首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Large discoidal soritid foraminiferans (Soritinae) are abundant in coral reef ecosystems. As with the many cnidarian invertebrates that inhabit these systems, they also depend on symbiotic dinoflagellates (Symbiodinium) for their growth and survival. Several particular Symbiodinium sub-genera or clades inhabit these soritids. One of these groups, referred to as clade C, dominates corals and their relatives throughout the tropical Indo-Pacific. In contrast, the distributions of Symbiodinium spp. from clades A, B, and C are more evenly apportioned across Caribbean invertebrate communities. To explore the possibility that a similar biogeographic break exists in the symbionts harbored by soritids, we surveyed the Symbiodinium spp. from the soritid genus Sorites, collected from the Pacific and Caribbean coasts of Panama as well as from Florida. Characterization of Symbiodinium obtained from foraminiferal and cnidarian samples was conducted using restriction fragment length polymorphism and phylogenetic analyses of the nuclear internal transcribed spacer region 2 (ITS 2) and a portion of the large subunit ribosomal DNA sequences. A distinctive biogeographic break between the kinds of symbionts found in Sorites from the East Pacific and Caribbean was clearly evident. Differences between cnidarian and foraminferan symbioses in each ocean may be explained by the subjection of Caribbean communities to severer environmental conditions during the early Quarternary. Caribbean Sorites spp. harbored symbionts described from clade F (specifically sub-clade Fr4) and clade H (formally referred to as Fr1), while Sorites spp. from the eastern Pacific were dominated by a single Symbiodinium haplotype in clade C. An ITS 2 phylogeny determined that most clade C types recovered from Indo-Pacific soritids form a monophyletic sub-lineage with other clade C symbionts typically found in Pacific corals from the genus Porites. The existence of multiple Symbiodinium lineages at various taxonomic levels associated specifically with soritids indicates that symbioses with these hosts are important in driving Symbiodinium spp. evolution.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

2.
Loss of zooxanthellae (dinoflagellate Symbiodinium) from corals will sometimes lead to mass mortality of corals. To detect and quantify Symbiodinium released from corals, we developed a zooxanthellae “trap” and a quantitative PCR (qPCR) system with Symbiodinium clades A–F-specific primer sets. The trap was attached to a branch or the surface of several wild stony corals, and the water samples within the traps, including released Symbiodinium, were subjected to qPCR. All tested corals released clade C Symbiodinium at estimates of ~5,900 cells h−1 cm−2 of coral surface. Although all tested Pocillopora eydouxi harboured both clades C and D, some of these colonies released only clade C or released a lesser amount of clade D than that in the tissues. Our Symbiodinium quantification system revealed that wild hermatypic corals constantly release Symbiodinium to the environment. Our result suggests that some corals may discharge certain clades of Symbiodinium alternatively.  相似文献   

3.
Scleractinian coral species harbour communities of photosynthetic taxa of the genus Symbiodinium. As many as eight genetic clades (A, B, C, D, E, F, G and H) of Symbiodinium have been discovered using molecular biology. These clades may differ from each other in their physiology, and thus influence the ecological distribution and resilience of their host corals to environmental stresses. Corals of the Persian Gulf are normally subject to extreme environmental conditions including high salinity and seasonal variation in temperature. This study is the first to use molecular techniques to identify the Symbiodinium of the Iranian coral reefs to the level of phylogenetic clades. Samples of eight coral species were collected at two different depths from the eastern part of Kish Island in the northern Persian Gulf, and Larak Island in the Strait of Hormuz. Partial 28S nuclear ribosomal (nr) DNA of Symbiodinium (D1/D2 domains) were amplified by polymerase chain reaction (PCR). PCR products were analyzed using single stranded conformational polymorphism and phylogenetic analyses of the LSU DNA sequences from a subset of the samples. The results showed that Symbiodinium populations were generally uniform among and within the populations of eight coral species studied, and there are at least two clades of Symbiodinium from Kish and Larak islands. Clade D was detected from eight of the coral species while clade C was found in two of species only (one species hosted two clades simultaneously). The dominance of clade D might be explained by high temperatures or the extreme temperature variation, typical of the Persian Gulf. Publication of this article was held up owing to technical problems. The publisher apologizes sincerely for this lengthy delay.  相似文献   

4.
Epizoic worms were found to occur on certain coral colonies from reefs off the coast of Eilat (Red Sea). We identified 14 coral species infested by acoelomorph worms at a depth range of 2–50 m. The host corals were all zooxanthellate and included both massive and branching stony corals and a soft coral. Worms from all hosts were identified as belonging to the genus Waminoa and contained two distinct algal symbionts differing in size. The smaller one was identified as Symbiodinium sp. and the larger one is presumed to belong to the genus Amphidinium. Worm-infested colonies of the soft coral, Stereonephthya cundabiluensis, lacked a mucus layer and exhibited distinct cell microvilli, a phenotype not present in colonies lacking Waminoa sp. In most cases, both cnidarian and Acoelomorph hosts displayed high specificity for genetically distinctive Symbiodinium spp. These observations show that the epizoic worms do not acquire their symbionts from the “host” coral.  相似文献   

5.
We developed quantitative PCR (qPCR) assays to distinguish each of the four clades (AD) of dinoflagellate endosymbionts (genus Symbiodinium) commonly found in Caribbean corals. We applied these primer sets, which target portions of the multi-copy ribosomal DNA (rDNA) gene family, to assess the presence/absence of symbionts in clade D (as indicated by the detection of clade D DNA). We detected these symbionts in five of six Caribbean host species/genera (21% of samples analyzed, N = 10 of 47 colonies), from which clade D had rarely or never been observed. This suggests that Symbiodinium in clade D are present in a higher diversity of coral species than previously thought. This qPCR-based approach can improve our understanding of the total microbial diversity associated with corals, particularly in hosts thought to be relatively specific, and has many other potential applications for studies of coral reef ecology and conservation.  相似文献   

6.
Corals harbouring genetically mixed communities of endosymbiotic algae (Symbiodinium) often show distribution patterns in accordance with differences in light climate across an individual colony. However, the physiology of these genetically characterised communities is not well understood. Single stranded conformation polymorphism (SSCP) and real time quantitative polymerase chain reaction (qPCR) analyses were used to examine the genetic diversity of the Symbiodinium community in hospite across an individual colony of Acropora valida at the spatial scale of single polyps. The physiological characteristics of the polyps were examined prior to sampling with a combined O2 microelectrode with a fibre-optic microprobe (combined sensor diameter 50–100 μm) enabling simultaneous measurements of O2 concentration, gross photosynthesis rate and photosystem II (PSII) quantum yield at the coral surface as a function of increasing irradiances. Both sun- and shade-adapted polyps were found to harbour either Symbiodinium clade C types alone or clades A and C simultaneously. Polyps were grouped in two categories according to (1) their orientation towardps light, or (2) their symbiont community composition. Physiological differences were not detected between sun- and shade-adapted polyps, but O2 concentration at 1,100 μmol photons m−2 s−1 was higher in polyps that harboured both clades A and C symbionts than in polyps that harboured clade C only. These results suggest that the acclimatisation of zooxanthellae of individual polyps of an A. valida colony to ambient light levels may not be the only determinant of the photosynthetic capacity of zooxanthellae. Here, we found that photosynthetic capacity is also likely to have a strong genetic basis and differs between genetically distinct Symbiodinium types.  相似文献   

7.
The obligate symbiotic relationship between dinoflagellates, Symbiodinium spp. and reef building corals is re-established each host generation. The solitary coral Fungia scutaria Lamarck 1801 harbors a single algal strain, Symbiodinium ITS2 type C1f (homologous strain) during adulthood. Previous studies have shown that distinct algal ITS2 types in clade C correlate with F. scutariaSymbiodinium specificity during the onset of symbiosis in the larval stage. The present study examined the early specificity events in the onset of symbiosis between F. scutaria larvae and Symbiodinium spp., by looking at the temporal and spatial infection dynamics of larvae challenged with different symbiont types. The results show that specificity at the onset of symbiosis was mediated by recognition events during the initial symbiont—host physical contact before phagocytosis, and by subsequent cellular events after the symbionts were incorporated into host cells. Moreover, homologous and heterologous Symbiodinium sp. strains did not exhibit the same pattern of localization within larvae. When larvae were infected with homologous symbionts (C1f), ~70% of the total acquired algae were found in the equatorial area of the larvae, between the oral and aboral ends, 21 h after inoculation. In contrast, no spatial difference in algal localization was observed in larvae infected with heterologous symbionts. This result provides evidence of functional differences among gastrodermal cells, during development of the larvae. The cells in the larval equator function as nutritive phagocytes, and also appear to function as a region of enhanced symbiont acquisition in F. scutaria.  相似文献   

8.
A community ecology approach to the study of the most common group of zooxanthellae, dinoflagellates in the genus Symbiodinium, was applied to symbiotic invertebrate assemblages on coral reefs in the western Caribbean, off the Yucatan peninsula (Puerto Morelos, Mexico) and over 1000 km away in the northeastern Caribbean, at Lee Stocking Island, Bahamas. Sequence differences and intragenomic variation, as determined by denaturing gradient gel electrophoresis and sequencing of the internal transcribed spacer 2 (ITS 2) region, were used to classify these symbionts. Twenty-eight genetically distinct Symbiodinium types were identified, eleven of which were found in hosts from both Caribbean locations. A single symbiont population was detected in 72% of hosts from the Yucatan and 92% of hosts from the Bahamas. The reef-wide community distribution of these symbionts is dominated by a few types found in many different host taxa, while numerous rare types appear to have high specificity for a particular host species or genus. Clade or lineage A Symbiodinium spp. was restricted to compatible hosts located within 3-4 m of the surface, while Symbiodinium spp. types from other lineages displayed differences in vertical zonation correlated with ITS type but were independent of clade designation. A comparison of the symbiont types found in field-collected hosts with types previously cultured from these hosts indicates the existence of low density or "background"-symbiont populations and cryptic, potentially non-mutualistic types in some hosts.  相似文献   

9.
Numerous marine invertebrates form endosymbiotic relationships with dinoflagellates in the genus Symbiodinium. However, few studies have examined the fine-scale population structure of these symbionts. Here, we describe the genetic structure of Symbiodinium type “B1/B184” inhabiting the gorgonian Gorgonia ventalina along the Florida Keys. Six polymorphic microsatellite loci were utilized to examine 16 populations along the Upper, Middle, and Lower Keys spanning a range of ~200 km. Multiple statistical tests detected significant differentiation in 54–92% of the 120 possible pairwise comparisons between localities, suggesting low levels of gene flow in these dinoflagellates. In general, populations clustered by geographic region and/or reefs in close proximity. Some of the sharpest population differentiation was detected between Symbiodinium from deep and shallow sites on the same reef. In spite of the high degree of population structure, alleles and genotypes were shared among localities, indicating some connectivity between Symbiodinium populations associated with G. ventalina. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Considerable variability in bleaching was observed within and among soft coral taxa in the order Alcyonacea (Octocorallia: Cnidaria) on the central Great Barrier Reef (GBR, latitude 18.2°–19.0°S, longitude 146.4°–147.3°E) during the 1998 mass coral bleaching event. In April 1998, during a period of high sea surface temperatures, tissue samples were taken from bleached and unbleached colonies representative of 17 soft coral genera. The genetic identities of intracellular dinoflagellates (Symbiodinium spp.) in these samples were analyzed using PCR-denaturing gradient gel electrophoresis fingerprinting analysis of the internal transcribed spacer regions 1 and 2. Alcyonaceans from the GBR exhibited a high level of symbiont specificity for Symbiodinium types mostly in clade C. A rare clade D type (D3) was associated only with Clavularia koellikeri, while Nephthea sp. hosted symbionts in clade B (B1n and B36). Homogenous Symbiodinium clade populations were detected in all but one colony. Colonies that appeared bleached possessed symbiont types that were genetically indistinguishable from those in nonbleached conspecifics. These data suggest that parameters other than the resident endosymbionts such as host identity and colony acclimatization are important in determining bleaching susceptibility among soft corals. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Whilst many studies of symbiotic dinoflagellate diversity have focused on tropical reef environments, only a few have explored the degree and pattern of divergence of these endosymbionts at high latitudes. In this study, the genetic diversity and specificity of symbiotic dinoflagellates associated with two common anthozoan hosts in the north-western Pacific Ocean was studied in four different seasons during a period of 1 year. Partial nucleotide sequences of 28S and complete ITS1 ribosomal DNA regions were used to identify, genetically, the endosymbionts extracted from the scleractinian Alveopora japonica and the actinarian Heteractis sp. A. japonica harbours symbionts belonging to Symbiodinium of clade F, while Heteractis sp. associates with Symbiodinium of clade C. Moreover, no seasonal changes in the endosymbiont community were detected in these two associations during this study. This is the first evidence that these two temperate cnidarian–microalgae symbioses are stable. Furthermore, we tested the apparent specificity of the Heteractis sp.– Symbiodinium sp. clade C association, by performing alga-infection experiments with aposymbiotic hosts, and monitoring the uptake and persistence of homologous and heterologous symbionts. The findings confirm the association patterns detected in the field and show that Heteractis sp. only establishes a successful association with Symbiodinium cells of clade C, at least among the heterologous symbionts occurring in the study area. Our results are consistent with the idea that selective pressures in highly fluctuating temperate environments might have granted symbiosis-specificity an adaptive value.Communicated by T. Ikeda, Hakodate  相似文献   

12.
Intertidal organisms commonly form zonation bands along the shore. Environmental stressors often determine the vertical position of each zonation band. These stressors may similarly affect the distribution pattern of endogenous species in their intertidal hosts. To evaluate this possibility, we investigated the distribution pattern of endosymbiotic zooxanthellae in the genus Symbiodinium in a population of the intertidal sea anemone Anthopleura uchidai. We used molecular genetics to identify the Symbiodinium clades and found that A. uchidai has two clades of Symbiodinium, clades A and F. These Symbiodinium clades were disproportionally distributed along the vertical gradient of the intertidal shore. Anemones on the upper shore exclusively possessed clade F Symbiodinium while clade A Symbiodinium became dominant in the sea anemones on the lower shore. Photosynthesis activity assays showed that these Symbiodinium clades had similar net productivities at 23.3 and 31.8 °C at all irradiance levels. At 35 °C, however, clade A Symbiodinium exhibited substantially lower net productivities than clade F Symbiodinium, demonstrating that these Symbiodinium clades have distinct tolerances to thermal stress. These results suggest that the thermal gradient across tidal height is a major factor shaping the zonation pattern of Symbiodinium clades in A. uchidai.  相似文献   

13.
The exchange of Symbiodinium symbionts among scleractinian and soritid hosts could facilitate acclimatization to changing conditions by establishing novel symbiotic unions better tuned to prevailing conditions. In this study, we compare the communities of Symbiodinium spp. in neighboring populations of Orbicella annularis and Sorites orbiculus from St. John, US Virgin Islands, using operational taxonomic unit (OTU) clustering of cloned internal transcribed spacer 2 (ITS-2) rDNA sequences. We tested for partitioning of Symbiodinium OTUs by host and depth within and between two sites to explore the potential for symbiont exchange between hosts and light-dependent microhabitat specialization. An apparent lack of overlap in Symbiodinium communities (13 OTUs representing 7 clades) hosted by O. annularis and S. orbiculus suggests that exchange among these hosts does not occur. A low number of novel clade G ITS-2 sequences were found in one O. annularis and one S. orbiculus. A phylogenetic analysis of these sequences revealed them to be sub-clade G2 Symbiodinium, which are most commonly hosted by excavating clionid sponges. A permutational MANOVA revealed within host differences in the partitioning of Symbiodinium OTUs by site but not depth. This finding highlights the potential roles of either dissimilar environmental conditions between sites, or at least partial separation between populations, in determining the types of Symbiodinium contained in different hosts on a spatial scale of a few kilometers.  相似文献   

14.
Corallimorpharians may dominate some habitats on coral reefs and compete with stony corals for access to light, yet little is known concerning their photosynthetic traits. At Eilat in the northern Red Sea, we observed that the abundance of individuals of the corallimorpharian Rhodactis rhodostoma decreased significantly with depth on the reef slope. Field and laboratory experiments revealed that they employ several mechanisms of photoadaptation to high irradiance on the shallow reef flat. Their endosymbiotic microalgae (zooxanthellae) varied significantly in both abundance and chlorophyll content with level of irradiance. Use of a diving pulse amplitude modulated fluorometer revealed that the zooxanthellae of R. rhodostoma effectively disperse excess light energy by expressing significantly higher values of non-photochemical quenching and maximum excitation pressure on photosystem II when experimentally exposed to high light (HL) versus low light (LL). Host corallimorpharian tissues mediated this response by shielding the algal symbionts from high irradiance. The endoderm of host tentacles thickened significantly and microalgal cells were located further from the mesoglea in HL than in LL. The clades of zooxanthellae hosted by the corallimorpharians also varied with depth. In shallow water, all sampled individuals hosted clade C zooxanthellae, while in deep water the majority hosted clade D. The photosynthetic output of individuals of R. rhodostoma was less affected by HL than was that of a stony coral examined. When exposed to both high temperature (HT) and HL, individuals of R. rhodostoma reduced their maximum quantum yield, but not when exposed to HL at low temperature (LT). In contrast, colonies of the scleractinian coral Favia favus reduced their photosynthetic output when exposed to HL in both temperature regimes. After 2 weeks of HT stress, R. rhodostoma polyps appeared to bleach completely but re-established their zooxanthella populations upon return to ambient temperature. We conclude that mechanisms of photoadaptation to high irradiance employed by both the endosymbiotic zooxanthellae and host corallimorpharians may explain in part the abundance of R. rhodostoma on some shallow reef flats. The ability to survive for weeks at HT while bleached also may allow corallimorpharians to repopulate shallow reef areas where scleractinians have been killed by thermal stress. B. Kuguru and G. Winters contributed equally to this work.  相似文献   

15.
It is speculated that differences in coral bleaching susceptibility may be influenced by the genotype of in hospite Symbiodinium and their differential responses to bleaching stressors. Photoinhibition of photosystem II (PSII), damage to the D1 (psbA) PSII reaction centre protein and production of reactive oxygen species by in hospite Symbiodinium are likely precursors of coral bleaching. In order to assess whether photorepair rates of in hospite Symbiodinium underlie the bleaching susceptibility of their hosts, photoinhibition (net and gross), photoprotection and photorepair rates were assessed in a bleaching-‘tolerant’ coral (P. astreoides) and a bleaching-‘sensitive’ coral (M. faveolata) using non-invasive fluorometric techniques and by blocking de novo synthesis of psbA. Previous studies using such techniques have demonstrated that in vitro Symbiodinium types ‘sensitive’ to bleaching stressors had reduced rates of photorepair relative to ‘tolerant’ Symbiodinum types. Our measurements demonstrated that Symbiodinium in the more bleaching tolerant P. astreoides had higher photorepair rates than Symbiodinium in M. faveolata. Higher repair rates in P. astreoides resulted in lower net photoinhibition relative to M. faveolata, where both corals exhibited similar susceptibility to photodamage (gross photoinhibition). Photoprotective mechanisms were observed in both corals; M. faveolata exhibited higher antennae-bed quenching than P. astreoides at low-light intensities, but at and above light-saturating intensities, which are different for each coral species, P. astreoides displayed more efficient non-photochemical quenching (Stern–Volmer quenching) of chlorophyll fluorescence than M. faveolata. Increased NPQ by P. astreoides at E/E k ≥ 1 was not driven by antennae-bed quenching. The ability of in hospite Symbiodinium in P. astreoides to mitigate the effects of photoinhibition under high light conditions compared with Symbiodinium in M. faveolata, and their high repair capacity following photoinhibition, may be a key factor to consider in future bleaching studies and may underlie the relative bleaching tolerance of P. astreoides compared to M. faveolata.  相似文献   

16.
This report documents the extent to which coral colonies show fluctuations in their associations with different endosymbiotic dinoflagellates. The genetic identity of Symbiodinium from six coral species [Acropora palmata (Lamarck), A. cervicornis (Lamarck), Siderastrea siderea (Ellis and Solander), Montastrea faveolata (Ellis and Solander), M. annularis (Ellis and Solander), and M. franksi (Gregory)] was examined seasonally over five years (1998 and 2000–2004) in the Bahamas and Florida Keys at shallow (1 to 4 m) fore-reef/patch reef sites and at deeper fore-reef (12–15 m) locations. Symbionts were identified genetically using denaturing gradient gel electrophoresis (DGGE) fingerprinting of the internal transcribed spacer region 2 (ITS2) of ribosomal RNA gene loci. Repetitive sampling from most labeled colonies from the Bahamas and the Florida Keys showed little to no change in their dominant symbiont. In contrast, certain colonies of M. annularis and M. franksi from the Florida Keys exhibited shifts in their associations attributed to recovery from the stresses of the 1997–1998 El Niño southern oscillation (ENSO) event. Over several years, a putatively stress-tolerant clade D type of Symbiodinium was progressively replaced in these colonies by symbionts typically found in M. annularis and M. franksi in Florida and at other Caribbean locations. Greater environmental fluctuations in Florida may explain the observed changes among some of the symbioses. Furthermore, symbiotic associations were more heterogeneous at shallow sites, relative to deep sites. The exposure to greater environmental variability near the surface may explain the higher symbiont diversity found within and between host colonies.  相似文献   

17.
When aseptically-cultured sea anemones, Aiptasia pulchella, were incubated with 14C-labelled glucose, aspartate and glutamate, radioactivity was incorporated into animal protein. Radioactivity was recovered from all amino acids in the protein hydrolysates of A. pulchella bearing the symbiotic alga Symbiodinium sp., and from all but seven of the amino acids in A. pulchella experimentally deprived of their algae. These data suggest that these seven amino acids (histidine, isoleucine, leucine, lysine, phenylalanine, tyrosine and valine) may be synthesized by the symbiotic algae and translocated to the sea anemone's tissues; and that methionine and threonine, two amino acids traditionally considered as dietary essentials for animals, are synthesized by A. pulchella. Essential amino acid translocation from the symbiotic algae to the animal host is a core element in symbiotic nitrogen-recycling. Its nutritional value to the animal host is considered in the context of the amino acid biosynthetic capacity of the host. Received: 26 October 1998 / Accepted: 28 June 1999  相似文献   

18.
The molecular diversity of symbiotic dinoflagellates associated with the widespread western Pacific coral Plesiastrea versipora was explored in order to examine if associations between reef-building corals and symbiotic dinoflagellates change with environment. Several ribosomal DNA genes with different evolutionary rates were used, including the large subunit (28S), the 5.8S region and the internal transcribed spacers (ITS). The phylogenetic analysis of the 28S and 5.8S rDNA regions indicated that a single endosymbiont species, highly related to one of the species of Symbiodinium in clade C (= Symbiodinium goreaui, Trench et Blank), associates with P. versipora along the Ryukyu Archipelago. The persistence of the same endosymbiont within P. versipora across this wide array of latitudes may be a result of such features as the Kuroshio Current, which brings tropical temperatures as far north as Honshu, Japan. Analysis of the faster evolving ITS rDNA region revealed significant genetic variability within endosymbionts from different populations. This variation was due to a high degree of interpopulation variability, based on the proportion of pairwise variation detected among the populations (0.95% approximately). By comparison with other studies, the results also indicate that some ITS1 haplotypes from P. versipora endosymbionts seem to be widely distributed within the western Pacific Ocean, ranging from the Great Barrier Reef to the northeast of the China Sea.  相似文献   

19.
Marine sponges can host a variety of cyanobacterial and bacterial symbionts, but it is often unclear whether these symbionts are generalists that occur in many host species or specialists that occur only in certain species or populations of sponges. The filamentous cyanobacterium Oscillatoria spongeliae is found in the sponges Dysidea n. sp. aff. herbacea 1A and 1B, and similar cyanobacteria are found in D. n. sp. aff. granulosa. We amplified and sequenced sponge nuclear ribosomal DNA (rDNA) and cyanobacterial 16S rDNA from specimens of these three sponges. We then used these sequences to construct phylogenies for host sponges and their symbiotic cyanobacteria. Each of these three sponge species hosts a distinct cyanobacterial clade, suggesting a high degree of host specificity and potential coevolution between symbiotic cyanobacteria and their host sponges.  相似文献   

20.
The high-latitude coral communities of southern Africa suffered minimal impacts during past mass bleaching events. Recent reports indicate an increase in bleaching frequency during the last decade, yet the actual levels of thermal stress and contributing factors in these bleaching events, and the degree of acclimatisation or adaptation on these reefs are poorly understood. During the 2005 warm-water anomaly in the southern Indian Ocean we conducted bleaching surveys and collected samples for genotyping of the algal symbiont communities at 21 sites in southern Mozambique and South Africa. Coral bleaching reached unprecedented levels and was negatively correlated with both latitude and water depths. Stylophora pistillata and Montipora were the most susceptible taxa, whereas three common branching corals had significantly different bleaching responses (Stylophora > Acropora > Pocillopora). Temperature records indicated that localised strong upwelling events coupled with persistent above-average seawater temperatures may result in accumulated thermal stress leading to bleaching. Symbiodinium in 139 scleractinian corals belonged almost exclusively to clade C, with clade D symbionts present in only 3% of the colonies. Two atypical C subclades were present in Stylophora and Pocillopora colonies and these were more abundant in shallow than deeper sites. Taxon-specific differences in bleaching responses were unrelated to different clades of algal symbionts and suggest that Symbiodinium C subtypes with diverse thermal tolerance, coupled with acclimatisation and morphology of the host colony influence the bleaching response. Additionally, the predominance of putatively thermal-sensitive Symbiodinium in southern African corals may reflect a limited experience of bleaching and emphasises the vulnerability of these reefs to moderate levels of thermal stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号