首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salinity in the Upper Colorado River Basin (UCRB) is due to both natural sources and processes, and anthropogenic activities. Given economic damage due to salinity of $295 million in 2010, understanding salinity sources and production together with transport are of great importance. SPAtially Referenced Regressions On Watershed (SPARROW) is a nonlinear regression water quality model that simulates sources and transport of contaminants such as dissolved‐solids. However, SPARROW simulations of dissolved‐solids in the UCRB only represent conditions through 1998 due to limited data availability. More importantly, prior simulations focused on a single year calibration and its transferability to other years, and the validity of this approach is questionable, given the changing hydrologic and climatic conditions. This study presents different calibration approaches to assess the best approach for reducing model uncertainty. This study conducted simulations from 1999 to 2011, and the results showed good model accuracy. However, the number of monitoring stations decreased significantly in recent years resulting in higher model uncertainty. The uncertainty analysis was conducted using SPARROW results and bootstrapping. The results suggest that the watershed rankings based on salinity yields changed due to the uncertainty analysis and therefore, uncertainty consideration should be an important part of the management strategy.  相似文献   

2.
Model‐estimated monthly water balance components (i.e., potential evapotranspiration, actual evapotranspiration, and runoff (R)) for 146 United States (U.S.) Geological Survey 8‐digit hydrologic units located in the Colorado River Basin (CRB) are used to examine the temporal and spatial variability of the CRB water balance for water years 1901 through 2014 (a water year is the period from October 1 of one year through September 30 of the following year). Results indicate that the CRB can be divided into six subregions with similar temporal variability in monthly R. The water balance analyses indicated that approximately 75% of total water‐year R is generated by just one CRB subregion and that most of the R in the basin is derived from surplus (S) water generated during the months of October through April. Furthermore, the analyses show that temporal variability in S is largely controlled by the occurrence of negative atmospheric pressure anomalies over the northwestern conterminous U.S. (CONUS) and positive atmospheric pressure anomalies over the southeastern CONUS. This combination of atmospheric pressure anomalies results in an anomalous flow of moist air from the North Pacific Ocean into the CRB, particularly the Upper CRB. Additionally, the occurrence of extreme dry and wet periods in the CRB appears to be related to variability of the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation.  相似文献   

3.
Anning, David W., 2011. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States. Journal of the American Water Resources Association (JAWRA) 47(5):1087‐1109. DOI: 10.1111/j.1752‐1688.2011.00579.x Abstract: Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area‐normalized reach‐catchment delivery rates of dissolved solids to streams ranged from <10 (kg/year)/km2 for catchments with little or no natural or human‐related solute sources in them to 563,000 (kg/year)/km2 for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved‐solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved‐solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil‐pore or sediment‐pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000 (kg/year)/km2 for many hydrologic accounting units (large river basins), but were more than 40,000 (kg/year)/km2 for the Middle Gila, Lower Gila‐Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000 (kg/year)/km2 for the Salton Sea accounting unit.  相似文献   

4.
Abstract: This article evaluates drought scenarios of the Upper Colorado River basin (UCRB) considering multiple drought variables for the past 500 years and positions the current drought in terms of the magnitude and frequency. Drought characteristics were developed considering water‐year data of UCRB’s streamflow, and basin‐wide averages of the Palmer Hydrological Drought Index (PHDI) and the Palmer Z Index. Streamflow and drought indices were reconstructed for the last 500 years using a principal component regression model based on tree‐ring data. The reconstructed streamflow showed higher variability as compared with reconstructed PHDI and reconstructed Palmer Z Index. The magnitude and severity of all droughts were obtained for the last 500 years for historical and reconstructed drought variables and ranked accordingly. The frequency of the current drought was obtained by considering two different drought frequency statistical approaches and three different methods of determining the beginning and end of the drought period (annual, 5‐year moving, and ten year moving average). It was concluded that the current drought is the worst in the observed record period (1923‐2004), but 6th to 14th largest in terms of magnitude and 1st to 12th considering severity in the past 500 years. Similarly, the current drought has a return period ranging from 37 to 103 years based on how the drought period was determined. It was concluded that if the 10‐year moving average is used for defining the drought period, the current drought appears less severe in terms of magnitude and severity in the last 500 years compared with the results using 1‐ and 5‐year averages.  相似文献   

5.
Anderson, SallyRose, Glenn Tootle, and Henri Grissino‐Mayer, 2012. Reconstructions of Soil Moisture for the Upper Colorado River Basin Using Tree‐Ring Chronologies. Journal of the American Water Resources Association (JAWRA) 48(4): 849‐858. DOI: 10.1111/j.1752‐1688.2012.00651.x Abstract: Soil moisture is an important factor in the global hydrologic cycle, but existing reconstructions of historic soil moisture are limited. We used tree‐ring chronologies to reconstruct annual soil moisture in the Upper Colorado River Basin (UCRB). Gridded soil moisture data were spatially regionalized using principal components analysis and k‐nearest neighbor techniques. We correlated moisture sensitive tree‐ring chronologies in and adjacent to the UCRB with regional soil moisture and tested the relationships for temporal stability. Chronologies that were positively correlated and stable for the calibration period were retained. We used stepwise linear regression to identify the best predictor combinations for each soil moisture region. The regressions explained 42‐78% of the variability in soil moisture data. We performed reconstructions for individual soil moisture grid cells to enhance understanding of the disparity in reconstructive skill across the regions. Reconstructions that used chronologies based on ponderosa pines (Pinus ponderosa) and pinyon pines (Pinus edulis) explained more variance in the datasets. Reconstructed soil moisture data was standardized and compared with standardized reconstructed streamflow and snow water equivalent data from the same region. Soil moisture and other hydrologic variables were highly correlated, indicating reconstructions of soil moisture in the UCRB using tree‐ring chronologies successfully represent hydrologic trends.  相似文献   

6.
In the Upper Colorado River Basin (UCRB), there is a deep reliance on seasonal snowpack for maintenance of water resources. The term “snow drought” has recently emerged to describe periods of anomalously low snowpack. Unique seasonal patterns in precipitation and temperature that drive snow drought can have distinct hydrologic signatures, and these relationships have not been carefully studied in the UCRB. Here we examine snow drought with a new classification scheme using peak snow water equivalent (SWE) and the ratio of basin-wide modeled peak SWE to accumulated (onset to peak) precipitation (SWE/P) that clusters snow drought years into three distinct groups—“warm,” “dry,” and “warm & dry”—that minimize within-group variance. Over the period 1916–2018, we identify 14 warm years ( P ¯  = 160 mm; SWE / P ¯  = 0.24), 24 dry years ( P ¯  = 117 mm; SWE / P ¯  = 0.35), and 21 warm & dry years ( P ¯  = 94 mm; SWE / P ¯  = 0.23). An elevation-based analysis reveals two distinct patterns: warm snow droughts see severe SWE reductions primarily at lower (<2600 m) elevations (65% at lower elevations, 37% overall), whereas “dry” scenarios exhibit a consistent reduction across all elevations (39% overall). Using naturalized streamflow data, we also differentiate snow droughts by their earlier streamflow timing and decreased peakedness (warm: 7 days, 2%; dry: 7 days, 2%; warm & dry: 13 days, 5%). This research provides new insights into snow drought patterns relevant for regional water management.  相似文献   

7.
Gray, Stephen T., Jeffrey J. Lukas, and Connie A. Woodhouse, 2011. Millennial‐Length Records of Streamflow From Three Major Upper Colorado River Tributaries. Journal of the American Water Resources Association (JAWRA) 47(4):702‐712. DOI: 10.1111/j.1752‐1688.2011.00535.x Abstract: Drought, climate change, and shifting consumptive use are prompting a widespread reassessment of water availability in the Upper Colorado River basin. Here, we present millennial‐length records of water year (October‐September) streamflow for key Upper Colorado tributaries: the White, Yampa, and Little Snake Rivers. Based on tree rings, these records represent the first paleohydrological reconstructions from these subbasins to overlap with a series of Medieval droughts (∼ad 800 to 1300). The reconstructions show marked interannual variability imbedded in nonstationary behavior over decadal to multidecadal time scales. These reconstructions suggest that, even in a millennial context, gaged flows from a handful of years (e.g., 1977 and 2002) were extremely dry. However, droughts of much greater duration and magnitude than any in the instrumental record were regular features prior to 1900. Likewise these reconstructions point to the unusual wetness of the gage period, and the potential for recent observations to paint an overly optimistic picture of regional water supplies. The future of the Upper Colorado River will be determined by a combination of inherent hydroclimatic variability and a broad range of human‐induced changes. It is then essential that regional water managers, water users, and policy makers alike consider a broader range of hydroclimatic scenarios than is offered by the gage record alone.  相似文献   

8.
Abstract:  Water‐resource managers need to forecast streamflow in the Lower Colorado River Basin to plan for water‐resource projects and to operate reservoirs for water supply. Statistical forecasts of streamflow based on historical records of streamflow can be useful, but statistical assumptions, such as stationarity of flows, need to be evaluated. This study evaluated the relation between climatic fluctuations and stationarity and developed regression equations to forecast streamflow by using climatic fluctuations as explanatory variables. Climatic fluctuations were represented by the Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and Southern Oscillation Index (SOI). Historical streamflow within the 25‐ to 30‐year positive or negative phases of AMO or PDO was generally stationary. Monotonic trends in annual mean flows were tested at the 21 sites evaluated in this study; 76% of the sites had no significant trends within phases of AMO and 86% of the sites had no significant trends within phases of PDO. As climatic phases shifted in signs, however, many sites had nonstationary flows; 67% of the sites had significant changes in annual mean flow as AMO shifted in signs. The regression equations developed in this study to forecast streamflow incorporate these shifts in climate and streamflow, thus that source of nonstationarity is accounted for. The R2 value of regression equations that forecast individual years of annual flow for the central part of the study area ranged from 0.28 to 0.49 and averaged 0.39. AMO was the most significant variable, and a combination of indices from both the Atlantic and Pacific Oceans explained much more variation in flows than only the Pacific Ocean indices. The average R2 value for equations with PDO and SOI was 0.15.  相似文献   

9.
Land and water resource development can independently eliminate riparian plant communities, including Fremont cottonwood forest (CF), a major contributor to ecosystem structure and functioning in semiarid portions of the American Southwest. We tested whether floodplain development was linked to river regulation in the Upper Colorado River Basin (UCRB) by relating the extent of five developed land-cover categories as well as CF and other natural vegetation to catchment reservoir capacity, changes in total annual and annual peak discharge, and overall level of mainstem hydrologic alteration (small, moderate, or large) in 26 fourth-order subbasins. We also asked whether CF appeared to be in jeopardy at a regional level. We classified 51% of the 57,000 ha of alluvial floodplain examined along >2600 km of mainstem rivers as CF and 36% as developed. The proportion developed was unrelated to the level of mainstem hydrologic alteration. The proportion classified as CF was also independent of the level of hydrologic alteration, a result we attribute to confounding effects from development, the presence of time lags, and contrasting effects from flow alteration in different subbasins. Most CF (68% by area) had a sparse canopy (50% canopy cover occupied <1% of the floodplain in 15 subbasins. We suggest that CF extent in the UCRB will decline markedly in the future, when the old trees on floodplains now disconnected from the river die and large areas change from CF to non-CF categories. Attention at a basinwide scale to the multiple factors affecting cottonwood patch dynamics is needed to assure conservation of these riparian forests.  相似文献   

10.
Abstract: Declining reservoir storage has raised the specter of the first water shortage on the Lower Colorado River since the completion of Glen Canyon and Hoover Dams. This focusing event spurred modeling efforts to frame alternatives for managing the reservoir system during prolonged droughts. This paper addresses the management challenges that arise when using modeling tools to manage water scarcity under variable hydroclimatology, shifting use patterns, and institutional complexity. Assumptions specified in modeling simulations are an integral feature of public processes. The policymaking and management implications of assumptions are examined by analyzing four interacting sources of physical and institutional uncertainty: inflow (runoff), depletion (water use), operating rules, and initial reservoir conditions. A review of planning documents and model reports generated during two recent processes to plan for surplus and shortage in the Colorado River demonstrates that modeling tools become useful to stakeholders by clarifying the impacts of modeling assumptions at several temporal and spatial scales. A high reservoir storage‐to‐runoff ratio elevates the importance of assumptions regarding initial reservoir conditions over the three‐year outlook used to assess the likelihood of reaching surplus and shortage triggers. An ensemble of initial condition predictions can provide more robust initial conditions estimates. This paper concludes that water managers require model outputs that encompass a full range of future potential outcomes, including best and worst cases. Further research into methods of representing and communicating about hydrologic and institutional uncertainty in model outputs will help water managers and other stakeholders to assess tradeoffs when planning for water supply variability.  相似文献   

11.
Abudu, S., J.P. King, Z. Sheng, 2011. Comparison of the Performance of Statistical Models in Forecasting Monthly Total Dissolved Solids in the Rio Grande. Journal of the American Water Resources Association (JAWRA) 48(1): 10‐23. DOI: 10.1111/j.1752‐1688.2011.00587.x Abstract: This paper presents the application of autoregressive integrated moving average (ARIMA), transfer function‐noise (TFN), and artificial neural networks (ANNs) modeling approaches in forecasting monthly total dissolved solids (TDS) of water in the Rio Grande at El Paso, Texas. Predictability analysis was performed between the precipitation, temperature, streamflow rates at the site, releases from upstream reservoirs, and monthly TDS using cross‐correlation statistical tests. The chi‐square test results indicated that the average monthly temperature and precipitation did not show significant predictability on monthly TDS series. The performances of one‐ to three‐month‐ahead model forecasts for the testing period of 1984‐1994 showed that the TFN model that incorporated the streamflow rates at the site and Caballo Reservoir release improved monthly TDS forecasts slightly better than the ARIMA models. Except for one‐month‐ahead forecasts, the ANN models using the streamflow rates at the site as inputs resulted in no significant improvements over the TFN models at two‐month‐ahead and three‐month‐ahead forecasts. For three‐month‐ahead forecasts, the simple ARIMA showed similar performance compared to all other models. The results of this study suggested that simple deseasonalized ARIMA models could be used in one‐ to three‐month‐ahead TDS forecasting at the study site with a simple, explicit model structure and similar model performance as the TFN and ANN models for better water management in the Basin.  相似文献   

12.
岷江流域地表水水质的模糊综合评价   总被引:1,自引:1,他引:1  
岷江是长江上游的一个重要支流,其水质安全对维持成都平原正常的生产生活起着至关重要的作用。采用模糊综合评价的方法,对岷江流域14个地表水监测断面的水质状况进行了综合评价。结果表明:在14个监测断面中,处于清洁和未污染程度的断面占50%,主要位于岷江流域的上游和下游,其水质状况较好;处于重污染的断面占29%,主要位于岷江流域的中游,水质状况较差。因此,需要加强流域综合治理尤其是对岷江中游的治理,以确保岷江流域的水质安全。  相似文献   

13.
Kim, Ungtae and Jagath J. Kaluarachchi, 2009. Climate Change Impacts on Water Resources in the Upper Blue Nile River Basin, Ethiopia. Journal of the American Water Resources Association (JAWRA) 45(6):1361‐1378. Abstract: Climate change affects water resources availability of international river basins that are vulnerable to runoff variability of upstream countries especially with increasing water demands. The upper Blue Nile River Basin is a good example because its downstream countries, Sudan and Egypt, depend solely on Nile waters for their economic development. In this study, the impacts of climate change on both hydrology and water resources operations were analyzed using the outcomes of six different general circulation models (GCMs) for the 2050s. The outcomes of these six GCMs were weighted to provide average future changes. Hydrologic sensitivity, flow statistics, a drought index, and water resources assessment indices (reliability, resiliency, and vulnerability) were used as quantitative indicators. The changes in outflows from the two proposed dams (Karadobi and Border) to downstream countries were also assessed. Given the uncertainty of different GCMs, the simulation results of the weighted scenario suggested mild increases in hydrologic variables (precipitation, temperature, potential evapotranspiration, and runoff) across the study area. The weighted scenario also showed that low‐flow statistics and the reliability of streamflows are increased and severe drought events are decreased mainly due to increased precipitation. Joint dam operation performed better than single dam operation in terms of both hydropower generation and mean annual storage without affecting the runoff volume to downstream countries, but enhancing flow characteristics and the robustness of streamflows. This study provides useful information to decision makers for the planning and management of future water resources of the study area and downstream countries.  相似文献   

14.
As a key component of the National Flood Interoperability Experiment (NFIE), this article presents the continental scale river flow modeling of the Mississippi River Basin (MRB), using high‐resolution river data from NHDPlus. The Routing Application for Parallel computatIon of Discharge (RAPID) was applied to the MRB with more than 1.2 million river reaches for a 10‐year study (2005‐2014). Runoff data from the Variable Infiltration Capacity (VIC) model was used as input to RAPID. This article investigates the effect of topography on RAPID performance, the differences between the VIC‐RAPID streamflow simulations in the HUC‐2 regions of the MRB, and the impact of major dams on the streamflow simulations. The model performance improved when initial parameter values, especially the Muskingum K parameter, were estimated by taking topography into account. The statistical summary indicates the RAPID model performs better in the Ohio and Tennessee Regions and the Upper and Lower Mississippi River Regions in comparison to the western part of the MRB, due to the better performance of the VIC model. The model accuracy also increases when lakes and reservoirs are considered in the modeling framework. In general, results show the VIC‐RAPID streamflow simulation is satisfactory at the continental scale of the MRB.  相似文献   

15.
Abstract: Dissolved inorganic nitrogen (DIN) retention‐transport through a headwater catchment was synthesized from studies encompassing four distinct hydrologic zones of the Shingobee River Headwaters near the origin of the Mississippi River. The hydrologic zones included: (1) hillslope ground water (ridge to bankside riparian); (2) alluvial riparian ground water; (3) ground water discharged through subchannel sediments (hyporheic zone); and (4) channel surface water. During subsurface hillslope transport through Zone 1, DIN, primarily nitrate, decreased from ~3 mg‐N/l to <0.1 mg‐N/l. Ambient seasonal nitrate:chloride ratios in hillslope flow paths indicated both dilution and biotic processing caused nitrate loss. Biologically available organic carbon controlled biotic nitrate retention during hillslope transport. In the alluvial riparian zone (Zone 2) biologically available organic carbon controlled nitrate depletion although processing of both ambient and amended nitrate was faster during the summer than winter. In the hyporheic zone (Zone 3) and stream surface water (Zone 4) DIN retention was primarily controlled by temperature. Perfusion core studies using hyporheic sediment indicated sufficient organic carbon in bed sediments to retain ground water DIN via coupled nitrification‐denitrification. Numerical simulations of seasonal hyporheic sediment nitrification‐denitrification rates from perfusion cores adequately predicted surface water ammonium but not nitrate when compared to 5 years of monthly field data (1989‐93). Mass balance studies in stream surface water indicated proportionally higher summer than winter N retention. Watershed DIN retention was effective during summer under the current land use of intermittently grazed pasture. However, more intensive land use such as row crop agriculture would decrease nitrate retention efficiency and increase loads to surface water. Understanding DIN retention capacity throughout the system, including special channel features such as sloughs, wetlands and floodplains that provide surface water‐ground water connectivity, will be required to develop effective nitrate management strategies.  相似文献   

16.
Regarding emerging large‐scale reservoir operation models, reports of reservoir operation feedback for hydrologic modeling are rare, and little attention has been paid to flood control. An operation scheme considering multilevel flood control (MLFC) was first proposed in this study, but more reservoir information was needed. Thus, an alternative scheme was proposed that consisted of a modified version of the reservoir operation scheme in the Soil and Water Assessment Tool Model (MSWAT scheme). These schemes were coupled to a land surface and hydrologic model system with feedback, i.e., a system in which reservoir operation can affect the subsequent simulation, and were investigated in the Huai River Basin. The results show reservoir storage and peak flow were generally overestimated by the original SWAT reservoir scheme (SWAT scheme). Compared with the SWAT scheme, the MSWAT scheme successfully reduced the simulated storage and peak flow at the reservoir stations. For the downstream stations, the streamflow simulations were improved at a significance level of 5%. The performances of the MSWAT and MLFC schemes at the reservoir stations were nearly equivalent. Importantly, reservoir operation feedback to hydrologic modeling was necessary because the reservoir operation effects could not be transferred downstream without it. The streamflow simulation of a reservoir station located on a flat plain was less sensitive to feedback than that of a mountain reservoir station.  相似文献   

17.
Brakebill, John W., Scott W. Ator, and Gregory E. Schwarz, 2010. Sources of Suspended-Sediment Flux in Streams of the Chesapeake Bay Watershed: A Regional Application of the SPARROW Model. Journal of the American Water Resources Association (JAWRA) 46(4): 757-776. DOI: 10.1111/j.1752-1688.2010.00450.x Abstract: We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain.  相似文献   

18.
Accurate procedures that measure hydrologic variability would have great value for evaluating ecosystem impacts of upstream water use in the Colorado River Basin. Many local extractive income-based stakeholders rely directly or indirectly on ecosystem health and are adversely affected when the river does not flow. This study focuses on the impact of little or no Colorado River flow on the Mexican shrimp industry. Although there have been complaints that U.S. diversions of Colorado River flow have greatly impaired the shrimp fishery, this research demonstrates that freshwater rarely reaches the Gulf even during times of flooding, and that other factors such as overfishing may influence the instability of shrimp populations. Advanced very-high-resolution radiometer (AVHRR) satellite imagery was used to assess water volumes diverted away from the channel of the Colorado River and ultimately the Gulf of California during flooding periods. Analysis of data demonstrated that little freshwater actually reaches the Gulf even during floods because of its diversion into a large dry lake bed basin known as Laguna Salada. Fuller use of the Colorado River throughout its entire course to the sea is possible and could benefit a large cohort of users without catastrophic habitat destruction in delta ecosystems. Reconstruction of a natural earthen berm, as proposed by Ducks Unlimited, would maximize the use of floodwaters for ecosystem benefits. These findings have profound implications for local economic activities dependent on hydrologic resources in the Colorado River Delta and Upper Gulf.  相似文献   

19.
The Pacific Northwest is expected to witness changes in temperature and precipitation due to climate change. In this study, we enhance the Snake River Planning Model (SRPM) by modeling the feedback loop between incidental recharge and surface water supply resulting from surface water and groundwater extraction for irrigation and provide a case study involving climate change impacts and management scenarios. The new System Dynamics‐Snake River Planning Model (SD‐SRPM) is calibrated to flow at Box Canyon Springs located along a major outlet of the East Snake Plain Aquifer. A calibration of the model to flow at Box Canyon Springs, based on historic diversions (1950‐1995) resulted in an r2 value of 0.74 and a validation (1996‐2005) r2 value of 0.60. After adding irrigation entities to the model an r2 value of 0.91, 0.88, and 0.87 were maintained for modeled vs. observed (1991‐2005) end‐of‐month reservoir content in Jackson Lake, Palisades, and American Falls, the three largest irrigation reservoirs in the system. The scenarios that compared the impacts of climate change were based on ensemble mean precipitation change scenarios and estimated changes to crop evapotranspiration (ET). Increased ET, despite increased precipitation, generally increased surface water shortages and discharge of springs. This study highlights the need to develop and implement models that integrate the human‐natural system to understand the impacts of climate change.  相似文献   

20.
Brown, Juliane B., Lori A. Sprague, and Jean A. Dupree, 2011. Nutrient Sources and Transport in the Missouri River Basin, With Emphasis on the Effects of Irrigation and Reservoirs. Journal of the American Water Resources Association (JAWRA) 47(5):1034‐1060. DOI: 10.1111/j.1752‐1688.2011.00584.x Abstract: SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号