首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用高光谱反演模型评估太湖水体叶绿素a浓度分布   总被引:3,自引:1,他引:2  
叶绿素a浓度是评价水体富营养化和初级生产力的一个重要参数,高光谱遥感是获取叶绿素a浓度的有效手段.为建立太湖水域叶绿素a的最佳高光谱估算模型,选取2015年5—7月共计60组同步实测高光谱数据和叶绿素a浓度数据,在地面光谱反射率和叶绿素a浓度相关性分析的基础上,使用2∶1的数据样本进行太湖水域叶绿素a的最佳高光谱估算模型的建立和验证,筛选模型分别为波段比值、三波段、荧光峰位置、峰谷距离、一阶微分、NDCI(Normalized Difference Chlorophyll Index)、峰面积、荧光峰高度、WCI(Water Chlorophyll-a Index)和四波段模型.结果表明,建模得到的四波段模型决定系数最高,峰面积模型的决定系数相对最低;四波段模型的反演精度最高,均方根误差(RMSE)为0.00376 mg·L~(-1),平均绝对误差(MAPE)为27.86%,而WCI模型的反演精度相对最低,RMSE为0.01231 mg·L~(-1),MAPE为45.11%.将反演精度最高的四波段模型应用于2015年8月3日的两景HSI(Hyperspectral Imaging Radiometer)高光谱影像数据,也得到较高精度,利用同步实测叶绿素a浓度验证的决定系数为0.7643,RMSE为0.00433 mg·L~(-1),MAPE为45.62%.在春、夏季叶绿素对水体光学特性占主导作用且叶绿素分布均匀的情景下,本研究可为太湖水域叶绿素a的高光谱反演和水环境监测提供有价值的参考,其它季节水体光谱特点的研究尚待进一步开展.  相似文献   

2.
遥感指数在湖泊叶绿素a反演研究中的应用   总被引:1,自引:0,他引:1  
借鉴陆地植被指数的算法,利用MODIS数据的波段组合对太湖叶绿素8浓度进行反演。探讨了差值植被指数DVI、比值植被指数RVI、归一化植被指数NDVI这三种遥感指数形式的反演效果及各自特点。MODIS数据蓝光波段和红外波段的组合是反演太湖叶绿素浓度的最佳波段组合,DVI适合于反演叶绿素浓度高的情况,RVI的反演结果两极分化明显而普适性较差,NDVI适合于反演浓度较低的情况。  相似文献   

3.
基于2013-2018年秦皇岛海域实测遥感反射率和叶绿素a浓度数据,建立了该海域Sentinel-2MSI影像的叶绿素a浓度遥感反演模型。结果表明:443 nm、490 nm和560 nm处的等效遥感反射率比值与叶绿素a浓度相关系数普遍高于其他波段或组合,通过经典的OC3Mv6算法拟合分析,得到秦皇岛海域叶绿素a浓度遥感反演的最佳算法,R2=0.804,MAPE=40.2%,RMSE=4.73 mg/m3;利用2016年7月6日的实测叶绿素a浓度数据对Sentinel-2 MSI遥感反演结果进行了真实性检验,MAPE=35.9%,可以满足应用要求;采用2020年2月、5月、7月及10月Sentinel-2 MSI影像进行叶绿素a浓度反演,发现春、夏季秦皇岛海域叶绿素a浓度梯度变化显著,而秋、冬季叶绿素a浓度分布相对均匀,且春、夏季沿海海域叶绿素a浓度明显高于秋、冬季。  相似文献   

4.
环境一号卫星在大型水体水环境监测与评价中具有独特的优势。为探求遥感影像在水体叶绿素a浓度反演中的应用,基于环境一号卫星CCD数据和同步实测叶绿素a浓度值,通过影像辐射定标、大气校正和几何精校正等预处理获取水体反射率,分别将单波段和不同特征波段组合的反射率与实测叶绿素a值进行皮尔逊相关分析,选取R20.8的波段组合进行建模,通过对3种波段组合反演结果对比和精度验证,发现基于CCD数据第4波段与第3波段反射率比值的二次模型具有良好的反演效果,模型预测值与实测值的最小相对误差为0.76%,平均相对误差10.99%,均方根误差为0.007 6 mg/L,明显低于实测叶绿素a浓度的平均值;最后基于该模型实现了太湖叶绿素a浓度反演,并对叶绿素a的时空分布进行了初步分析。  相似文献   

5.
基于数据同化的太湖叶绿素多模型协同反演   总被引:2,自引:1,他引:1  
李渊  李云梅  吕恒  朱利  吴传庆  杜成功  王帅 《环境科学》2014,35(9):3389-3396
在国内外众多学者的不懈努力下,开发了大量的水质参数遥感估算反演模型,但不同的模型都具有其"局限性",只能从某个层面反映"真值".基于上述考虑,本研究发展了基于数据同化方法的太湖叶绿素a浓度多模型协同反演算法.利用2006~2009年太湖野外实测水体高光谱遥感反射率数据,构建了7个叶绿素a浓度反演模型;通过模型精度对比,最终遴选出6个适宜的叶绿素a浓度反演模型.进而使用不同模型组合,进行多模型协同反演.结果表明:1多模型协同反演算法的反演精度要高于单模型反演的反演精度,最优MAPE仅为22.4%;2随着参与多模型协同反演的模型个数的增加,其反演精度也逐渐提高,MAPE均值从25.6%降低到23.4%,RMSE均值从15.082μg·L-1降低到14.575μg·L-1,相关系数R均值从0.91提升到0.92;3通过对多模型协同反演产品的置信区间进行计算,可以有效地估算产品精度和误差,同时使得获取全湖反演叶绿素a浓度的误差空间分布情况成为可能.  相似文献   

6.
以2009~2019年HJ-1A/B卫星多光谱数据和对应日期的实测数据为数据源,通过预处理提取出各波段组合反射率并与实测叶绿素a浓度数据进行统计相关性分析,选取相关性最高的波段组合作为特征变量与2/3的实测叶绿素a浓度数据进行建模,并用剩下的1/3实测叶绿素a浓度数据进行精度验证以确定最佳遥感反演模型,最后根据最佳反演模型对2009-2019年的香港近海海域叶绿素a浓度进行反演,明晰该海域近10年的叶绿素a浓度时空变化特征.结果表明:利用HJ-1A/B卫星多光谱数据反演香港近海海域叶绿素a浓度的最佳波段组合为第3波段和第2波段比值(B3/B2),相关系数(r)为0.893;最佳反演模型为利用B3/B2构建的e指数回归模型(Chl=0.004e6.693(B3/B2)),决定系数(R2)为0.934,均方根误差(RMSE)为0.255μg/L,平均相对误差(RPD)为25%;近10年香港近海海域的叶绿素a浓度时空变化特征:空间上整体呈现“东高西低,由东向西逐渐减小”的分布特征,西部海域比东部海域平均浓度低5μg/L左右;2017年内呈“春低秋高,夏升冬降”的随季节变化特点,其中秋季最高,夏春两季次之,冬季最低.  相似文献   

7.
不同方法估算太湖叶绿素a浓度对比研究   总被引:10,自引:2,他引:8  
基于2006-01-07~2006-01-09和2006-07-29~2006-08-01太湖地面实测高光谱数据以及同步水质参数数据,对比分析了三波段模型、两波段模型、反射峰位置法、一阶微分法4种方法用于估算太湖叶绿素a浓度的精度,并讨论其应用于遥感影像中估算叶绿素a浓度的可行性. 2次采样3类水色参数总悬浮物、叶绿素a浓度和有色可溶性有机物在440 nm处吸收系数的变化范围分别为12.24~285.20 mg·L-1、 4.83~155.11 μg·L-1和0.27~2.36 m-1.前述4种方法在反演太湖水体的叶绿素a浓度时都取得较高的精度;决定系数分别为:0.813、 0.838、 0.872、 0.819,均方根误差分别为:13.04、 12.12、 13.41、 12.13 μg·L-1;相对误差分别为:35.5%、 34.9%、 24.6%、 41.8%.反射峰位置法估算精度最高,但应用到叶绿素a浓度遥感影像估算比较困难.三波段模型和两波段模型的反演结果优于传统的一阶微分法,且在卫星遥感反演中具有良好的应用前景.根据模拟MERIS数据,分别得到最优三波段模型[R-1(665)-R-1(709)]×R(754)和两波段模型R(709)/R(681),其决定系数、均方根误差、相对误差分别为0.788、 13.87 μg·L-1、 37.3%和0.815、 12.96 μg·L-1、 34.8%,反映了MERIS数据能非常好地应用于太湖这类浑浊二类水体叶绿素a浓度的精确估算.  相似文献   

8.
基于EOS/MODIS资料的太湖藻类动态模拟   总被引:1,自引:1,他引:0  
建立了太湖藻类生长的动态模型,并将其与水动力模型和水质模型相耦合,利用2001年7~8月太湖的实测资料对模型进行了率定。借助该模型,对2004年8月太湖水体中TN、TP的变化以及藻类生长过程进行了模拟。利用中分辨率成像光谱仪EOS/MODIS的数据对太湖叶绿素a浓度进行遥感定量,将遥感监测数据和模型计算结果进行了比较。结果表明:该模型可进行风生湖流、TN、TP的模拟,以叶绿素a浓度描述的藻类浓度的模拟值能较好地拟合遥感监测值,且遥感监测图和模型模拟图所反映的全太湖叶绿素浓度分布基本一致。最后根据遥感和模拟对太湖全区的藻类分布作了具体的分析。  相似文献   

9.
支持向量机在太湖叶绿素a非线性反演中的应用   总被引:4,自引:2,他引:2       下载免费PDF全文
根据湖泊监测的特点,采用支持向量机(SVM)方法,反演太湖叶绿素a的浓度分布.将2005年8月太湖29个现场水质监测点数据分为训练测试样本集和验证样本集,利用训练测试样本集以及与其时间同步的MODIS遥感影像,分别构建了4种SVM模型.对比分析表明,直接以波段反射率以及水深信息构成输入向量的SVM模型预测效果最好.利用训练测试样本构建了线性回归模型、主成分分析模型(PCA)以及神经网络模型(ANN),并利用验证数据比较了上述3种模型与SVM模型的预测结果.结果表明ANN模型和SVM模型预测能力明显优于另外2种模型,其中SVM模型对低值和高值均有较好的预测精度,平均相对误差仅为15.91%,预测精度比ANN模型提高了10%.利用SVM模型和ANN模型分别反演了2005年8月15日太湖叶绿素a浓度分布,比较了2种模型反演结果的异同,分析了太湖叶绿素a分布特征及其成因.  相似文献   

10.
太湖悬浮物对水体生态环境的影响及其高光谱反演   总被引:2,自引:1,他引:2  
利用太湖水质参数数据、水面以下实测光谱数据以及水-气界面辐射传输模型,计算得到了水体漫射衰减系数和水面以上遥感反射比,探讨了悬浮物对水体中营养盐以及水下光照等水体环境因子的影响,在此基础上,利用水面以上遥感反射率建立了悬浮物浓度的定量反演模型.研究结果表明:悬浮物浓度与水体下行漫射衰减系数具有很好的相关性,在可见光波段相关系数达到0.8以上,与真光层深度具有很好的负指数关系;水面以上遥感反射比与悬浮物浓度对数(In(Tss))具有很好的相关性,在500~600nm范围内呈负相关,在620-882nm范围呈正相关,最大负相关出现在522nm附近,最大正相关出现在692nm附近;选用Rra(522nm)、Rra(692nm)以及其比值作为变量建立悬浮物反演模型,得出的单波段线性对数模型能够较好地反演悬浮物浓度.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

17.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

18.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

19.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

20.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号