首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present study was to investigate the biodegradation kinetics in aerobic and anaerobic soil of the following brominated flame retardants: 2,4,4′-tribromodiphenyl ether (BDE 28), decabromodiphenyl ether (BDE 209), tetrabromobisphenol A (TBBPA), 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), 2,4,6-tribromophenol (246BrPh), and hexabromobenzene (HxBrBz). For comparison, the biodegradation of the chlorinated compounds 2,4,4′-trichlorodiphenyl ether (CDE 28), 2,4,6-trichlorophenol (246ClPh), hexachlorobenzene (HxClBz), and 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB 153) was also assessed. In aerobic soil, BDE 209 showed no significant degradation during the test period, but concentrations of the other BFRs declined, with half-lives decreasing in the following order: BDE 28 > TBBPA > TBECH > HxBrBz > 246BrPh. Declines in almost the same order were observed in anaerobic soil: BDE 28, BDE 209 > TBBPA > HxBrBz > TBECH >246BrPh.  相似文献   

2.
Hotspots and coldspots of concentration and biodegradation of polycyclic aromatic hydrocarbons (PAHs) marginally overlapped at the 0.5-100 m scale in a creosote contaminated soil in southern Sweden, suggesting that concentration and biodegradation had little spatial co-variation. Biodegradation was substantial and its spatial variability considerable and highly irregular, but it had no spatial autocorrelation. The soil concentration of PAHs explained only 20-30% of the variance of their biodegradation. Soil respiration was spatially autocorrelated. The spatial uncoupling between biodegradation and soil respiration seemed to be governed by the aging of PAHs in the soil, since biodegradation of added 13C phenanthrene covaried with both soil respiration and microbial biomass. The latter two were also correlated with high concentrations of phospholipid fatty acids (PLFAs) that are common in gram-negative bacteria. However, several of the hotspots of biodegradation coincided with hotspots for the distribution of a PLFA indicative of fungal biomass.  相似文献   

3.
The present study was conducted to investigate the anaerobic biodegradation potential of biostimulation by nitrate (KNO3) and methyl-β-cyclodextrin (MCD) addition on an aged organochlorine pesticide (OCP)-contaminated paddy soil. After 180 days of incubation, total OCP biodegradation was highest in soil receiving the addition of nitrate and MCD simultaneously and then followed by nitrate addition, MCD addition, and control. The highest biodegradation of chlordanes, hexachlorocyclohexanes, endosulfans, and total OCPs was 74.3, 63.5, 51.2, and 65.1 %, respectively. Meanwhile, MCD addition significantly increased OCP bioaccessibility (p?<?0.05) evaluated by Tenax TA extraction and a three-compartment model method. Moreover, the addition of nitrate and MCD also obtained the highest values of soil microbial activities, including soil microbial biomass carbon and nitrogen, ATP production, denitrifying bacteria count, and nitrate reductase activity. Such similar trend between OCP biodegradation and soil-denitrifying activities suggests a close relationship between OCP biodegradation and N cycling and the indirect/direct involvement of soil microorganisms, especially denitrifying microorganisms in the anaerobic biodegradation of OCPs.  相似文献   

4.
At a former wood preservation plant severely contaminated with coal tar oil, in situ bulk attenuation and biodegradation rate constants for several monoaromatic (BTEX) and polyaromatic hydrocarbons (PAH) were determined using (1) classical first order decay models, (2) Michaelis–Menten degradation kinetics (MM), and (3) stable carbon isotopes, for o-xylene and naphthalene. The first order bulk attenuation rate constant for o-xylene was calculated to be 0.0025 d− 1 and a novel stable isotope-based first order model, which also accounted for the respective redox conditions, resulted in a slightly smaller biodegradation rate constant of 0.0019 d− 1. Based on MM-kinetics, the o-xylene concentration decreased with a maximum rate of kmax = 0.1 µg/L/d. The bulk attenuation rate constant of naphthalene retrieved from the classical first order decay model was 0.0038 d− 1. The stable isotope-based biodegradation rate constant of 0.0027 d− 1 was smaller in the reduced zone, while residual naphthalene in the oxic part of the plume further downgradient was degraded at a higher rate of 0.0038 d− 1. With MM-kinetics a maximum degradation rate of kmax = 12 µg/L/d was determined. Although best fits were obtained by MM-kinetics, we consider the carbon stable isotope-based approach more appropriate as it is specific for biodegradation (not overall attenuation) and at the same time accounts for the dominant electron-accepting process. For o-xylene a field based isotope enrichment factor εfield of − 1.4 could be determined using the Rayleigh model, which closely matched values from laboratory studies of o-xylene degradation under sulfate-reducing conditions.  相似文献   

5.
There is currently considerable scientific interest in finding a chemical technique capable of predicting bioavailability; non-exhaustive extraction techniques (NEETs) offer such potential. Hydroxypropyl-beta-cyclodextrin (HPCD), a NEET, is further validated through the investigation of concentration ranges, differing soil types, and the presence of co-contaminants. This is the first study to demonstrate the utility of the HPCD-extraction technique to predict the microbial availability to phenanthrene across a wide concentration range and independent of soil-contaminant contact time (123 d). The efficacy of the HPCD-extraction technique for the estimation of PAH microbial availability in soil is demonstrated in the presence of co-contaminants that have been aged for the duration of the experiment together in the soil. Desorption dynamics are compared in co-contaminant and single-PAH contaminated spiked soils to demonstrate the occurrence of competitive displacement. Overall, a single HPCD-extraction technique proved accurate and reproducible for the estimation of PAH bioavailability from soil.  相似文献   

6.
An integrated experimental program was conducted to remove Cd, Pb and Cu from contaminated soil. The chelate agents nitrilotriacetic acid (NTA), diethylenetriamine pentaacetic acid (DTPA) and ethyleneglycol tetraacetic acid (EGTA) were used as washing solutions under different pH conditions and concentrations. Results showed that the extraction efficiency for Cd in decreasing order was NTA > EGTA > DTPA, while for Pb and Cu it was DTPA > NTA > EGTA. The use of higher chelate concentrations did not necessarily result in greater extraction efficiency. Electrokinetic remediation was applied by conditioning anolyte-catholyte pH to neutral values in order to avoid any potential alterations to the physicochemical soil properties. The removal efficiency for Cd was 65-95%, for Cu 15-60%, but for Pb was less than 20%. The phytotoxicity of the treated soil showed that the soil samples from the anode section were less phytotoxic than the untreated soil, but the phytotoxicity was increased in the samples from the cathode section.  相似文献   

7.
The influence of PAH chemical structure and concentration, added in either single (75 or 300 mg kg−1) or multiple (2 × 75, 2 × 150 or 4 × 75 mg kg−1) applications as single- or multiple-contaminant systems, on the development of PAH biodegradation in a pristine soil was investigated. Development in microbial catabolic ability was assessed at 0, 28, 56 and 84 d by monitoring 14C-naphthalene, 14C-phenanthrene and 14C-pyrene mineralisation over 14 d in respirometric assays. The presence of other contaminants influenced the ability of the indigenous microflora to mineralise structurally different contaminants over time. 14C-Naphthalene mineralisation was inhibited by the presence of other contaminants; whereas the presence of naphthalene significantly enhanced rates of mineralisation in multiple-contaminant systems containing 14C-phenanthrene and 14C-pyrene. Generally, increasing the number of contaminant applications has implications for catabolic activity of soil microbes. It is suggested the toxic nature of PAHs retarded mineralisation at increased contaminant concentrations.  相似文献   

8.
Soil was spiked with [9-14C]phenanthrene and [1-14C]hexadecane at 50 mg kg−1 and aged for 1, 25, 50, 100 and 250 d. At each time point, the microcosms were amended with aqueous solutions of cyclodextrin (HP-β-CD) at a range of concentrations (0-40 mM). Mineralisation assays and aqueous HP-β-CD extractions were performed to assess the effect of the amendments on microbial degradation. The results showed that amendments had no significant impact on the microbial degradation of either of the 14C-contaminants. Further, HP-β-CD extractions were correlated with the mineralisation of the target chemicals in each of the soil conditions. It was found that the HP-β-CD extraction was able to predict mineralisation in soils which had not been amended with cyclodextrin; however, in the soils containing the HP-β-CD, there was no predictive relationship. Under the conditions of this study, the introduction of HP-β-CD into soils did not enhance the biodegradation of the organic contaminants.  相似文献   

9.
The desorption of polycyclic aromatic hydrocarbons (PAHs) often exhibits a biphasic profile similar to that observed for biodegradation whereby an initial rapid phase of degradation or desorption is followed by a phase of much slower transformation or release. Most investigations to-date have utilised a polymeric sorbent, such as Tenax, to characterise desorption, which is methodologically unsuitable for the analysis of soil. In this study, desorption kinetics of 14C-phenanthrene were measured by consecutive extraction using aqueous solutions of hydroxypropyl-β-cyclodextrin (HPCD). The data indicate that the fraction extracted after 24 h generally approximated the linearly sorbed, rapidly desorbing fraction (Frap), calculated using a three-compartment model. A good linear correlation between phenanthrene mineralised and Frap was observed (r2 = 0.89; gradient = 0.85; intercept = 8.20). Hence HPCD extraction (24 h) and first-order three-compartment modelling appear to provide an operationally straightforward tool for estimating mass-transfer limited biodegradation in soil.  相似文献   

10.
Principles of microbial PAH-degradation in soil   总被引:44,自引:0,他引:44  
Interest in the biodegradation mechanisms and environmental fate of polycyclic aromatic hydrocarbons (PAHs) is motivated by their ubiquitous distribution, their low bioavailability and high persistence in soil, and their potentially deleterious effect on human health. Due to high hydrophobicity and solid-water distribution ratios, PAHs tend to interact with non-aqueous phases and soil organic matter and, as a consequence, become potentially unavailable for microbial degradation since bacteria are known to degrade chemicals only when they are dissolved in water. As the aqueous solubility of PAHs decreases almost logarithmically with increasing molecular mass, high-molecular weight PAHs ranging in size from five to seven rings are of special environmental concern. Whereas several reviews have focussed on metabolic and ecological aspects of PAH degradation, this review discusses the microbial PAH-degradation with special emphasis on both biological and physico-chemical factors influencing the biodegradation of poorly available PAHs.  相似文献   

11.
Effects of Cd and Pb on soil microbial community structure and activities   总被引:6,自引:0,他引:6  

Background, aim, and scope  

Soil contamination with heavy metals occurs as a result of both anthropogenic and natural activities. Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. Soil enzymatic activities are recognized as sensors towards any natural and anthropogenic disturbance occurring in the soil ecosystem. Similarly, microbial biomass carbon (MBC) is also considered as one of the important soil biological activities frequently influenced by heavy metal contamination. The polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) has recently been used to investigate changes in soil microbial community composition in response to environmental stresses. Soil microbial community structure and activities are difficult to elucidate using single monitoring approach; therefore, for a better insight and complete depiction of the soil microbial situation, different approaches need to be used. This study was conducted in a greenhouse for a period of 12 weeks to evaluate the changes in indigenous microbial community structure and activities in the soil amended with different application rates of Cd, Pb, and Cd/Pb mix. In a field environment, soil is contaminated with single or mixed heavy metals; so that, in this research, we used the selected metals in both single and mixed forms at different application rates and investigated their toxic effects on microbial community structure and activities, using soil enzyme assays, plate counting, and advanced molecular DGGE technique. Soil microbial activities, including acid phosphatase (ACP), urease (URE), and MBC, and microbial community structure were studied.  相似文献   

12.
The aim of the current study was to investigate the potential of an aquatic plant, the water hyacinth (Eichhornia crassipes) devoid rhizospheric bacteria, to reduce naphthalene (a polyaromatic hydrocarbon) present in wastewater and wetlands.The capability of sterile water hyacinth plants to remove naphthalene from water and wastewater was studied in batch systems. Water hyacinths enhance the removal of pollutants through their consumption as nutrients and also through microbial activity of their rhizospheric bacteria.Experimental kinetics of naphthalene removal by water hyacinth coupled with natural rhizospheric bacteria was 100% after 9 d. Plants, decoupled of rhizospheric bacteria, reduced naphthalene concentration up to 45% during 7 d. Additionally, naphthalene uptake by water hyacinth revealed a biphasic behavior: a rapid first phase completed after 2.5 h, and a second, considerably slower rate, phase (2.5-225 h). In conclusion, water hyacinth devoid rhizospheric bacteria reduced significantly naphthalene concentration in water, revealing a considerable plant contribution in the biodegradation process of this pollutant.  相似文献   

13.
We present an approach for characterizing in situ microbial degradation using the 13C/12C isotope fractionation of contaminants as an indicator of biodegradation. The 13C/12C isotope fractionation of aromatic hydrocarbons was studied in anoxic laboratory soil percolation columns with toluene or o-xylene as the sole carbon and electron source, and sulfate as electron acceptor. After approximately 2 months' of incubation, the soil microbial community degraded 32 mg toluene l(-1) and 44 mg o-xylene l(-1) to less than 0.05 mg l(-1), generating a stable concentration gradient in the column. The 13C/12C isotope ratio in the residual non-degraded fraction of toluene and o-xylene increased significantly, corresponding to isotope fractionation factors (alphaC) of 1.0015 and 1.0011, respectively. When the extent of biodegradation in the soil column was calculated based on the measured isotope ratios (R(t)) and an isotope fractionation factor (alphaC=1.0017) obtained from a sulfate-reducing batch culture the theoretical residual substrate concentrations (C(t)) matched the measured toluene concentrations in the column. This indicated that a calculation of biodegradation based on isotope fractionation could work in systems like soil columns. In a field study, a polluted, anoxic aquifer was analyzed for BTEX and PAH contaminants. These compounds were found to exhibit a significant concentration gradient along an 800-m groundwater flow path downstream of the source of contamination. A distinct increase in the carbon isotope ratio (delta13C) was observed for the residual non-degraded toluene (7.2 per thousand ), o-xylene (8.1 per thousand ) and naphthalene fractions (1.2 per thousand ). Based on the isotope values and the laboratory-derived isotope fractionation factors for toluene and o-xylene, the extent to which the residual substrate fraction in the monitoring wells had been degraded by microorganisms was calculated. The results revealed significant biodegradation along the groundwater flow path. In the wells at the end of the plume, the bioavailable toluene and o-xylene fractions had been almost completely reduced by in situ microbial degradation. Although indane and indene showed decreasing concentrations downstream of the groundwater flow path, suggesting microbial degradation, their carbon isotope ratios remained constant. As the physical properties of these compounds are similar to those of BTEX compounds, the constant isotope values of indane and indene indicated that microbial degradation did not lead to isotope fractionation of all aromatic hydrocarbons. In addition, physical interaction with the aquifer material during the groundwater passage did not significantly alter the carbon isotope composition of aromatic hydrocarbons.  相似文献   

14.
Effects of the common antibacterial agent triclosan on microbial communities and degradation of domestic xenobiotics were studied in simulated sewage-drain-field soil. Cultivable microbial populations decreased 22-fold in the presence of 4 mg kg−1 of triclosan, and triclosan-resistant Pseudomonas strains were strongly enriched. Exposure to triclosan also changed the general metabolic profile (Ecoplate substrate profiling) and the general profile (T-RFLP) of the microbial community. Triclosan degradation was slow at all concentrations tested (0.33-81 mg kg−1) during 50-days of incubation. Mineralization experiments (14C-tracers) and chemical analyses (LC-MS/MS) showed that the persistence of a linear alkylbenzene sulfonate (LAS) and a common analgesic (ibuprofen) increased with increasing triclosan concentrations (0.16-100 mg kg−1). The largest effect was seen for LAS mineralization which was severely reduced by 0.16 mg kg−1 of triclosan. Our findings indicate that environmentally realistic concentrations of triclosan may affect the efficiency of biodegradation in percolation systems.  相似文献   

15.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

16.
Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan "does not degrade fast" with its primary biodegradation half-life of "weeks" and ultimate biodegradation half-life of "months". Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period.  相似文献   

17.
We describe TNT's inhibition of RDX and HMX anaerobic degradation in contaminated soil containing indigenous microbial populations. Biodegradation of RDX or HMX alone was markedly faster than their degradation in a mixture with TNT, implying biodegradation inhibition by the latter. The delay caused by the presence of TNT continued even after its disappearance and was linked to the presence of its intermediate, tetranitroazoxytoluene. PCR–DGGE analysis of cultures derived from the soil indicated a clear reduction in microbial biomass and diversity with increasing TNT concentration. At high-TNT concentrations (30 and 90 mg/L), only a single band, related to Clostridium nitrophenolicum, was observed after 3 days of incubation. We propose that the mechanism of TNT inhibition involves a cytotoxic effect on the RDX- and HMX-degrading microbial population. TNT inhibition in the top active soil can therefore initiate rapid transport of RDX and HMX to the less active subsurface and groundwater.  相似文献   

18.
有机污染物湿地生物降解实验规律研究   总被引:1,自引:0,他引:1  
本文以苯、甲苯和萘为对象 ,通过实验研究 ,测定有机污染物的土壤 水吸附平衡过程、在水溶液中生物降解过程以及在湿地系统 (即土壤 水 微生物系统 )中生物降解过程 ,并以质量守恒定律为基础 ,建立有机污染物湿地生物降解过程综合数学模型 ;数学模型通过实验验证。利用模型 ,定量预测了污染物生物降解所需的时间和程度 ,并提出动力学因子FK,判断污染物湿地生物降解速度的控制因素 ,定量预测了污染物在土壤固相的浓度分布规律  相似文献   

19.

This study investigates the contents of lead, zinc, and cadmium in 109 near-surface soil samples collected around the abandoned mine of Fedj Lahdoum, northern Tunisia, to assess the risk of pollution they generate. The study involved some analytical procedures such as pH measurements, X-ray diffraction techniques, sequential fractionation, and geostatistical mapping using the ordinary Kriging techniques. The sequential fractionation revealed that the bioavailability of Pb, Zn, and Cd follows the orders F5?>?F3 » F4?>?F2 » F1, F5?>?F3 » F4 » F2?>?F1 and F5?>?F2 » F4?>?F1, respectively; their associations with organic matter and residual sulfides (F4) are relatively low. However, their high cumulated contents are dominantly associated with the residual (F5) and reducible (F3) fractions. The geostatistical mapping was endeavored to predict the spatial distribution of the studied heavy metals at unsampled sites and to produce a cumulated risk map of soil pollution. The latter is discussed with emphasis of the main factors responsible for the scattering of the pollution as much as the landscape conditions, the chemical composition of the mine tailings, the surface drainage of meteoric water and the wind. This study provides insight into the delineation of the spatial spreading of Pb, Zn, and Cd around the abandoned mine Fedj Lahdoum and their surrounding urban areas. It reveals that the mine infrastructure areas encompassing both extraction and processing and tailing deposition areas are the main sources of contamination. And the landscape conditions together with the surface drainage of meteoric water and the wind are the main factors responsible for the scattering of the pollution.

  相似文献   

20.
The potential for aerobic biodegradation of MTBE in a fractured chalk aquifer is assessed in microcosm experiments over 450 days, under in situ conditions for a groundwater temperature of 10 °C, MTBE concentration between 0.1 and 1.0 mg/L and dissolved O2 concentration between 2 and 10 mg/L. Following a lag period of up to 120 days, MTBE was biodegraded in uncontaminated aquifer microcosms at concentrations up to 1.2 mg/L, demonstrating that the aquifer has an intrinsic potential to biodegrade MTBE aerobically. The MTBE biodegradation rate increased three-fold from a mean of 6.6 ± 1.6 μg/L/day in uncontaminated aquifer microcosms for subsequent additions of MTBE, suggesting an increasing biodegradation capability, due to microbial cell growth and increased biomass after repeated exposure to MTBE. In contaminated aquifer microcosms which also contained TAME, MTBE biodegradation occurred after a shorter lag of 15 or 33 days and MTBE biodegradation rates were higher (max. 27.5 μg/L/day), probably resulting from an acclimated microbial population due to previous exposure to MTBE in situ. The initial MTBE concentration did not affect the lag period but the biodegradation rate increased with the initial MTBE concentration, indicating that there was no inhibition of MTBE biodegradation related to MTBE concentration up to 1.2 mg/L. No minimum substrate concentration for MTBE biodegradation was observed, indicating that in the presence of dissolved O2 (and absence of inhibitory factors) MTBE biodegradation would occur in the aquifer at MTBE concentrations (ca. 0.1 mg/L) found at the front of the ether oxygenate plume. MTBE biodegradation occurred with concomitant O2 consumption but no other electron acceptor utilisation, indicating biodegradation by aerobic processes only. However, O2 consumption was less than the stoichiometric requirement for complete MTBE mineralization, suggesting that only partial biodegradation of MTBE to intermediate organic metabolites occurred. The availability of dissolved O2 did not affect MTBE biodegradation significantly, with similar MTBE biodegradation behaviour and rates down to ca. 0.7 mg/L dissolved O2 concentration. The results indicate that aerobic MTBE biodegradation could be significant in the plume fringe, during mixing of the contaminant plume and uncontaminated groundwater and that, relative to the plume migration, aerobic biodegradation is important for MTBE attenuation. Moreover, should the groundwater dissolved O2 concentration fall to zero such that MTBE biodegradation was inhibited, an engineered approach to enhance in situ bioremediation could supply O2 at relatively low levels (e.g. 2–3 mg/L) to effectively stimulate MTBE biodegradation, which has significant practical advantages. The study shows that aerobic MTBE biodegradation can occur at environmentally significant rates in this aquifer, and that long-term microcosm experiments (100s days) may be necessary to correctly interpret contaminant biodegradation potential in aquifers to support site management decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号