首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Whittemore, Donald O., 2012. Potential Impacts of Stormwater Runoff on Water Quality in Urban Sand Pits and Adjacent Groundwater. Journal of the American Water Resources Association (JAWRA) 48(3): 584-602. DOI: 10.1111/j.1752-1688.2011.00637.x Abstract: Entrance of stormwater runoff into water-filled pits and adjacent aquifers is a contamination concern. The water and sediment quality in several sand pits and surrounding groundwater in Wichita, Kansas, were studied to comprehensively address stormwater runoff impact. The pits are used for residential development after sand and gravel mining. Water samples were analyzed for inorganic constituents, bacteria, and 252 organic compounds, and pit sediments for inorganic components and 32 organic chemicals. Although many pesticide and degradate compounds were found in the pit and well waters, none of these chemicals exceeded existing health levels. Other organic contaminants were detected in the waters, with those exceeding health levels at one site attributed to an undiscovered groundwater contamination plume and not to stormwater runoff. Persistent insecticides and polychlorinated biphenyls detected in sediment of two pits are related to the age of residential development. The concentration distributions of pesticides and other organics at most of the sites, as well as iron, manganese, and ammonia patterns in downgradient well waters relative to upgradient well and pit waters, indicate that groundwater quality at the sites is affected by contaminants entering the pit surface waters. Thus, although current stormwater runoff does not appear to have contaminated sand-pit water and adjacent groundwater above health levels, the data show that the potential exists if stormwater became polluted.  相似文献   

2.
James Androwski, Abraham Springer, Thomas Acker, and Mark Manone, 2011. Wind‐Powered Desalination: An Estimate of Saline Groundwater in the United States. Journal of the American Water Resources Association (JAWRA) 47(1):93‐102. DOI: 10.1111/j.1752‐1688.2010.00493.x Abstract: Increasing scarcity of freshwater resources in many regions of the world is leading water resource managers to consider desalination as a potential alternative to traditional freshwater supplies. Desalination technologies are energy intensive and expensive to implement making desalination using renewable energy resources a potentially attractive option. Unfortunately, saline groundwater resources are not well characterized for many regions hindering consideration of such technologies. In this assessment, we estimate the saline groundwater resources of the principal aquifers of the United States using a geographic information system and correlate these resources to wind resources potentially sufficient to supply the energy demand of desalination equipment. We estimate that 3.1 × 1014 m3 saline groundwater, total volume, are contained in 28 of the country’s principal aquifers known to contain saline groundwater. Of this volume, 1.4 × 1014 m3 saline groundwater are co‐located with wind resources sufficient for electrical generation to desalinate groundwater.  相似文献   

3.
4.
Clilverd, Hannah M., Daniel M. White, Amy C. Tidwell, and Michael A. Rawlins, 2011. The Sensitivity of Northern Groundwater Recharge to Climate Change: A Case Study in Northwest Alaska. Journal of the American Water Resources Association (JAWRA) 47(6):1228–1240. DOI: 10.1111/j.1752‐1688.2011.00569.x Abstract: The potential impacts of climate change on northern groundwater supplies were examined at a fractured‐marble mountain aquifer near Nome, Alaska. Well water surface elevations (WSE) were monitored from 2004‐2009 and analyzed with local meteorological data. Future aquifer response was simulated with the Pan‐Arctic Water Balance Model (PWBM) using forcings (air temperature and precipitation) derived from fifth‐generation European Centre Hamburg Model (ECHAM5) global circulation model climate scenarios for extreme and modest increases in greenhouse gases. We observed changes in WSE due to the onset of spring snowmelt, low intensity and high intensity rainfall events, and aquifer head recession during the winter freeze period. Observed WSE and snow depth compared well with PWBM‐simulated groundwater recharge and snow storage. Using ECHAM5‐simulated increases in mean annual temperature of 4‐8°C by 2099, the PWBM predicted that by 2099 later freeze‐up and earlier snowmelt will decrease seasonal snow cover by one to two months. Annual evapotranspiration and precipitation are predicted to increase 27‐40% (55‐81 mm) and 33‐42% (81‐102 mm), respectively, with the proportion of snowfall in annual precipitation decreasing on average 9‐25% (p < 0.05). The amount of snowmelt is not predicted to change significantly by 2099; however, a decreasing trend is evident from 2060 in the extreme ECHAM5 greenhouse gas scenario. Increases in effective precipitation were predicted to be great enough to sustain sufficient groundwater recharge.  相似文献   

5.
ABSTRACT: Ground water nitrate contamination and water level decline are common concern in Nebraska. Effects of artificial recharge on ground water quality and aquifer storage recovery (ASR) were studied with spreading basins constructed in the highly agricultural region of the Central Platte, Nebraska. A total of 1.10 million m3 of Platte River water recharged the aquifer through 5000 m2 of the recharge basins during 1992, 1993, and 1994. This is equivalent to the quantity needed to completely displace the ground water beneath 34 ha of the local primary aquifer with 13 m thickness and 0.25 porosity. Successful NO3-N remediation was documented beneath and downgradient of the recharge basins, where NO3-N declined from 20 to 2 mg L-1. Ground water atrazine concentrations at the site decreased from 2 to 0.2 mg L-1 due to recharge. Both NO3-N and atrazine contamination dramatically improved from concentrations exceeding the maximum contaminant levels to those of drinking water quality. The water table at the site rose rapidly in response to recharge during the early stage then leveled off as infiltration rates declined. At the end of the 1992 recharge season, the water table 12 m downgradient from the basins was elevated 1.36 m above the preproject level; however, at the end of the 1993 recharge season, any increase in the water table from artificial recharge was masked by extremely slow infiltration rates and heavy recharge from precipitation from the wettest growing season in over 100 years. The water table rose 1.37 m during the 1994 recharge season. Resultant ground water quality and ASR improvement from the artificial recharge were measured at 1000 m downgradient and 600 m upgradient from the recharge basins. Constant infiltration rates were not sustained in any of the three years, and rates always decreased with time presumably because of clogging. Scraping the basin floor increased infiltration rates. Using a pulsed recharge to create dry and wet cycles and maintaining low standing water heads in the basins appeared to reduce microbial growth, and therefore enhanced infiltration.  相似文献   

6.
Mittelstet, Aaron R., Michael D. Smolen, Garey A. Fox, and Damian C. Adams, 2011. Comparison of Aquifer Sustainability Under Groundwater Administrations in Oklahoma and Texas. Journal of the American Water Resources Association (JAWRA) 1‐8. DOI: 10.1111/j.1752‐1688.2011.00524.x Abstract: We compared two approaches to administration of groundwater law on a hydrologic model of the North Canadian River, an alluvial aquifer in northwestern Oklahoma. Oklahoma limits pumping rates to retain 50% aquifer saturated thickness after 20 years of groundwater use. The Texas Panhandle Groundwater Conservation District’s (GCD) rules limit pumping to a rate that consumes no more than 50% of saturated thickness in 50 years, with reevaluation and readjustment of permits every 5 years. Using a hydrologic model (MODFLOW), we simulated river‐groundwater interaction and aquifer dynamics under increasing levels of “development” (i.e., increasing groundwater withdrawals). Oklahoma’s approach initially would limit groundwater extraction more than the GCD approach, but the GCD approach would be more protective in the long run. Under Oklahoma rules more than half of aquifer storage would be depleted when development reaches 65%. Reevaluation of permits under the Texas Panhandle GCD approach would severely limit pumping as the 50% level is approached. Both Oklahoma and Texas Panhandle GCD approaches would deplete alluvial base flow at approximately 10% development. Results suggest periodic review of permits could protect aquifer storage and river base flow. Modeling total aquifer storage is more sensitive to recharge rate and aquifer hydraulic conductivity than to specific yield, while river leakage is most sensitive to aquifer hydraulic conductivity followed by specific yield.  相似文献   

7.
ABSTRACT: The Edwards Aquifer is one of the most studied and most prolific aquifers in the United States. The aquifer is a heavily fractured and faulted carbonate aquifer with transmissivities in excess of 100 ft2/s. The City of San Antonio relies upon the Edwards Aquifer as its sole source for water. Much work has been done on quantifying recharge to the aquifer and discharge from wells and acquiring aquifer characteristics from pumping tests, specific capacity tests, and geophysical logs. Although the aquifer has been well studied in Bexar County, much less is known about the Edwards Aquifer in Kinney County. This is partly due to the lower population within the county (approximately 3,500 people) relative to the eastern counties (Uvalde, Medina, Bexar, Comal, and Hays) and the great distance of Kinney County from high profile discharge areas such as the City of San Antonio and Comal and San Marcos Springs. Three key products resulted from this study: (1) exploratory well drilling and the largest aquifer test in the county that were conducted to evaluate the well yields within a 10,000 acre study area in which a drawdown of 2.5 ft approximately 1.2 miles away was observed while pumping at approximately 4,600 gpm; (2) a recharge estimate for the Edwards Aquifer within Kinney County of approximately 71,382 ac‐ft/yr; and (3) locating the Brackettville Groundwater Divide from an evaluation of ground water flow direction and hydrograph analysis. These results help evaluate the complex hydraulics occurring within Kinney County and aid in development of ground water modeling that will be used in managing the Edwards Aquifer.  相似文献   

8.
The traditional concept of Aquifer Storage and Recovery (ASR) has been emphasized and extensively applied for water resources conservation in arid and semi-arid regions using groundwater systems as introduced in Pyne's book titled Groundwater Recharge and Wells. This paper extends the ASR concept to an integrated level in which either treated or untreated surface water or reclaimed wastewater is stored in a suitable aquifer through a system of spreading basins, infiltration galleries and recharge wells; and part or all of the stored water is recovered through production wells, dual function recharge wells, or by streams receiving increased discharge from the surrounding recharged aquifer as needed. In this paper, the author uses the El Paso Water Utilities (EPWU) ASR system for injection of reclaimed wastewater into the Hueco Bolson aquifer as an example to address challenges and resolutions faced during the design and operation of an ASR system under a new ASR system definition. This new ASR system concept consists of four subsystems: source water, storage space-aquifer, recharge facilities and recovery facilities. Even though facing challenges, this system has successfully recharged approximately 74.7 million cubic meters (19.7 billion gallons) of reclaimed wastewater into the Hueco Bolson aquifer through 10 recharge wells in the last 18 years. This ASR system has served dual purposes: reuse of reclaimed wastewater to preserve native groundwater, and restoration of groundwater by artificial recharge of reclaimed wastewater into the Hueco Bolson aquifer.  相似文献   

9.
ABSTRACT: The chemical impact of urban runoff water on water quality beneath five retention/recharge basins was investigated as part of the US EPA's Nationwide Urban Runoff Program in Fresno, California. Soil water percolating through alluvium soils and the ground water at the top of the water table were sampled with ceramic/Teflon vacuum water extractors at depths up to 26 m during the two-year investigation. Inorganic and organic pollutants are present in the runoff water delivered to the basins. No significant contamination of percolating soil water or ground water underlying any of the five retention/recharge basins has occurred for constituents monitored in the study. The oldest basins was constructed in 1962. The concentration of selected trace elements in the ground water samples was similar to the levels reported in the regional ground water. None of the pesticides or other organic priority pollutants, for which water samples were analyzed, was s̊ detected except diazinon which was found in trace amounts (0.3 μg/L or less) in only three soil water samples. These results are important to the continued conservation of storm water and the development of a best management practice for storm-water management using retention/recharge basins in a semi-arid climate.  相似文献   

10.
From 1971-1980, studies were conducted at Fresno, California, to identify and quantify, where possible, the soil and water chemistry, subsurface geologic, hydrologic, biologic, and operational factors that determine the long term (10-year) effectiveness of basin type artificial ground water recharge through alluvial soils. This paper updates previous findings and refers to publications that describe the geology beneath the basins and regional geology that determine the transmission and storage properties for local ground water management and chemical quality enhancement. High quality irrigation water from the Kings River was used for recharge. Construction and land costs for the present expanded facility 83 ha (205.2 ac) using three parcels of land were $1,457,100. The nine-year annual mean costs for only canal water, maintenance, and operation were $110.42/ha·m ($13.62/ac·ft) based on an average recharge rate of 1338 ha·m/yr (10,848 ac·ft/yr) at 86 percent facility efficiency. The measured end of season recharge rate averaged 14.97 ± 0.24 cm/day. The 10-year mean actual recharge rate based on actual water delivered, total ponded area, and total days of recharge was 12.1 cm/day.  相似文献   

11.
Hathaway, Deborah L., 2011. Transboundary Groundwater Policy: Developing Approaches in the Western and Southwestern United States. Journal of the American Water Resources Association (JAWRA) 47(1):103‐113. DOI: 10.1111/j.1752‐1688.2010.00494.x Abstract: The western and southwestern United States include dozens of groundwater basins that cross political boundaries. Common among these shared groundwater basins is an overlay of differing legal structures and water development priorities, typically, with insufficient water supply for competing human uses, and often, a degraded ecosystem. Resolution of conflicts over ambiguously regulated groundwater has clarified transboundary groundwater policy in some interstate basins, while transboundary groundwater policy in international basins is less evolved. This paper identifies and contrasts approaches to transboundary groundwater policy, drawing from recent conflicts and cooperative efforts, including those associated with the interstate compacts on the Arkansas and Pecos Rivers; the Hueco and Lower Rio Grande Basins shared by New Mexico, Texas, and Mexico; and the Mexicali Basin in California and Mexico. Some efforts seek to fit groundwater policy into existing surface water allocation procedures; some strive for a better fit – incorporating scientific understanding of key differences between groundwater and surface water into policy frameworks. In some cases, neither policy nor precedent exists. The collective experience of these and other cases sets the stage for improved management of transboundary groundwater; as such, challenges and successes of these approaches, and those contemplated in several hypothetical model agreements, are examined.  相似文献   

12.
Mayer, Timothy D. and Seth W. Naman, 2011. Streamflow Response to Climate as Influenced by Geology and Elevation. Journal of the American Water Resources Association (JAWRA) 47(4):724‐738. DOI: 10.1111/j.1752‐1688.2011.00537.x Abstract: This study examines the regional streamflow response in 25 predominately unregulated basins to warmer winter temperatures and snowpack reductions over the last half century in the Klamath Basin of California and Oregon. Geologic controls of streamflow in the region result in two general stream types: surface‐dominated and groundwater‐dominated basins. Surface‐dominated basins were further differentiated into rain basins and snowmelt basins on the basis of elevation and timing of winter runoff. Streamflow characteristics and response to climate vary with stream type, as discussed in the study. Warmer winter temperatures and snowpack reductions have caused significantly earlier runoff peaks in both snowmelt and groundwater basins in the region. In the groundwater basins, the streamflow response to changes in snowpack is smoothed and delayed and the effects are extended longer in the summer. Our results indicate that absolute decreases in July‐September base flows are significantly greater, by an order of magnitude, in groundwater basins compared to surface‐dominated basins. The declines are important because groundwater basins sustain Upper Klamath Lake inflows and mainstem river flows during the typically dry summers of the area. Upper Klamath Lake April‐September net inflows have decreased an estimated 16% or 84 thousand acre‐feet (103.6 Mm3) since 1961, with the summer months showing proportionately more decline. These changes will exacerbate water supply problems for agriculture and natural resources in the region.  相似文献   

13.
ABSTRACT: Declining ground-water levels and spring discharges have heightened water user concerns about the sustainability of the Snake River Plain aquifer in southern Idaho. Diminished recharge from surface water irrigation and increased irrigation pumping have been depleting the aquifer at a rate of about 350,000 acre-feet/year. Previously, aquifer conditions were treated as an uncontrollable consequence of weather and development activities. With increasing competition for available water, the State appears to be progressing through a three-stage process of recharge management. The first stage is that which has occurred historically, where recharge is largely an incidental effect of surface water irrigation. The second stage is the implementation of intentional recharge with little regard to identifying or maximizing benefits. Idaho has been at this stage for the past few years. The State is entering a third stage in which recharge sites will be located and designed to meet specific water user and environmental objectives. Preliminary estimates using numerical and analytical models demonstrate that managed recharge within a few miles of the river will result in short-term increases in spring discharge. More distant recharge sites are needed to provide longer-term benefits. The primary challenge facing implementation of the managed recharge program will be the balancing of economic and environmental costs and benefits and to whom they accrue.  相似文献   

14.
ABSTRACT: The deep aquifers of the Portland Basin are used as a regional water supply by at least six municipalities in Oregon and Washington. Maximum continuous use of the aquifers in 1998 was 13 mgd and peak emergency use was 55 mgd. Continuous use of the deep aquifers at a rate of 55 mgd has been proposed and inchoate water rights have been reserved for expansion of pumping to 121 mgd. A study was completed, using a calibrated ground water flow model, to evaluate the role of induced recharge from the Columbia River in mitigating aquifer drawdown from continuous‐use and expanded pumping scenarios in the center and eastern areas of the basin. The absolute average residual was less than 3.6 feet for steady‐state model calibrations, and less than 8.0 feet for transient calibration to a 42 mgd pumping event in 1987 with 170 feet of drawdown. Continuous use of the aquifers at a rate of 55 mgd is predicted to increase drawdown to 210 feet. Expansion of pumping to 121 mgd in the center basin is predicted to cause 400 feet of drawdown. However, expansion of pumping in the east basin is predicted to result in only 220 feet of drawdown because of induced recharge from the Columbia River.  相似文献   

15.
This study presents new data‐driven, annual estimates of the division of precipitation into the recharge, quick‐flow runoff, and evapotranspiration (ET) water budget components for 2000‐2013 for the contiguous United States (CONUS). The algorithms used to produce these maps ensure water budget consistency over this broad spatial scale, with contributions from precipitation influx attributed to each component at 800 m resolution. The quick‐flow runoff estimates for the contribution to the rapidly varying portion of the hydrograph are produced using data from 1,434 gaged watersheds, and depend on precipitation, soil saturated hydraulic conductivity, and surficial geology type. Evapotranspiration estimates are produced from a regression using water balance data from 679 gaged watersheds and depend on land cover, temperature, and precipitation. The quick‐flow and ET estimates are combined to calculate recharge as the remainder of precipitation. The ET and recharge estimates are checked against independent field data, and the results show good agreement. Comparisons of recharge estimates with groundwater extraction data show that in 15% of the country, groundwater is being extracted at rates higher than the local recharge. These maps of the internally consistent water budget components of recharge, quick‐flow runoff, and ET, being derived from and tested against data, are expected to provide reliable first‐order estimates of these quantities across the CONUS, even where field measurements are sparse.  相似文献   

16.
We evaluated long‐term trends and predictors of groundwater levels by month from two well‐studied northern New England forested headwater glacial aquifers: Sleepers River, Vermont, 44 wells, 1992‐2013; and Hubbard Brook, New Hampshire, 15 wells, 1979‐2004. Based on Kendall Tau tests with Sen slope determination, a surprising number of well‐month combinations had negative trends (decreasing water levels) over the respective periods. Sleepers River had slightly more positive than negative trends overall, but among the significant trends (p < 0.1), negative trends dominated 67 to 40. At Hubbard Brook, negative trends outnumbered positive trends by a nearly 2:1 margin and all seven of the significant trends were negative. The negative trends occurred despite generally increasing trends in monthly and annual precipitation. This counterintuitive pattern may be a result of increased precipitation intensity causing higher runoff at the expense of recharge, such that evapotranspiration demand draws down groundwater storage. We evaluated predictors of month‐end water levels by multiple regression of 18 variables related to climate, streamflow, snowpack, and prior month water level. Monthly flow and prior month water level were the two strongest predictors for most months at both sites. The predictive power and ready availability of streamflow data can be exploited as a proxy to extend limited groundwater level records over longer time periods.  相似文献   

17.
Woltemade, Christopher J., 2010. Impact of Residential Soil Disturbance on Infiltration Rate and Stormwater Runoff. Journal of the American Water Resources Association (JAWRA) 46(4): 700-711. DOI: 10.1111/j.1752-1688.2010.00442.x Abstract: Soil disturbances such as excavation and compaction in residential developments affect lawn infiltration rates and stormwater runoff. These effects were investigated via measuring saturated infiltration rates at 108 residential sites and 18 agricultural sites near Shippensburg, south-central Pennsylvania, using a double-ring infiltrometer. Residential sites included four neighborhoods distributed across three soil series classified as hydrologic soil group (HSG) B. Additional parcel data included date of house construction, percentage impervious area, lawn condition, and woody vegetation condition. Measured infiltration rates ranged from 0 to >40 cm/hour. Analysis of variance indicated significantly different mean infiltration rates (p < 0.001) for lots constructed pre-2000 (9.0 cm/hour) and those constructed post-2000 (2.8 cm/hour). Test results were used to determine a “field-tested” HSG for each site, representing disturbed soil conditions. Stormwater runoff was estimated from residential lots for a range of 24-hour design storms using the TR-55 model and several alternative methods of determining curve numbers, including five different representations of soil conditions. Curve numbers and stormwater runoff were substantially higher when based on field-tested HSGs for lots constructed post-2000 compared with lots built pre-2000 and when based on the HSG for undisturbed soils, documenting the magnitude of possible error in stormwater runoff models that neglect soil disturbance.  相似文献   

18.
Damodaram, Chandana, Marcio H. Giacomoni, C. Prakash Khedun, Hillary Holmes, Andrea Ryan, William Saour, and Emily M. Zechman, 2010. Simulation of Combined Best Management Practices and Low Impact Development for Sustainable Stormwater Management. Journal of the American Water Resources Association (JAWRA) 1-12. DOI: 10.1111/j.1752-1688.2010.00462.x Abstract: Urbanization causes increased stormwater runoff volumes, leading to erosion, flooding, and the degradation of instream ecosystem health. Although Best Management Practices (BMPs) are used widely as a means for controlling flood runoff events, Low Impact Development (LID) options have been proposed as an alternative approach to better mimic the natural flow regime by using decentralized designs to control stormwater runoff at the source, rather than at a centralized location in the watershed. For highly urbanized areas, LID practices such as rainwater harvesting, green roofs, and permeable pavements can be used to retrofit existing infrastructure and reduce runoff volumes and peak flows. This paper describes a modeling approach to incorporate these LID practices in an existing hydrologic model to estimate the effects of LID choices on streamflow. The modeling approach has been applied to a watershed located on the campus of Texas A&M University in College Station, Texas, to predict the stormwater reductions resulting from retrofitting existing infrastructure with LID technologies. Results demonstrate that use of these LID practices yield significant stormwater control for small events and less control for flood events. A combined BMP-LID approach is tested for runoff control for both flood and frequent rainfall events.  相似文献   

19.
Stormwater wetlands are created to retain water from storms and snow melt to reduce sediment, nutrient, and contaminant pollution of natural waterways in metropolitan areas. However, they are often a source of attractive habitat to wetland-associated wildlife. In this study of 12 stormwater wetlands and a larger, older reference site, elevated concentrations of zinc and copper were found in sediments and carcasses of 8-day-old red-winged blackbird (Agelaius phoeniceus) nestlings inhabiting stormwater sites. Although nesting success in the stormwater wetlands was comparable to national averages, sediment zinc concentrations correlated with clutch size, hatching success, fledgling success, and Mayfield nest success, suggesting that the nestlings may have been stressed and impaired by elevated zinc. This stress may have been direct on the nestlings or indirect through effects on the availability of food organisms.Published online  相似文献   

20.
ABSTRACT: One of the most common methods of artificial recharge to the ground water is from basins. In this paper, seven analytical solutions that describe artificial recharge from basins are presented. Most of these solutions are derived by directly solving the general partial differential equation for ground water flow. The solutions differ in that they use different boundary conditions, basin shapes, and consider the nonlinearity of the artificial recharge problem differently. Use of each analytical solution is demonstrated in this paper by application to an example problem. A comparison of each analytical solution presented in this paper was made to give suggestions on their use, their ease of implementation, and their relative agreement. Although no attempt is made in the paper to conclude which analytical solution is best for all problems, some general conclusions can be stated on the applicability of the various analytical solutions. Of the analytical solutions presented in this paper, Glovers and Hantush's solutions for rectangular recharge basins are highly recommended. Baumanns solution for a circular basin also gave fairly reliable results and is very easy to evaluate numerically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号