N、$NO_{2}^{-}$-N以及$NO_{x}^{-}$-N(N$NO_{3}^{-}$-N与$NO_{2}^{-}$-N当量总和)浓度的变化趋势,$NO_{3}^{-}$-N、$NO_{2}^{-}$-N以及$NO_{x}^{-}$-N的最大降解速率分别为24.21、12.78和15.97 mg/(g·h)(以MLVSS计);分段零级动力学模型能较好拟合$NO_{x}^{-}$-N浓度随时间的变化趋势,阶段1和阶段2的反硝化速率分别为16.09和8.71 mg/(g·h)(以MLVSS计)。  相似文献   

2.
为探究硫自养反硝化所需的最低磷浓度,对硫自养反硝化系统进行磷饥饿处理,给予不同磷浓度的进水,考察磷浓度对硫自养反硝化效果和微生物群落结构的影响。结果表明:随着磷饥饿期的延长,$ {\mathrm{N}\mathrm{O}}_{x}^{-} $-N去除率由饥饿前的98.1%~99.6%逐步降至24.8%~49.6%,且出水中随之出现亚硝酸盐的积累。补充磷后,$ {\mathrm{N}\mathrm{O}}_{x}^{-} $-N去除率随进水磷浓度的增加显著提升,且进水磷浓度越高,$ {\mathrm{N}\mathrm{O}}_{x}^{-} $-N去除率能越快恢复至饥饿前水平(98%以上),出水中的亚硝酸盐氮浓度也越快降至饥饿前水平(不足0.05 mg/L)。当进水中磷浓度不低于0.200 mg/L时,硫自养反硝化效率不受磷浓度限制。磷浓度影响硫自养反硝化系统的微生物多样性,磷恢复处理组的物种多样性和丰度均显著高于磷饥饿处理组。在磷恢复处理组中,硫自养反硝化相关的功能菌属是优势菌属,相对丰度占45.78%,而在磷饥饿处理组中,该功能菌属相对丰度仅占4.67%,磷浓度极大地影响了硫自养反硝化系统中的硫自养反硝化相关功能菌的相对丰度。  相似文献   

3.
生物反硝化脱氮是现在最广泛使用的去除水中NO-3-N的方法之一,混养反硝化因其综合了异养和自养反硝化的共同特性而引人关注.本实验探究添加一定量无机磷前后反硝化污泥活性及其微生物群落结构的变化.结果表明,混养反硝化污泥在无磷供给时也能进行反硝化反应,但磷的添加可显著提高其生物量和反硝化活性,反硝化污泥的异养反硝化活性明显高于自养部分,添加无机磷之后,自养和异养反硝化速率(以N/VSS计)分别可达0.056 mg·(L·min·g)-1和0.232mg·(L·min·g)-1,分别为加磷前的2.9和3.9倍.此外,微生物群落分析表明,投加磷之后混养污泥中反硝化菌占比显著增加,从13.47%增加到44.82%;优势菌属发生显著变化,添加无机磷使自养、异养以及兼性反硝化菌的生长均得到有效促进.  相似文献   

4.
从经过高盐驯化的好氧颗粒污泥系统中筛选出一株异养硝化-好氧反硝化菌HY3-2,通过形态学观察及16S rDNA序列分析得出HY3-2为Klebsiella quasipneumoniae subsp.quasipneumoniae.研究了HY3-2对氨氮、硝酸盐和亚硝酸盐的去除特性,结果表明该菌具有良好的异养硝化和好氧反硝化功能,对氨氮、硝酸盐和亚硝酸盐的去除率分别达63.57%、88.11%和98.38%.对菌株脱氮性能研究表明:HY3-2以甘油为碳源,C/N为25,温度为20℃或30℃,转速为150r/min,盐度低于50g/L时,对100mg/L的NH4+-N去除效果良好,去除率达90.7%;以柠檬酸钠为碳源,C/N为25,温度为30℃,转速为150r/min,盐度低于15g/L时能进行良好的好氧反硝化作用,NO3--N去除率达99%以上.  相似文献   

5.
李祥  马航  黄勇  朱亮  杨朋兵  朱强 《环境科学》2016,37(7):2646-2651
在异养反硝化反应器中添加单质硫,实现硫自养与异养反硝化联合处理NO_3~-废水,探讨异养和硫自养反硝化协同过程中的p H恒定及污泥减量化的特性.结果表明,硫自养反硝化菌在异养反硝化反应器内能够实现快速生长.经过65d的运行,控制进水TOC/N为0.65~0.75时,协同反硝化在无额外碱添加的情况下,厌氧反硝化产生的碱度满足自养反硝化的需求;运行至116d时,协同反硝化的总氮去除率为85%以上,脱氮效能稳定在2.5 kg·(m~3·d)~(-1).通过与完全异养反硝化相比,协同反硝化的污泥产量仅为完全异养反硝化的60%,极大地降低了污泥产量.但是利用协同自养反硝化处理高浓度NO_3~--N废水时,存在NO_2~--N累积的现象,即使是最终稳定期也有20 mg·L~(-1),需进行深度处理.  相似文献   

6.
为解决AnMBR(厌氧膜生物反应器)出水NH4+脱除的问题,提出利用AnMBR出水中残余CODCr、溶解性CH4以及低价态硫元素,通过构建缺氧滤池和好氧滤池进行生物异养和硫自养脱氮的方法,进一步削减AnMBR出水CODCr、去除溶解性CH4、同时同步生物脱氮.结果表明:①缺氧滤池与好氧滤池经过120 d单独驯化与33 d串联驯化后,在HRT(hydraulic retention time,水力停留时间)为6 h、进水为实际AnMBR出水的工况条件下,出水ρ(TN)为17.93 mg/L,去除率为52.7%;出水ρ(NH4+-N)为2.78 mg/L,去除率为92.3%,达到GB 18918-2002《城镇污水处理厂污染物排放标准》一级B标准.在HRT为8 h工况条件下,出水ρ(TN)为14.60 mg/L,去除率为59.0%;出水ρ(NH4+-N)为2.22 mg/L,去除率为93.7%,达到GB 18918-2002一级A标准.②脱氮滤池中氮脱除路径主要包括残余CODCr异养反硝化、溶解性CH4异养反硝化和硫自养反硝化,并通过物料衡算评价了三者对于氮脱除的贡献,在HRT为6 h的工况条件下,脱氮滤池脱氮过程中残余CODCr异养反硝化、溶解性CH4异养反硝化和硫自养反硝化三者占比分别为54.1%、24.3%和21.5%;在HRT为8 h的工况条件下,脱氮滤池脱氮过程中3种途径占比分别为70.4%、13.8%和15.8%.研究显示,脱氮滤池可以实现对AnMBR出水的低耗生物脱氮以及整体水质的达标排放.   相似文献   

7.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

8.
启动了单质硫自养反硝化反应器并研究其脱氮性能,通过血清瓶批式实验测定了污泥的反硝化活性,并采用扫描电镜和高通量测序手段揭示了系统内微生物群落结构特征.结果表明,SBR反应器进水NO3--N浓度为80mg/L,随水力停留时间由12h逐渐缩短为6h,反应器的自养脱氮性能逐渐增强,稳定期反应器的总无机氮去除率达99.1%,总无机氮去除负荷平均值为0.158kg N/(m3·d);SBR周期内NO2--N浓度最大值为13.3mg/L,NO3--N还原为NO2--N过程pH值由7.38降低至6.94,NO2--N还原为N2过程pH值基本不变;批式实验结果表明,硫自养反硝化和异养反硝化NO3--N去除速率分别为0.515,0.196kg N/(kg VSS·d),硫自养反硝化污泥NO2--N降解速率为0.117kg N/(kg VSS·d),污泥同时具有自养反硝化和异养反硝化活性;扫描电镜显示,污泥中存在大量的杆状细菌和球状菌;污泥中主要的硫反硝化细菌分别为ThiobacillusSulfurimonasThermomonas属,其相对丰度分别为14.5%、7.6%和6.0%.  相似文献   

9.
2种生物反硝化法去除地下水中硝酸盐的研究   总被引:1,自引:0,他引:1  
采用砂柱装置,在实验室研究了自养微生物和异养微生物2种生物反硝化方法对地下水中硝酸盐的去除效果。自养反硝化反应在以硫作为电子供体的硫/石灰石/细沙反应柱中进行,异养反硝化反应在石灰石/细沙反应柱中进行,进水增加乙醇作为外加碳源。实验结果用以比较2种反硝化方法在硝酸盐去除率、微生物反应动力学和反应产物三者的异同。结果表明,自养反硝化反应中NO3--N去除率达95.4%,异养反硝化反应去除率可达99.3%;分别与Monod微生物0级、1/2级和1级反应动力学方程进行拟合,2种反硝化反应均符合1/2级微生物反应动力学,适合用1/2级微生物反应方程描述;在反应结束阶段,自养反硝化主要反应产物SO42-出水浓度低于250mg/L,异养反硝化副产物CH3OO-易成为二次污染源,异养反硝化的反硝化速率明显高于自养反硝化反应。  相似文献   

10.
异养硝化-好氧反硝化菌YL的脱氮特性   总被引:12,自引:9,他引:3  
梁贤  任勇翔  杨垒  赵思琪  夏志红 《环境科学》2015,36(5):1749-1756
针对传统自养硝化-厌氧反硝化工艺流程长、脱氮效率低的问题,从驯化成熟且具有高效同步硝化反硝化作用的SBR反应器中筛得1株异养硝化菌YL,经鉴定为铜绿假单胞菌(Pseudomonas aeruginosa),并通过单因子试验和正交试验对其异养硝化和好氧反硝化特性进行了研究.结果表明,菌株YL进行氨氧化作用的最适条件为:碳源为琥珀酸钠、C/N为10、p H为7.0、温度为30℃、转速为160~200 r·min-1,此时氨氧化速率为5.05 mg·(g·h)-1,TOC转化速率为45.95 mg·(g·h)-1,氨氮和TOC去除率分别为100%和90.8%;菌株YL还能够利用亚硝酸盐、硝酸盐和羟胺进行生长代谢,去除率分别为92.7%、93.6%和94.8%;影响菌株YL好氧反硝化性能最主要的因素为C/N,在最优条件(C/N=10,T=30℃,r=200 r·min-1,p H=7)下,硝氮去除率为94.6%,总氮去除率76.3%.表明菌株YL能够独立快速高效地完成异养硝化和好氧反硝化脱氮过程.  相似文献   

11.
硫铁填料和微电流强化再生水脱氮除磷的研究   总被引:5,自引:0,他引:5  
为提高再生水质量,在不同C/N和HRT条件下,对比分析硫铁复合填料和微电流作用强化再生水深度脱氮除磷效果.结果表明,硫铁复合填料和微电流作用均能够强化氮、磷的深度去除效果,且二者结合能够使反硝化系统pH值稳定在7.2~8.5之间.系统中TN主要靠异养反硝化、氢自养反硝化和硫自养反硝化作用去除,94.04%的TP是以生成磷酸铁沉淀的形式去除.分别从填料上取生物膜,进行Miseq高通量测序,构建细菌16S rRNA基因克隆文库.结果发现,在仅有海绵铁作用系统中,同时具有异养反硝化和氢自养反硝化功能的细菌所占比例达到29.47%;硫铁复合填料和硫铁微电流作用系统中,具有硫自养反硝化功能的Thiobacillus(硫杆菌属)所占比例分别达到60.47%和40.62%.因此,硫铁复合填料和微电流作用用于强化再生水深度脱氮除磷具有明显的优势.  相似文献   

12.
针对饮用水硝酸盐污染和固定床硫自养反硝化脱氮负荷低等问题,开展流化床型硫自养反硝化脱氮研究,探究聚乙烯醇-海藻酸钠-活性炭悬浮填料对硫自养反硝化的影响,并对比了不同硫源(升华硫、硫代硫酸钠和生物硫)对反硝化效果的影响.结果表明,悬浮填料可显著提升反硝化脱氮效果,升华硫与硫代硫酸钠效果优于生物硫.在最佳条件下,TN去除率可稳定保持在98.49%,TN脱氮负荷达2.84 g·L-1·d-1.机理分析表明,悬浮填料中海藻酸钠可作为异养反硝化的有机碳源,实现自养与异养反硝化相结合,减少了副产物NO2-和SO42-的生成,并提供碱度,保持体系pH的稳定.加入悬浮填料后,反硝化微生物生长得到促进,优势菌属为Thauera(兼性自养反硝化菌)和Brachymonas(异养反硝化菌).  相似文献   

13.
周彦卿  郝瑞霞  刘思远  王丽沙 《环境科学》2017,38(10):4309-4315
为强化再生水深度脱氮除磷的能力,利用硫磺粉、海绵铁粉等制备出一种新型复合填料,并在不同HRT和C/N条件下将其与同种物质组成的颗粒混合填料进行对比实验.最后通过高通量测序技术对两填料表面的微生物种群结构进行了研究.结果表明,在不同条件下新型填料的脱氮除磷能力均优于颗粒混合填料;当HRT=4 h、C/N=1时,新型填料的总氮、总磷去除率均分别比颗粒填料高出30%以上.根据高通量测序结果,两反应器内的反硝化体系均由硫自养反硝化种群和异养反硝化种群构成,且新型填料系统内的硫自养反硝化菌群所占比例更大,两反应器内的优势种属分别为Sulfurimonas和Acinetobacter.  相似文献   

14.
为提升再生水品质,以玉米芯耦合硫铁填料构造出固相纤维素碳源+硫铁填料复合脱氮除磷系统(简称SCSC-S/Fe复合系统),基于填料生物膜Miseq高通量测序构建了16S rRNA基因克隆文库,结合系统沉积物的X射线衍射(XRD)分析,探讨了该系统对模拟城市污水处理厂低C/N比尾水深度脱氮同步除磷特性及作用途径.结果表明,随温度升高,TN去除率逐渐增大,TP去除率增加不明显,在温度为30℃和水力停留时间HRT=9h时,NO_3~--N、TN、TP平均去除率分别为99.86%、92.70%和89.15%.固相纤维素碳源反硝化脱氮单元内具有降解纤维素类和反硝化作用类细菌分别占细菌总数的41.37%和54.02%,硫铁复合填料脱氮除磷单元内异养反硝化、硫自养反硝化和氬自养反硝化的细菌占细菌总数的91.53%;XRD结果表明,水中的PO_4~(3-)主要以FeP0_4、Fe_3(P0_4)_2·χH_20和Fe_3(P0_4)_3(0H)_2等物质形式去除.因此,复合系统脱氮以异养反硝化作用为主,协同硫自养反硝化和氢自养反硝化作用;复合系统具有"化学+生物"双重除磷作用,以化学除磷作用为主.SCSC-S/Fe复合系统实现了低C/N比城市污水处理厂尾水深度脱氮同步除磷的目的.  相似文献   

15.
针对再生水的高品质化和污泥的减量化问题,构建一套膜生物反应器-超低压纳滤组合工艺(MBR-DF)中试装置,以零排泥的方式运行处理城镇污水,同时建立一套传统活性污泥处理工艺(CAS),进水COD及$NH^{+}_{4}$-N、TN、TP浓度分别为87.0~165.7、14.0~31.0、14.2~32.4和2.5~3.3 mg/L。结果表明:浓水零排放MBR-DF系统对COD、$NH^{+}_{4}$-N和$PO_{4}^{3-}$具有较好的去除效果,去除率分别为95.7%、99.0%和68.5%。总溶解固体(TDS)和$HCO^{-}_{3}$的去除率分别为13.5%和31.1%,并能有效地降低出水总硬度。DF膜对$PO_{4}^{3-}$和$SO_{4}^{2-}$具有明显的截留作用,对$NO^{-}_{3}$截留效果较差,对$HCO^{-}_{3}$无截留作用。进水溶解性有机物(DOM)经MBR-DF后,出水中仅剩少量的类色氨酸类物质,且MBR-DF系统对进水DOM的UV254消减率达到94.9%,对DOC的去除率在98.0%以上,出水DOM的腐殖质向非腐殖质转化的程度较高。MBR-DF系统和CAS系统对17-β雌二醇(E2)的去除率分别为99.9%和70.8%,MBR-DF系统可有效降低出水回用过程中存在的健康隐患。  相似文献   

16.
兼养同步脱硫反硝化工艺及影响因素   总被引:3,自引:0,他引:3       下载免费PDF全文
 应用厌氧附着生长反应器,采用兼养同步脱硫反硝化工艺,以硝酸盐和亚硝酸盐作为电子受体,处理含有硫化物和有机物的模拟废水.结果表明,进水硫化物与有机物浓度分别为200,20mg/L 时,其去除率分别可达99.9%和80.5%.同时,引入的电子受体硝酸盐和亚硝酸盐的去除率分别为83.0%和94.5%.利于兼养脱硫反硝化的葡萄糖负荷与醋酸钠负荷分别为50, 25mg/(L·d),葡萄糖对兼养状态下自养脱硫反硝化的抑制作用小于醋酸钠.  相似文献   

17.
3DBER-S反硝化脱氮性能及其菌群特征   总被引:2,自引:0,他引:2       下载免费PDF全文
针对污水处理厂尾水TN去除问题,采用16S rDNA克隆文库法,探究了3DBER-S(三维电极生物膜耦合硫自养脱氮工艺)的强化脱氮机制及其菌群特征. 结果表明,I(电流)和HRT(水力停留时间)对3DEBR-S中氢自养和硫自养反硝化作用所占比例的影响较大,但对脱氮效率影响不显著. 当进水C/N〔ρ(CODCr)/ρ(TN)〕为1、ρ(NO3--N)为35 mg/L、I为300 mA、HRT为4 h时,NO3--N和TN去除率可分别稳定在80%和74%以上. 16S rDNA克隆文库结果显示,反应器中β变形菌纲为优势菌群,占47.89%〔以OUT(操作单元)计〕. 在β变形菌纲中,与具有反硝化功能的陶厄氏菌属(Thauera)相似的细菌所占比例最大,为52.94%;与可分别利用硫和氢为电子供体进行反硝化脱氮的硫杆菌属(Thiobacillus)和食酸菌属(Acidovorax)相似的细菌分别占17.65%和14.71%. 3DBER-S中存在异养联合氢自养和硫自养反硝化协同去除硝酸盐氮的作用,可为反硝化脱氮提供充足的电子供体,节约了有机碳源消耗,并保证了稳定高效的脱氮效果.   相似文献   

18.
基于硫自养反硝化作用,寻求一种经济、快速、高效地污水脱氮工艺,采用硫磺/硫铁矿组合进行自养反硝化脱氮试验,以低C/N市政污水为处理对象,分别考察温度,硫磺与硫铁矿体积比和HRT等理化因素对反应器脱氮性能的影响.结果表明,在进水TN质量浓度约40 mg·L-1条件下,1号反应器最佳HRT为2.5 h,TN去除率平均稳定在72.2%,出水TN约10.55 mg·L-1;2号反应器最佳HRT为3.5 h,TN平均去除率约67.8%,出水TN平均稳定至12.90 mg·L-1;3号反应器最佳HRT为3.5 h,TN平均去除率60.6%,出水TN稳定在15.00 mg·L-1左右.硫磺/硫铁矿自养反硝化系统比硫铁矿自养反硝化系统启动快;该系统脱氮效率随着硫磺与硫铁矿体积比减小而降低;该系统脱氮性能对温度的变化并不敏感,脱氮性能优于单独以硫铁矿为硫源的自养反硝化系统;系统中硫自养反硝化过程的主要功能菌属是SulfurimonasThiobacillus,在3个反应器所占比例为1号 > 2号 > 3号.  相似文献   

19.
针对低C/N污水处理厂二级处理出水中氮、磷去除问题,基于三维电极生物膜工艺(3DBER)反硝化脱氮碳源消耗量少的特点,构建了微电凝聚-三维电极生物膜耦合硫自养强化脱氮除磷工艺(MEC-3DBER-S).对比研究了3DBER与MEC-3DBER-S在不同电流强度条件下的运行特性,并结合基于nirS基因的克隆文库技术分析了MEC-3DBER-S中反硝化微生物的构成.运行结果表明,MEC-3DBER-S有效强化了氮、磷的去除效果,特别是提高了低电流条件下的脱氮效率;同时电流作用能够促进海绵铁腐蚀,提高除磷效果.当C/N=1.5、HRT=8h、I=300mA条件下,其TN和TP去除率分别达到75%和78%,分别比3DBER高10%和28%左右.基于nirS基因的克隆文库结果表明,MEC-3DBER-S中同时存在与具有异养、氢自养、硫自养和铁自养反硝化功能的菌属相似的细菌.该体系中有机碳源、H2、单质硫和Fe2+等电子供体可相互补充,强化了脱氮;同时,体系中还存在物化联合生物除磷的作用,强化了除磷.因而,MEC-3DBER-S复合反硝化体系保证了较高的脱氮除磷效果.  相似文献   

20.
代伟  赵剑强  丁家志  刘双 《环境科学》2019,40(8):3730-3737
采用稳定运行在高盐高碱环境厌氧/好氧/缺氧(A_n/O/A)模式下的序批式生物膜反应器(SBBR),考察在不同碳氮比(C/N)条件下,硝化反硝化过程及N_2O产生特征.结果表明,在C/N为5、2和对照组(C/N=0)时,总氮去除率分别为(98. 17±0. 42)%、(65. 78±2. 47)%和(44. 08±0. 27)%; N_2O的产生量分别为(32. 07±2. 03)、(21. 81±0. 85)和(17. 32±0. 95) mg·L~(-1); N_2O转化率(N_2O产生量在去除总氮中的比例)分别为(29. 75±0. 93)%、(30. 04±2. 17)%和(41. 69±0. 80)%.高盐高碱条件下,亚硝酸盐氧化菌(NOB)受到很强的抑制作用,硝化过程基本停留在亚硝酸盐阶段.由于高盐高碱环境对N_2O还原酶活性的抑制,使得异养反硝化过程产生了大量N_2O,随着碳氮比的增大,有更多的碳源用于反硝化过程,因而总氮去除率和N_2O产生量均随之增加.随着碳氮比的增大,N_2O转化率随之降低,这可能是由于异养反硝化过程氮素还原酶对电子的竞争所形成的,碳氮比越高,电子竞争越弱.高通量测序表明:在SBBR中,氨氧化细菌(AOB)被富集,而几乎不存在NOB;优势异养反硝化菌属主要是Thauera、Azoarcus和Gemmobacter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号