首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: The implementation of various bioretention systems was analyzed, including rain gardens, vegetated swales, trenches, and infiltration basins in the St. Francis subdivision, Cross Plains, Wisconsin. Through the examination of archival data and interviews with key participants, it was found that although regulatory and political pressures encouraged the inclusion of bioretention, current standards for storm water management prevailed. The developers had to meet both existing requirements and anticipated rules requiring infiltration. As a result, bioretention systems simply supplemented, rather than replaced, traditional storm water practices. The confusion surrounding dual standards contributed to substantial delays in the negotiations among relevant stakeholders in the watershed. It is concluded that the St. Francis subdivision serves as both a cautionary tale and a bioretention success story. As a caution, this situation demonstrates the need for careful review and refinement of existing storm water ordinances to incorporate water quality improvement technologies, such as bioretention. The demonstrated success of the St. Francis development, however, is that it became a positive prototype for best management storm water practices elsewhere in the region. In addition, the water quality monitoring data from the site has contributed to development of a new county ordinance, the first in Wisconsin to address both quantity and quality of storm water runoff.  相似文献   

2.
Abstract: Relationships between discharge, land use, and nitrogen sources and sinks were developed using 5 years of synoptic sampling along a 300 km reach of the Rio Grande in central New Mexico. Average river discharge was higher during 2001 and 2005 “wet years” (15 m3/s) than during the drought years of 2002‐04 “dry years” (8.9 m3/s), but there were no differences in nitrogen loading from wastewater treatment plants (WWTPs) which were the largest and most consistent source of nitrogen to the river (1,330 kg/day). Average total dissolved nitrogen (TDN) concentrations remained elevated for 180 km downstream of the Albuquerque WWTP averaging 1.2 mg/l in wet years and 0.52 mg/l in dry years. Possible explanations for the constant elevated TDN concentrations downstream of the major point source include reduced nitrogen retention capacity, minimal contact with riparian or channel vegetation, large suspended sediment loads, and low algal biomass. Somewhat surprisingly, agricultural return flows had lower average nitrogen concentrations than river water originally diverted to agriculture in both wet (0.81 mg/l) and dry years (0.19 mg/l), indicating that the agricultural system is a sink for nitrogen. Lower average nitrogen concentrations in the river during the dry years can be explained by the input of agricultural returns which comprise the majority of river flow in dry years.  相似文献   

3.
House-Peters, Lily, Bethany Pratt, and Heejun Chang, 2010. Effects of Urban Spatial Structure, Sociodemographics, and Climate on Residential Water Consumption in Hillsboro, Oregon. Journal of the American Water Resources Association (JAWRA) 46(3):461-472. DOI: 10.1111/j.1752-1688.2009.00415.x Abstract: In the Portland metropolitan area, suburban growth in cities such as Hillsboro is projected to increase as people seek affordable housing near a burgeoning metropolis. The most significant determinants for increases in water demand are population growth, climate change, and the type of urban development that occurs. This study analyzes the spatial patterns of single family residential (SFR) water consumption in Hillsboro, Oregon, at the census block scale. The following research questions are addressed: (1) What are the significant determinants of SFR water consumption in Hillsboro, Oregon? (2) Is SFR water demand sensitive to drought conditions and interannual climate variation? (3) To what magnitude do particular census blocks react to drought conditions and interannual climate variation? Using ordinary least squares multiple regression and spatial regression methods, we found that base use, representing indoor water use, is dependent on household size and that seasonal use, representing external water use is dependent on both education level and the size of the property’s outdoor space. Spatial analysis techniques determined that although the water demand of the study area as a whole is not sensitive to drought conditions, certain individual census blocks do respond with a higher magnitude of water use. The most climate-sensitive census blocks tend to contain newer and larger homes, and have higher property values and more affluent and well-educated residents.  相似文献   

4.
van de Meene, Susan J. and Rebekah R. Brown, 2009. Delving into the “Institutional Black Box”: Revealing the Attributes of Sustainable Urban Water Management Regimes. Journal of the American Water Resources Association (JAWRA) 45(6):1448‐1464. Abstract: This paper is based on the proposition that the transition to sustainable urban water management has been hampered by the lack of insight into attributes of a sustainable urban water regime. Significant progress has been made in developing technical solutions to advance urban water practice, however it is the co‐evolution of the socio‐institutional and technical systems that enable a system‐wide transition. A systematic analysis of 81 empirical studies across a range of practice areas was undertaken to construct a schema of the sustainable urban water regime attributes. Attributes were identified and analyzed using a framework of nested management regime spheres: the administrative and regulatory system, inter‐organizational, intra‐organizational, and human resources spheres. The regime is likely to involve significant stakeholder involvement, collaborative inter‐organizational relationships, flexible and adaptive organizational cultures, and motivated and engaging employees. Comparison of the constructed sustainable and traditional regime attributes reveals that to realize sustainable urban water management in practice a substantial shift in governance is required. This difference emphasizes the critical need for explicitly supported strategies targeted at developing each management regime sphere to further enable change toward sustainable urban water management.  相似文献   

5.
ABSTRACT: Controlling agricultural nonpoint source pollution from livestock grazing is a necessary step to improving the water quality of the nation's streams. The goal of enhanced stream water quality will most likely result from the implementation of an integrated system of best management practices (BMPs) linked with stream hydraulic and geomorphic characteristics. However, a grazing BMP system is often developed with the concept that BMPs will function independently from interactions among controls, climatic regions, and the multifaceted functions exhibited by streams. This paper examines the peer reviewed literature pertaining to grazing BMPs commonly implemented in the southern humid region of the United States to ascertain effects of BMPs on stream water quality. Results indicate that the most extensive BMP research efforts occurred in the western and midwestern U.S. While numerous studies documented the negative impacts of grazing on stream health, few actually examined the success of BMPs for mitigating these effects. Even fewer studies provided the necessary information to enable the reader to determine the efficacy of a comprehensive systems approach integrating multiple BMPs with pre‐BMP and post‐BMP geomorphic conditions. Perhaps grazing BMP research should begin incorporating geomorphic information about the streams with the goal of achieving sustainable stream water quality.  相似文献   

6.
Rosenquist, Shawn E., W. Cully Hession, Matthew J. Eick, and David H. Vaughan, 2011. Field Application of a Renewable Constructed Wetland Substrate for Phosphorus Removal. Journal of the American Water Resources Association (JAWRA) 47(4):800‐812. DOI: 10.1111/j.1752‐1688.2011.00557.x Abstract: Phosphorus (P) is typically the best target to prevent eutrophication in freshwater, a biological process associated with water quality degradation. Constructed wetlands (CW) and other practices that include P removal by sorption processes in substrates can provide economical treatment of stormwater, but have limitations (e.g., large land requirements, loss of removal over time, lack of P recovery). Over the last three years, a multi‐study research program addressed these limitations with a new P management concept. This concept minimizes CW size with a rejuvenation cycle (or rejuvenation) that renews P‐sorption capacity in the CW substrates and enables P recovery for productive use. This study, conducted in Blacksburg, Virginia (July‐September 2009), tested the efficacy of rejuvenation in the field. Methods included replicate cells of two sand substrates monitored for P removal during prerejuvenation and postrejuvenation filtration runs. One substrate contained cast iron filings as a repository for sorption capacity. Results support the following conclusions: (1) P removal is likely dependent on multiple factors including influent P concentration, previous substrate/solution equilibrium, pH, and time; (2) rejuvenation is capable of releasing P adsorbed during stormwater filtration; (3) inclusion of cast iron in substrate promotes additional P removal and enables further removal after rejuvenation; but (4) inclusion of cast iron may limit release of P during rejuvenation.  相似文献   

7.
Abstract: A simple spreadsheet model was used to evaluate potential water quality benefits of high‐density development. The question was whether the reduced land consumed by higher density development (vs. standard suburban developments) would offset the worse water quality generated by a greater amount of impervious surface in the smaller area. Total runoff volume and per acre loadings of total phosphorous, total nitrogen, and total suspended solids increased with density as expected, but per capita loadings and runoff decreased markedly with density. For a constant or given population, then, higher density can result in dramatically lower total loadings than more diffuse suburban densities. The model showed that a simple doubling of standard suburban densities [to 8 dwelling units per acre (DUA) from about 3 to 5 DUA] in most cases could do more to reduce contaminant loadings associated with urban growth than many traditional stormwater best management practices (BMPs), and that higher densities such as those associated with transit‐oriented development could outperform almost all traditional BMPs, in terms of reduced loadings per a constant population. Because higher density is associated with vibrant urban life, building a better city may be the best BMP to mitigate the water quality damage that will accompany the massive urban growth expected for the next several decades.  相似文献   

8.
Schiff, Kenneth C. and Liesl L. Tiefenthaler, 2011. Seasonal Flushing of Pollutant Concentrations and Loads in Urban Stormwater. Journal of the American Water Resources Association (JAWRA) 47(1):136‐142. DOI: 10.1111/j.1752‐1688.2010.00497.x Abstract: Despite broad observations of first flush within storms, the scientific understanding of seasonal flushing remains incomplete. Seasonal flushing occurs when initial storms of the season have greater concentrations or loads than storms later in the season. The goal of this study was to census stormwater concentrations and loads from an arid, urban watershed to quantify seasonal flushing. Samples were collected every 15 min during the 1997‐1998 wet season from the Santa Ana River and analyzed for total suspended solids. Initial storms of the season generated event mean concentrations 3‐10 times the event mean concentration of storms later in the season. Cumulative flow‐weighted mean concentrations were calculated as the season progressed. Early season storms discharged only 6% of the annual volume, but influenced flow‐weighted mean concentrations well past the midpoint of the wet season. Mass‐based estimates also indicated a disproportionate load in the early portion of the year; over 52% of the annual load was discharged in the first 30% of the annual volume from the highly urbanized lower watershed. Other stormwater pollutants, including six trace metals (Cd, Cr, Cu, Pb, Ni, Zn), were highly correlated with total suspended solids and also exhibited a significant seasonal flush.  相似文献   

9.
While storm water detention basins are widely used for controlling increases in peak discharges that result from urbanization, recent research has indicated that under certain circumstances detention storage can actually cause increases in peak discharge rates. Because of the potential for detrimental downstream effects, storm water management policies often require downstream effects to be evaluated. Such evaluation requires the design engineer to collect additional topographic and land use data and make costly hydrologic analyses. Thus, a method, which is easy to apply and which would indicate whether or not a detailed hydrologic analysis of downstream impacts is necessary, should decrease the average cost of storm water management designs. A planning method that does not require either a large data base or a computer is presented. The time co-ordinates of runoff hydrographs are estimated using the time-of-concentration and the SCS runoff curve number; the discharge coordinates are estimated using a simple peak discharge equation. While the planning method does not require a detailed design of the detention basin, it does provide a reasonably accurate procedure for evaluating whether or not the installation of a detention basin will cause adverse downstream flooding.  相似文献   

10.
ABSTRACT: This paper demonstrates how satellite image data [e.g., from Landsat 5 Thematic Mapper (TM)], in conjunction with an urban growth model and simple runoff calculations, can be used to estimate future surface runoff and, by implication, water quality within a watershed. To illustrate the method, predictions of land use change and surface runoff are shown for Spring Creek Watershed, a medium sized urbanizing watershed in Central Pennsylvania. Land cover classifications for this watershed were created from images for summertime 1986 and 1996 and subsequently used as input to the Clarke urban growth model, called SLEUTH, to predict land use changes to the year 2025. Simulations with this model show a progressive growth in the percentage of urban pixels and in impervious surface area in the watershed but also an increase in woodland, primarily in previously clear‐cut areas. Given that woodland area will continue to increase in area, surface runoff into Spring Creek is predicted to remain only slightly above present level. However, should the woodland amount fail to increase, surface runoff is then predicted to increase more significantly during the next 25 years. Finally, the concept of urban sprawl is addressed within the context of predicted increases in urbanization by relating the implied increase in impervious surface area to population density within the watershed.  相似文献   

11.
ABSTRACT: Many studies can be found in the literature pertaining to the effects of urbanization on surface runoff in small watersheds and the hydrologic response of undeveloped watersheds. However, an extensive literature review yielded few published studies that illustrate differing hydrologic responses from multiple source areas within a watershed. The concepts discussed here are not new, but the methods used provide a unique, basic procedure for investigating stormwater hydrology in topographically diverse basins. Six storm hydrographs from three small central Pennsylvania watersheds were analyzed for this paper; five are presented. Two important conclusions are deduced from this investigation. First, in all cases we found two distinct peaks in stream discharge, each representing different contributing areas to direct discharge with greatly differing curve numbers and lags representative of urban and rural source regions. Second, the direct discharge represents only a small fraction of the total drainage area with the urban peak becoming increasingly important with respect to the rural peak with the amount of urbanization and as the magnitude of the rain event decreases.  相似文献   

12.
The effects of increases in effective impervious area (EIA) and the implementation of water quality protection designed detention pond best management practices (BMPs) on storm runoff and stormwater quality were assessed in Gwinnett County, Georgia, for the period 2001‐2008. Trends among eight small watersheds were compared, using a time trend study design. Significant trends were detected in three storm hydrologic metrics and in five water quality constituents that were adjusted for variability in storm characteristics and climate. Trends in EIA ranged from 0.10 to 1.35, and changes in EIA treated by BMPs ranged from 0.19 to 1.32; both expressed in units of percentage of drainage area per year. Trend relations indicated that for every 1% increase in watershed EIA, about 2.6, 1.1, and 1.5% increases in EIA treated by BMPs would be required to counteract the effects of EIA added to the watersheds on peak streamflow, stormwater yield, and storm streamflow runoff, respectively. Relations between trends in EIA, BMP implementation, and water quality were counterintuitive. This may be the result of (1) changes in constituent inputs in the watersheds, especially downstream of areas treated by BMPs; (2) BMPs may have increased the duration of stormflow that results in downstream channel erosion; and/or (3) spurious relationships between increases in EIA, BMP implementation, and constituent inputs with development rates.  相似文献   

13.
Abstract: Runoff from parking lots during summer storms injects surges of hot water into receiving water bodies. We present temperature data collected near urban storm sewer outfalls in Blacksburg, Virginia, using arrays of sensors in a stream and a stormwater pond. Surges occurred roughly a dozen times per month, ranging up to 8.1°C with average duration 2 h in the stream and up to 11.2°C with average duration 7 h in the pond. Surges were larger in the pond due to a larger contributing watershed, no dilution by upstream water, and cool background temperatures near the outfall. Surges began abruptly, warming at rates averaging 0.2°C/min for periods of 5‐20 min. Surges dissipated as they propagated into the water bodies, travelling further in the stream (>19 m) than the pond (~10 m) consistent with greater advection in the stream. Surges were largest and most frequent in the afternoon but occurred at all times of day and night. Stream surges exhibited two phases: an early high‐temperature low‐volume input from the storm sewer and a later low‐temperature high‐volume input from upstream. Surges at the pond did not exhibit two phases, consistent with inputs only from storm sewers. Surges are likely common in urban areas, and may cumulatively have consequences for aquatic organisms, biogeochemical process rates, and even human health. Such effects may be compounded by urban heat islands and climate change, so prevention or mitigation should be considered.  相似文献   

14.
ABSTRACT: A modeling framework was developed for managing copper runoff in urban watersheds that incorporates water quality characterization, watershed land use areas, hydrologic data, a statistical simulator, a biotic ligand binding model to characterize acute toxicity, and a statistical method for setting a watershed specific copper loading. The modeling framework is driven by export coefficients derived from water quality parameters and hydrologic inputs measured in an urban watershed's storm water system. This framework was applied to a watershed containing a copper roof built in 1992. A series of simulations was run to predict the change in receiving stream water chemistry caused by roof aging and to determine the maximum copper loading (at the 99 percent confidence level) a watershed could accept without causing acute toxicity in the receiving stream. Forecasting the amount of copper flux responsible for exceeding the assimilation capacity of a watershed can be directly related to maximum copper loadings responsible for causing toxicity in the receiving streams. The framework developed in this study can be used to evaluate copper utilization in urban watersheds.  相似文献   

15.
ABSTRACT: For many years, a commonly used strategy for source water protection in Taiwan has been setting up arbitrary, fixed‐width buffer zones near sensitive waters, such as water‐supply reservoirs, and prohibiting any development in their watersheds. However, such regulations are now often viewed as infringing by the government on landowners' property rights, a situation that has led to citizen protests. This paper describes a proposed strategy that is water‐quality based and uses a quantitative zoning approach. A reservoir's watershed is divided into several zones beginning from the normal water line to the divide. Different levels of best management practices (BMPs) are required for controlling runoff pollution in different zones. The layout of the management zones is based on a number of factors such as reservoir classification, water quality conditions, and physical characteristics of the watershed. The goal of promoting such an approach is to try to balance the needs of watershed development and water quality protection. A case study using the Tapu Reservoir Watershed in Northern Taiwan as an example for illustrating the proposed zoning approach is presented.  相似文献   

16.
Wadzuk, Bridget M., Matthew Rea, Gregg Woodruff, Kelly Flynn, and Robert G. Traver, 2010. Water-Quality Performance of a Constructed Stormwater Wetland for All Flow Conditions. Journal of the American Water Resources Association (JAWRA) 46(2):385-394. DOI: 10.1111/j.1752-1688.2009.00408.x Abstract: Results from a multiyear study demonstrate that a constructed stormwater wetland (CSW) improves urban stormwater runoff quality mitigating downstream impacts. Best management practices, such as CSWs, can comprehensively treat the various scales of stormwater runoff issues. Discrete sample analysis was used to investigate the CSW effect for storm events and base-flow periods on water-quality parameters [i.e., total suspended solids, total dissolved solids, total nitrogen, phosphorous (total and reactive), chloride, heavy metals (zinc, lead, and copper), and Escherichia coli]. The primary finding was that stormwater sediment load was removed through the CSW for all flow conditions during all seasons. The mechanisms responsible for the removal of suspended solids, including slower flow velocity, longer retention times, and vegetative contact, also reduced the mass of nutrients discharged downstream throughout the year. Exceedance probabilities were used to evaluate the expected pollutant reductions of nutrients and to incorporate the effect of natural flow variation on quality. Other findings included the observation that there was no significant difference in the performance of the CSW over two-year-long periods four years apart, indicating that a CSW is effective for an extended period.  相似文献   

17.
O’Grady, Dennis, 2011. Sociopolitical Conditions for Successful Water Quality Trading in the South Nation River Watershed, Ontario, Canada. Journal of the American Water Resources Association (JAWRA) 47(1):39‐51. DOI: 10.1111/j.1752‐1688.2010.00511.x Abstract: The South Nation River watershed has a regulated water quality trading program. Legally, wastewater dischargers must not discharge any increased loading of phosphorus (P) into receiving waters. New wastewater systems are now choosing trading instead of traditional P removal technology, and point source dischargers are buying P credits from rural landowners, primarily farmers. These credits are generated by constructing nonpoint source pollution control measures. Mathematical formulae are used to calculate the credits of P removed by each measure. A successful trading program requires several conditions, including community agreement, legislative backing, credit and cost certainty, simplified delivery and verification, written instruments, and legal liability protection. South Nation Conservation, a community‐based watershed organization, is the broker handling the transactions for these P credits. The program is run by a multi‐stakeholder committee, and all project field visits are done by farmers and not paid professionals. An independent evaluation showed higher opinions for the broker and regulatory agency, and most farmers were willing to, or had already, recommended the program to other farmers.  相似文献   

18.
Abstract: As nearly all of Texas’ rural lands are privately owned, landowner associations for the management of white‐tailed deer and ground‐water have become increasingly popular. Deer are a common‐pool resource with transboundary characteristics, requiring landowner cooperation for effective management. Ground‐water reserves are economically important to landowners, but are governed by the “rule of capture” whereby property rights are not defined. One ground‐water association and four wildlife management associations (WMAs) were surveyed to characterize their member demographics, land use priorities, attitudes, and social capital. Members of the ground‐water cooperative were part of a much larger, more heterogeneous, and more recently formed group than members of WMAs. They also placed greater importance on utilitarian aspects of their properties, as opposed to land stewardship for conservation as practiced by members of WMAs. If ground‐water association members could be more locally organized with more frequent meetings, social capital and information sharing may be enhanced and lead to land stewardship practices for improved hydrologic functions and sustained ground‐water supply. This, coupled with pumping rules assigned by the local ground‐water district, could yield an effective strategy that is ecologically and hydrologicaly sound, and that allows rural provision of water supply to urban consumers.  相似文献   

19.
ABSTRACT: Storm water management is a concept being applied in many urban areas to deal with the increasing problems of storm runoff control and flood damage prevention. This paper introduces the concept and describes the recently completed storm water management program in Columbus, Georgia. Columbus has spent five years and over $200,000 in the development of their problem which includes several basic elements: soils inventory and analysis, hydrologic data collection, sediment and erosion control ordinance, storm water management handbook, urban flood simulation model, interdepartment coordination study, drainage problem categorization study, and a pilot basin study. The results of the pilot basin study are presented including example output from the urban simulation model. The computer output illustrates both the hydrologic-hydraulic and economic capabilities of the model.  相似文献   

20.
ABSTRACT: Abundant use of copper based products has resulted in increased violation of copper water quality criteria in runoff from urban storm water systems. The objectives of this work were to understand the mobility and toxicity of copper in an urban watershed and to apportion the amount of copper entering the freshwater receiving stream from different urban land covers using a mass balance approach. Sixteen rainfall events collected from the University of Connecticut study watershed between August 1998 and September 2000 were analyzed to assess copper flux in an urban storm water system. Mean flow weighted dissolved copper concentrations observed in the study for copper based architectural material runoff, pervious area runoff, impervious area runoff, and in the receiving stream were 1210 ± 840, 9 ± 3, 8 ± 2, and 14 ± 7 μg/L, respectively. Mean dissolved copper concentrations in the receiving stream exceeded Connecticut's water quality criteria. Despite exceeding the dissolved concentration based criteria, cupric ion concentrations at the system outlet remained below 0.05 μg/L for all storms analyzed, and no acute toxicity (using Daphnia pulex as the test organism) was measured in samples collected from the stream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号