首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stomatal closure and biosynthesis of antioxidant molecules are two fundamental components of the physiological machinery that lead to stress adaptation during plant's exposure to salinity. Since high stomatal resistance may also contribute in counteracting O3 damages, we hypothesized that soil salinization may increase O3 tolerance of crops. An experiment was performed with alfalfa grown in filtered (AOT40 = 0 in both years) and non-filtered (AOT40 = 9.7 in 2005 and 6.9 ppm h in 2006) open-top chambers. Alfalfa yield was reduced by O3 (−33%) only in plants irrigated with salt-free water, while the increasing levels of soil salinity until 1.06 dS m−1 reduced both stomatal conductance and plant O3 uptake, thus linearly reducing O3 effects on yield. Therefore a reliable flux-based model for assessing the effects of O3 on crop yield should take into account soil salinity.  相似文献   

2.
Ozone and atmospheric nitrogen are co-occurring pollutants with adverse effects on natural grassland vegetation. Plants of the rhizomatous sedge Carex arenaria were exposed to four ozone regimes representing increasing background concentrations (background-peak): 10-30, 35-55, 60-80 and 85-105 ppb ozone at two nitrogen levels: 12 and 100 kg N ha−1 yr−1. Ozone increased the number and proportion of senesced leaves, but not overall leaf number. There was a clear nitrogen × ozone interaction with high nitrogen reducing proportional senescence in each treatment and increasing the ozone dose (AOT40) at which enhanced senescence occurred. Ozone reduced total biomass due to significant effects on root biomass. There were no interactive effects on shoot:root ratio. Rhizome tissue N content was increased by both nitrogen and ozone. Results suggest that nitrogen mediates above-ground impacts of ozone but not impacts on below-ground resource translocation. This may lead to complex interactive effects between the two pollutants on natural vegetation.  相似文献   

3.
Tibouchina pulchra saplings were exposed to carbon filtered air (CF), ambient non-filtered air (NF) and ambient non-filtered air+40 ppb ozone (NF+O3) 8 h per day during two months. The AOT40 values at the end of the experiment were 48, 910 and 12,895 ppb h(-1), respectively, for the three treatments. After 25 days of exposure (AOT40=3871 ppb h(-1)), interveinal red stippling appeared in plants in the NF+O3 chamber. In the NF chamber, symptoms were observed only after 60 days of exposure (AOT40=910 ppb h(-1)). After 60 days, injured leaves per plant corresponded to 19% in NF+O3 and 1% in the NF treatment; and the average leaf area injured was 7% within the NF+O3 and 0.2% within the NF treatment. The extent of leaf area injured (leaf injury index) was mostly explained by the accumulated exposure of ozone (r2=0.89; p<0.05).  相似文献   

4.
Crop-response data from over 700 published papers and conference proceedings have been analysed with the aim of establishing ozone dose-response functions for a wide range of European agricultural and horticultural crops. Data that met rigorous selection criteria (e.g. field-based, ozone concentrations within European range, full season exposure period) were used to derive AOT40-yield response functions for 19 crops by first converting the published ozone concentration data into AOT40 (AOT40 is the hourly mean ozone concentration accumulated over a threshold ozone concentration of 40 ppb during daylight hours, units ppm h). For any individual crop, there were no significant differences in the linear response functions derived for experiments conducted in the USA or Europe, or for individual cultivars. Three statistically independent groups were identified: ozone sensitive crops (wheat, water melon, pulses, cotton, turnip, tomato, onion, soybean and lettuce); moderately sensitive crops (sugar beet, potato, oilseed rape, tobacco, rice, maize, grape and broccoli) and ozone resistant (barley and fruit represented by plum and strawberry). Critical levels of a 3 month AOT40 of 3 ppm h and a 3.5 month AOT40 of 6 ppm h were derived from the functions for wheat and tomato, respectively.  相似文献   

5.
In this paper ozone measurements carried out at six alpine and prealpine sites, located in the Italian region of Central Alps are shown. The stations are placed at altitudes between 800 and 1900 m a.s.l., far away from local sources of pollution. Ozone concentrations appear to be quite uniform, with summer mean values varying from 40 to 47 ppb and winter ones from 19 to 35 ppb. The number of hours exceeding the 75 and 100 ppb WHO thresholds and the AOT40 (Average Over Threshold 40 ppb of ozone) are evaluated for the growing season. The temporal variability of weekly ozone cycle at alpine stations provides useful informations to assess an emission control strategy.  相似文献   

6.
7.
Anthocyanins and tannins in ozone-fumigated guava trees   总被引:1,自引:0,他引:1  
Psidium guajava “Paluma”, a tropical tree species, is known to be an efficient ozone indicator in tropical countries. When exposed to ozone, this species displays a characteristic leaf injury identified by inter-veinal red stippling on adaxial leaf surfaces. Following 30 days of three ozone treatments consisting of carbon filtered air (CF – AOT40 = 17 ppb h), ambient non-filtered air (NF – AOT40 = 542 ppb h) and ambient non-filtered air + 40 ppb ozone (NF + O3 – AOT40 = 7802 ppb h), the amounts of residual anthocyanins and tannins present in 10 P. guajava (“Paluma”) saplings were quantified. Higher amounts of anthocyanins were found in the NF + O3 treatment (1.6%) when compared to the CF (0.97%) and NF (1.30%) (p < 0.05), and of total tannins in the NF + O3 treatment (0.16%) compared to the CF (0.14%). Condensed tannins showed the same tendency as enhanced amounts. Regression analyses using amounts of tannins and anthocyanins, AOT40 and the leaf injury index (LII), showed a correlation between the leaf injury index and quantities of anthocyanins and total tannins. These results are in accordance with the association between the incidence of red-stippled leaves and ozone polluted environments.  相似文献   

8.
Weekly-fortnightly ozone (O3) concentrations measured by passive sampling at 81 forest monitoring plots in France, Italy, Spain and Switzerland over the period 2000-2002 were used to estimate the cumulative exposure index AOT40. The estimation method is based on a deterministic model which describes the O3 daily profile as a function of relative altitude (the difference between the altitude of the site and the lowest altitude within a 5 km radius) and the time of the day. Estimated AOT40 values (AOT40(e)) were evaluated against co-located automatic measurement stations and with 14 independent automatic stations located throughout Italy whose weekly mean O3 values were used to simulate passive samplers. AOT40 can be predicted by modelling passive sampling data (R2: 0.90; P<0.0001, SE of estimates: 3271 ppb h), although considerable deviations can occur for individual sites. Estimated AOT40 shows a distinct, significant latitudinal and altitudinal gradient. Taking the 3-year average as a whole, exceedance of critical level of 5000 ppb h occurs at 77-100% of the monitored sites, respectively.  相似文献   

9.
The work outlined in this paper had three objectives. The first was to explore the effects of ozone pollution on grain yield and quality of commercially-grown winter wheat cultivars. The second was to derive a stomatal ozone flux model for winter wheat and compare with those already developed for spring wheat. The third was to evaluate exposure- versus flux–response approaches from a risk assessment perspective, and explore the implications of genetic variation in modelled ozone flux.Fifteen winter wheat cultivars were grown in open-top chambers where they were exposed to four levels of ozone. During fumigation, stomatal conductance measurements were made over the lifespan of the flag leaf across a range of environmental conditions. Although significant intra-specific variation in ‘ozone sensitivity’ (in terms of impacts on yield) was identified, yield was inversely related (R2 = 0.63, P < 0.001) to the accumulated hourly averaged ozone exposure above 40 ppb during daylight hours (AOT40) across the dataset. The adverse effect of ozone on yield was principally due to a decline in seed weight. Algorithms defining the influence of environmental variables on stomatal uptake were subtly different from those currently in use, based on data for spring wheat, to map ozone impacts on pan-European cereal yield. Considerable intra-specific variation in phenological effects was identified. This meant that an ‘average behaviour’ had to be derived which reduced the predictive capability of the derived stomatal flux model (R2 = 0.49, P < 0.001, 15 cultivars included). Indeed, given the intra-specific variability encountered, the flux model that was derived from the full dataset was no better in predicting O3 impacts on wheat yield than was the AOT40 index. The study highlights the need to use ozone risk assessment tools appropriate to specific vegetation types when modelling and mapping ozone impacts at the regional level.  相似文献   

10.
The objectives of this study were to examine the foliar sensitivity to ozone exposure of 12 tree, shrub, and herbaceous species native to southern Switzerland and determine the seasonal cumulative ozone exposures required to induce visible foliar injury. The study was conducted from the beginning of May through the end of August during 2000 and 2001 using an open-top chamber research facility located within the Lattecaldo Cantonal Forest Nursery in Canton Ticino, southern Switzerland (600 m asl). Plants were examined daily and dates of initial foliar injury were recorded in order to determine the cumulative AOT40 ppb h ozone exposure required to cause visible foliar injury. Plant responses to ozone varied significantly among species; 11 species exhibited visible symptoms typical of exposures to ambient ozone. The symptomatic species (from most to least sensitive) were Populus nigra, Viburnum lantana, Salix alba, Crataegus monogyna, Viburnum opulus, Tilia platyphyllos, Cornus alba, Prunus avium, Fraxinus excelsior, Ribes alpinum, and Tilia cordata; Clematis spp. did not show foliar symptoms. Of the 11 symptomatic species, five showed initial injury below the critical level AOT40 10 ppmh O3 in the 2001 season.  相似文献   

11.
The robustness problem is considered for mathematical indices that describe the adverse effects of vegetation exposure to ozone. It is shown that some of them may demonstrate infinitely high sensitivity of the exposure estimate to small variations of ozone concentrations or internal parameters of specific functional. In particular, for the accumulated exposure over a threshold of 40 ppb (AOT40) index such conditions are not extraordinary, but rather describe quite often situations in remote areas in Northern Europe. Taking into account inevitable uncertainties in both calculated and observed ozone concentrations, a high sensitivity of ozone impact indices results in an instability of the exposure estimates and creates problems in their use. Theoretical consideration of the problem enabled to formulate the necessary and sufficient conditions for the limited sensitivity of a time-integrating index. An example of a modified AOT formulation fulfilling the obtained criteria and hence not experiencing the sensitivity problem is considered.  相似文献   

12.
Analysis of the recent surface ozone data at four remote islands (Rishiri, Oki, Okinawa, and Ogasawara) in Japan indicates that East Asian anthropogenic emissions significantly influence the boundary layer ozone in Japan. Due to these regional-scale emissions, an increase of ozone concentration is observed during fall, winter, and spring when anthropogenically enhanced continental air masses from Siberia/Eurasia arrive at the sites. The O3 concentrations in the “regionally polluted” continental outflow among sites are as high as 41–46 ppb in winter and 54–61 ppb in spring. Meanwhile, marine air masses from the Pacific Ocean show as low as 13–14 ppb of O3 at Okinawa and Ogasawara in summer but higher O3 concentrations, 24–27 ppb, are observed at Oki and Rishiri due to the additional pollution mainly from Japan mainland. The preliminary analysis of the exceedances of ozone critical level using AOT40 and SUM06 exposure indices indicates that the O3 threshold were exceeded variously among sites and years. The highest AOT40 and SUM06 were observed at Oki in central Japan where the critical levels are distinctly exceeded. In the other years, the O3 exposures at Oki, Okinawa, and Rishiri are about or slightly higher than the critical levels. The potential risk of crop yields reduction from high level of O3 exposure in Japan might not be a serious issue during 1990s and at present because the traditional growing season in Japan are during the low O3 period in summer. However, increases of anthropogenic emission in East Asia could aggravate the situation in the very near future.  相似文献   

13.
Rooted cuttings of poplar (Populus nigra) and seedlings of beech (Fagus sylvatica) were exposed to ozone in open-top chambers for one growing season. Three treatments were applied: charcoal-filtered (CF), non-filtered (NF) and non-filtered air plus 30 ppb (nl l(-1)) ozone (NF+). Extra ozone was only added on clear days, from 09:00 until 17:00-20:00. The AOT40s (accumulated exposure over a threshold of 40 ppb), calculated from April to September were 4055 ppb.h for the NF and 8880 ppb.h for the NF+ treatments. For poplar ozone exposure caused highly significant reductions in growth rate, light-saturated net CO(2) assimilation rate, stomatal conductance, F(v)/F(m) and chlorophyll content. The largest effects were observed in August at which time ozone concentrations were elevated. A reduction was noticed in new leaf production, while accelerated ageing and visible damage to leaves caused high leaf losses. For beech the responses were similar but less pronounced: ozone exposure resulted in non-significant growth reductions, slight changes in light-saturated photosynthesis and accelerated leaf abscission. The chlorophyll content of beech leaves was not affected by the ozone treatments. The results confirmed previous observations that fast-growing tree species, such as most poplar species and hybrids, are more sensitive and responsive to tropospheric ozone than slower-growing species, such as beech. The growth reductions observed and reported here for beech were within the range of those reported in relationship to the AOT40 (accumulated exposure over a threshold of 40 ppb) critical level for ozone.  相似文献   

14.
GOAL, SCOPE AND BACKGROUND: Ozone is the most important air pollutant in Europe for forest ecosystems and the increase in the last decades is significant. The ozone impact on forests can be calculated and mapped based on the provisional European Critical Level (AOT40 = accumulated exposure over a threshold of 40 ppb, 10,000 ppb x h for 6 months of one growing season calculated for 24 h day(-1)). For Norway spruce, the Austrian main tree species, the ozone risk was assessed in a basis approach and because the calculations do not reflect the health status of forests in Austria, the AOT40 concept was developed. METHODS: Three approaches were outlined and maps were generated for Norway spruce forests covering the entire area of Austria. The 1st approach modifies the AOT40 due to the assumption that forests have adapted to the pre-industrial levels of ozone, which increase with altitude (AOTalt). The 2nd approach modifies the AOT40 according to the ozone concentration in the sub-stomata cavity. This approach is based on such factors as light intensity and water vapour saturation deficit, which affect stomatal uptake (AOTsto). The 3rd approach combines both approaches and includes the hemeroby. The pre-industrial ozone level approach was applied for autochthonous ('natural') forest areas, the ozone-uptake approach for non-autochthonous ('altered') forest areas. RESULTS AND DISCUSSION: The provisional Critical Level (AOT40) was established to allow a uniform assessment of the ozone risk for forested areas in Europe. In Austria, where ozone risk is assessed with utmost accuracy due to the dense grid of monitoring plots of the Forest Inventory and because the continuously collected data from more than 100 air quality measuring stations, an exceedance up to the five fold of the Critical Level was found. The result could lead to a yield loss of up to 30-40% and to a severe deterioration in the forest health status. However, the data of the Austrian Forest Inventory and the Austrian Forest Damage Monitoring System do not reflect such an ozone impact. Therefore, various approaches were outlined including the tolerance and avoidance mechanisms of Norway spruce against ozone impact. Taking into consideration the adaptation of forests to the pre-industrial background level of ozone, the AOT40 exceedances are markedly reduced (1st approach). Taking into account the stomatal uptake of ozone, unrealistic high amounts of exceedances up to 10,000 ppb x h were found. The modelled risk does not correspond with the health status and the wood increment of the Austrian forests (2nd approach). Consolidating the forgoing two approaches, a final map including the hemeroby was generated. It became clear that the less natural ('altered') forested regions are highly polluted. This means, that more than half of the spruce forests are endangered by ozone impact and AOT40 values of up to 30,000 ppb x h occur (3rd approach). CONCLUSIONS: The approaches revealed that a plausible result concerning the ozone impact on spruce forests in Austria could only be reached by combining pre-industrial ozone levels, ozone flux into the spruce needles and the hemeroby of forests.  相似文献   

15.
The differences in growth, leaf senescence, visible ozone injuries and stomatal density between one coastal site (natural ozone) and two inland sites (natural and elevated ozone) in Finland were determined for saplings of Betula pendula clones grown under open-field conditions during two growing seasons. Responses in growth, leaf senescence, visible injuries, and stomatal density were determined in relation to cumulative ozone exposure accumulated over the thresholds of 30, 40 and 50 ppb (10(9)) during the exposure period. In addition, the effects of the different ozone exposures on ultrastructure of chloroplasts were studied. Increasing ozone exposure resulted in reduced shoot dry weight, stimulated (first year) or reduced (second year) height growth, accelerated autumn yellowing of leaves, increased stomatal density, visible symptoms and chloroplast injuries, and increased number and size of plastoglobuli. Newly expanded mature leaves in midsummer were more sensitive to ozone episodes than younger developing leaves in the early growing season. In most parameters, the best correlation was achieved with the exposure index AOT30. Ozone risk for birch is highest in the southern coastal area of Finland, where background ozone concentrations are higher than in inland sites.  相似文献   

16.
In the frame of a European research project on air quality in urban agglomerations, data on ozone concentrations from 23 automated urban and suburban monitoring stations in 11 cities from seven countries were analysed and evaluated. Daily and summer mean and maximum concentrations were computed based on hourly mean values, and cumulative ozone exposure indices (Accumulated exposure Over a Threshold of 40 ppb (AOT40), AOT20) were calculated. The diurnal profiles showed a characteristic pattern in most city centres, with minimum values in the early morning hours, a strong rise during the morning, peak concentrations in the afternoon, and a decline during the night. The widest amplitudes between minimum and maximum values were found in central and southern European cities such as Düsseldorf, Verona, Klagenfurt, Lyon or Barcelona. In the northern European cities of Edinburgh and Copenhagen, by contrast, maximum values were lower and diurnal variation was much smaller. Based on ozone concentrations as well as on cumulative exposure indices, a clear north–south gradient in ozone pollution, with increasing levels from northern and northwestern sites to central and southern European sites, was observed. Only the Spanish cities did not fit this pattern; there, ozone levels were again lower than in central European cities, probably due to the direct influence of strong car traffic emissions. In general, ozone concentrations and cumulative exposure were significantly higher at suburban sites than at urban and traffic-exposed sites. When applying the newly established European Union (EU) Directive on ozone pollution in ambient air, it was demonstrated that the target value for the protection of human health was regularly surpassed at urban as well as suburban sites, particularly in cities in Austria, France, northern Italy and southern Germany. European target values and long-term objectives for the protection of vegetation expressed as AOT40 were also exceeded at many monitoring sites.  相似文献   

17.
Psidium guajava 'Paluma' saplings were exposed to carbon filtered air (CF), ambient non-filtered air (NF), and ambient non-filtered air+40ppb ozone (NF+O(3)) 8h per day during two months. The AOT40 values at the end of the experiment were 48, 910 and 12 895ppbh(-1), respectively for the three treatments. After 5 days of exposure (AOT40=1497ppbh(-1)), interveinal red stippling appeared in plants in the NF+O(3) chamber. In the NF chamber, symptoms were observed only after 40 days of exposure (AOT40=880ppbh(-1)). After 60 days, injured leaves per plant corresponded to 86% in NF+O(3) and 25% in the NF treatment, and the average leaf area injured was 45% in NF+O(3) and 5% in the NF treatment. The extent of leaf area injured (leaf injury index) was explained mainly by the accumulated exposure of ozone (r(2)=0.91; p<0.05).  相似文献   

18.
We examined the effect of ozone (O3) on Norway spruce (Picea abies) needle epicuticular wax over three seasons at the Kranzberg Ozone Fumigation Experiment. Exposure to 2× ambient O3 ranged from 64.5 to 74.2 μl O3 l−1 h AOT40, and 117.1 to 123.2 nl O3 l−1 4th highest daily maximum 8-h average O3 concentration. The proportion of current-year needle surface covered by wax tubes, tube aggregates, and plates decreased (P = 0.011) under 2× O3. Epistomatal chambers had increased deposits of amorphous wax. Proportion of secondary alcohols varied due to year (P = 0.004) and O3 treatment (P = 0.029). Secondary alcohols were reduced by 9.1% under 2× O3. Exposure to 2× O3 increased (P = 0.037) proportions of fatty acids by 29%. Opposing trends in secondary alcohols and fatty acids indicate a direct action of O3 on wax biosynthesis. These results demonstrate O3-induced changes in biologically important needle surface characteristics of 50-year-old field-grown trees.  相似文献   

19.
Canton Ticino in southern Switzerland is exposed to some of the highest concentrations of tropospheric ozone in Europe. During recent field surveys in Canton Ticino, foliar symptoms identical to those caused by ozone have been documented on native tree and shrub species. In Europe, the critical ozone level for forest trees has been defined at an AOT40 of 10 ppm.h O3 (10 ppm.h accumulated exposure of ozone over a threshold of 40 ppb) during daylight hours over a six-month growing season. The objective of this study was to determine the amount of ambient ozone required to induce visible foliar symptoms on various forest plant species in southern Switzerland. Species were grown within eight open-top chambers and four open plots at the Vivaio Lattecaldo Cantonal Forest Nursery in Ticino, Switzerland. Species differed significantly in terms of the ppb.h exposures needed to cause visible symptoms. The most to least symptomatic species grown within open-plots in this study rank as Prunus serotina, Salix viminalis, Vibrnum lantana, Rhamnus cathartica, Betula pendula, Rumex obtusifolius, Sambucus racemosa, Morus nigra, Prunus avium, Fraxinus excelsior, Rhamnus frangula, Alnus viridis, Fagus sylvatica and Acer pseudoplatanus. Similar rankings were obtained in the non-filtered chamber plots. The ranking of species sensitivity closely follows AOT values for the occurrence of initial symptoms and symptom progression across the remainder of the exposure season. Species that first showed evidence of foliar injury also demonstrated the most sensitivity throughout the growing season, with symptoms rapidly advancing over ca. 25-30% of the total plant leaf surfaces by the end of the observation period. Conversely, those species that developed symptoms later in the season had far less total injury to plant foliage by the end of the observation period (1.5 to < 5% total leaf area injured). The current European ambient ozone standard may be insufficient to protect native plant species from visible foliar injury, and many more native species may be sensitive to ozone-induced foliar injury than are currently known.  相似文献   

20.
Which is the best standard for protecting plants from ozone? To answer this question, we must validate the standards by testing biological responses vs. ambient data in the field. A validation is missing for European and USA standards, because the networks for ozone, meteorology and plant responses are spatially independent. We proposed geostatistics as validation tool, and used durum wheat in central Italy as a test. The standards summarized ozone impact on yield better than hourly averages. Although USA criteria explained ozone-induced yield losses better than European criteria, USA legal level (75 ppb) protected only 39% of sites. European exposure-based standards protected ≥90%. Reducing the USA level to the Canadian 65 ppb or using W126 protected 91% and 97%, respectively. For a no-threshold accumulated stomatal flux, 22 mmol m−2 was suggested to protect 97% of sites. In a multiple regression, precipitation explained 22% and ozone explained <0.9% of yield variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号