首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

The chitosan-stabilized ferrous sulfide nanoparticles were loaded on biochar to prepare a composite material FeS-CS-BC for effective removal of hexavalent chromium in water. BC and FeS-CS-BC were characterized by Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. Batch experiments were employed to evaluate the Cr(VI) removal performance. The experimental results showed that the removal rate of Cr(VI) by FeS-CS-BC(FeS:CS:BC?=?2:2:1) reached 98.34%, which was significantly higher than that of BC (44.58%) and FeS (79.91%). In the pH range of 2–10, the removal of Cr(VI) by FeS-CS-BC was almost independent of pH. The limitation of coexisting anions (Cl?、SO42?、NO3?) on Cr(VI) removal was not too obvious. The removal of Cr(VI) by FeS-CS-BC was fitted with the pseudo-second-order dynamics, which was a hybrid chemical-adsorption reaction. The X-ray photoelectron spectroscopy (XPS) analysis result showed that Cr(VI) was reduced, and the reduced Cr(VI) was fixed on the surface of the material in the form of Cr(VI)–Fe(III).

Removal of hexavalent chromium from wastewater by FeS-CS-BC composite synthesized by impregnation.

  相似文献   

2.
Anthropogenic activity constantly releases heavy metals into the environment. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. While hexavalent chromium uptake in plant cells has been reported that an active process by carrying essential anions, the cation Cr(III) appears to be taken up inactively. Dictyosphaerium chlorelloides (Dc1M), an unicellular green alga is a well-studied cell biological model organism. The present study was carried out to investigate the toxic effect of chromium exposures on wild-type Cr(III)-sensitive (Dc1Mwt) and Cr(III)-tolerant (Dc1MCr(III)R30) strains of these green algae, and to determine the potential mechanism of chromium resistance. Using cell growth as endpoint to determine Cr(III)-sensitivity, the IC50(72) values obtained show significant differences of sensitivity between wild type and Cr(III)-tolerant cells. Scanning electron microscopy (SEM) showed significant morphological differences between both strains, such as decrease in cell size or reducing the coefficient of form; and transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization and cell wall thickening in the Cr(III)-tolerant strain with respect to the wild-type strain. Energy dispersive X-ray analysis (SEM/XEDS) revealed that Cr(III)-tolerant D. chlorelloides cells are able to accumulate considerable amounts of chromium distributed in cell wall (bioadsorption) as well as in cytoplasm, vacuoles, and chloroplast (bio-accumulation). Morphological changes of Cr(III)-tolerant D. chlorelloides cells and the presence of these electron-dense bodies in their cell structures can be understood as a Cr(III) detoxification mechanism.  相似文献   

3.
Abstract

Clay that contains kaolinite has been used extensively as a raw material for manufacturing of bricks and china at 900–1100 °C. This study used clay to stabilize the contaminant chromium(VI) [Cr(VI)] through a heating process at 500–1100 °C. X-ray absorption spectroscopic results indicated that the 500–900 °C heating process transformed hazardous Cr(VI) to nontoxic Cr(III); Cr2O3 was the species detected as most abundant. The 1100 °C heating process caused the formation of Cr2SiO5, which was not detected in the samples heated at 500–900 °C. Fourier transformed extended X-ray absorption fine structure spectra were fitted by use of WinXAS software. Phase shifts and backscatter(ing) amplitudes for specific atom pairs, based on the crystallographic data for CrO3 and Cr2O3, were theoretically calculated with the FEFF software. The processed XAS data show that the first shell coordination numbers were similar to each other as the temperature was increased from 500 to 900 °C and 1100 °C, implying that their Cr(III) crystallite size was relatively similar. The interatomic distance between the target center element and the first shell for the 500– 1100 °C samples was 1.98Å. The Debye-Waller factor for the 1100 °C sample was increased compared with the 500 and 900 °C samples and probably indicates the formation of Cr2SiO5.  相似文献   

4.
Reduction of hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) in the stomach prior to absorption is a well-recognized detoxification process thought to limit the toxicity of ingested Cr(VI). However, administration of high concentrations of Cr(VI) in drinking water cause mouse small intestinal tumors, and quantitative measures of Cr(VI) reduction rate and capacity for rodent stomach contents are needed for interspecies extrapolation using physiologically-based toxicokinetic (PBTK) models. Ex vivo studies using stomach contents of rats and mice were conducted to quantify Cr(VI) reduction rate and capacity for loading rates (1-400 mg Cr(VI) L−1 stomach contents) in the range of recent bioassays. Cr(VI) reduction was measured with speciated isotope dilution mass spectrometry to quantify dynamic Cr(VI) and Cr(III) concentrations in stomach contents at select time points over 1 h. Cr(VI) reduction followed mixed second-order kinetics, dependent upon concentrations of both Cr(VI) and the native reducing agents. Approximately 16 mg Cr(VI)-equivalents of reducing capacity per L of fed stomach contents (containing gastric secretions, saliva, water and food) was found for both species. The second-order rate constants were 0.2 and 0.3 L mg−1 h−1 for mice and rats, respectively. These findings support that, at the doses that caused cancer in the mouse small intestine (?20 mg Cr(VI) L−1 in drinking water), the reducing capacity of stomach contents was likely exceeded. Thus, for extrapolation of target tissue dose in risk assessment, PBTK models are necessary to account for competing kinetic rates including second order capacity-limited reduction of Cr(VI) to Cr(III).  相似文献   

5.
This paper explored biochar modification to enhance biochar’s ability to adsorb hexavalent chromium from aqueous solution. The ramie stem biomass was pyrolyzed and then treated by β-cyclodextrin/poly(L-glutamic acid) which contained plentiful functional groups. The pristine and modified biochar were characterized by FTIR, X-ray photoelectron spectroscopy, specific surface area, and zeta potential measurement. Results indicated that the β-cyclodextrin/poly(L-glutamic acid) was successfully bound to the biochar surface. Batch experiments were conducted to investigate the kinetics, isotherm, thermodynamics, and adsorption/desorption of Cr(VI). Adsorption capacities of CGA-biochar were significantly higher than that of the untreated biochar, and its maximum adsorption capacity could reach up to 197.21 mg/g at pH 2.0. Results also illustrated that sorption performance depended on initial solution pH; in addition, acidic condition was beneficial to the Cr(VI) uptake. Furthermore, the Cr(VI) uptake was significantly affected by the ion strength and cation species. This study demonstrated that CGA-biochar could be a potential adsorbent for Cr(VI) pollution control.  相似文献   

6.

Purpose

This study had an objective to identify the most potent chromium-resistant bacteria isolated from tannery effluent and apply them for bioremediation of chromium in tannery effluents.

Methods

Two such strains (previously characterized and identified by us)??Enterobacter aerogenes (NCBI GenBank USA Accession no. GU265554) and Acinetobacter sp. PD 12 (NCBI GenBank USA Accession no. GU084179)??showed powerful chromium resistivity and bioremediation capabilities among many stains isolated from tannery waste. Parameters such as pH, concentration of hexavalent chromium or Cr (VI), and inoculum volume were varied to observe optimum bioconversion and bioaccumulation of Cr (VI) when the said strains were grown in M9 minimal salt media. E. aerogenes was used to remediate chromium from tannery effluents in a laboratory level experiment.

Results

Observation by Scanning Electron Microscope and chromium peak in Energy Dispersive X-ray Spectroscopic microanalysis revealed that E. aerogenes helped remediate a moderate amount of Cr (VI) (8?C16?mg?L?1) over a wide range of pH values at 35?C37°C (within 26.05?h). High inoculum percentage of Acinetobacter sp. PD 12 also enabled bioremediation of 8?C16?mg?L?1 of Cr (VI) over a wide range of temperature (25?C37°C), mainly at pH?7 (within 63.28?h). The experiment with real tannery effluent gave very encouraging results.

Conclusion

The strain E. aerogenes can be used in bioremediation of Cr (VI) since it could work in actual environmental conditions with extraordinarily high capacity.  相似文献   

7.
Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO4), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brullé. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system.  相似文献   

8.
Hexavalant chromium [Cr(VI)] tolerance and accumulation in in vitro grown Nopalea cochenillifera Salm. Dyck. plants was investigated. A micropropagation protocol was establish for a rapid multiplication of N. cochenillifera and [Cr(VI)] tolerance and accumulation was studied in in vitro grown cultures. Cr concentration was estimated by atomic absorption spectroscopy in roots and shoots to confirm plant’s hyperaccumulation capacity. Plants showed tolerance up to 100 μM K2Cr2O7 without any significant changes in root growth after 16 days treatment; whereas, chlorophyll content in plants treated with 1 and 10 μM K2Cr2O7 were not so different than the control plant. The levels of lipid peroxidation and protein oxidation increased significantly (p?<?0.01) with increasing concentration of chromium. Exposures of N. cochenillifera to lower concentrations of K2Cr2O7 (≤10 μM) induced catalase (CAT) and superoxide dismutase (SOD) significantly (p?<?0.001) but higher concentrations of K2Cr2O7 (>100 μM) inhibited the activities of CAT and SOD. Roots accumulated a maximum of 25,263.396?±?1,722.672 mg?Cr?Kg?1 dry weight (DW); while the highest concentration of Cr in N. cochenillifera shoots was 705.714?±?32.324 mg?Cr?Kg?1?DW. N. cochenillifera could be a prospective hyperaccumulator plant of Cr(VI) and a promising candidate for phytoremediation purposes.  相似文献   

9.
This study presents simultaneous hexavalent chromium (Cr(VI)) reduction and phenol degradation using Stenotrophomonas sp., isolated from tannery effluent contaminated soil. Phenol was used as the sole carbon and energy source for Cr(VI) reduction. The optimization of different operating parameters was done using Placket–Burman design (PBD) and Box–Behnken design (BBD). The significant operating variables identified by PBD were initial Cr(VI) and phenol concentration, pH, temperature, and reaction time. These variables were optimized by a three-level BBD and the optimum initial Cr(VI) concentration, initial phenol concentration, pH, temperature, and reaction time obtained were 16.59 mg/l, 200.05 mg/l, 7.38, 31.96 °C and 4.07 days, respectively. Under the optimum conditions, 81.27 % Cr(VI) reduction and 100 % phenol degradation were observed experimentally. The results concluded that the Stenotrophomonas sp. could be used to decontaminate the effluents containing Cr(VI) and phenol effectively.  相似文献   

10.
Chen Z  Huang Z  Cheng Y  Pan D  Pan X  Yu M  Pan Z  Lin Z  Guan X  Wu Z 《Chemosphere》2012,87(3):211-216
In this study, we investigated the Cr(VI) uptake mechanism in an indigenous Cr(VI)-tolerant bacterial strain -Bacillus cereus through batch and microscopic experiments. We found that both the cells and the supernatant collected from B. cereus cultivation could reduce Cr(VI). The valence state analysis revealed the complete transformation from Cr(VI) into Cr(III) by living B. cereus. Further X-ray absorption fine structure and Fourier transform infrared analyses showed that the reduced Cr(III) was coordinated with carboxyl and amido functional groups from either the cells or supernatant. Scanning electron microscopy and atomic force microscopy observation showed that noticeable Cr(III) precipitates were accumulated on bacterial surfaces. However, Cr(III) could also be detected in bacterial inner portions by using transmission electron microscopy thin section analysis coupled with energy dispersive X-ray spectroscopy. Through quantitative analysis of chromium distribution, we determined the binding ratio of Cr(III) in supernatant, cell debris and cytoplasm as 22%, 54% and 24%, respectively. Finally, we further discussed the role of bacterium-origin soluble organic molecules to the remediation of Cr(VI) pollutants.  相似文献   

11.

Zero-valent iron (Fe0) has been widely used for Cr(VI) removal; however, the removal mechanisms of Cr(VI) from aqueous solution under complex hydrogeochemical conditions were poorly understood. In this research, the mixed materials containing cast iron and activated carbon were packed in columns for the treatment of aqueous Cr(VI)-Cr(III) in groundwater with high concentration of Ca2+, Mg2+, HCO3 , NO3 , and SO4 2−. We investigate the influences of those ions on Cr(VI) removal, especially emphasizing on the reaction mechanisms and associated precipitations which may lead to porosity loss by using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) techniques. The results show that the precipitations accumulated on the material surface were (Fe/Cr) (oxy)hydroxide, mixed Fe(III)-Cr(III) (oxy)hydroxides, Fe2O3, CaCO3, and MgCO3. During these reactions, the Cr(VI) was reduced to Cr(III) coupled with the oxidated Fe0 to Fe(II) through the galvanic corrosion formed by the Fe0-C and/or the direct electron transfer between Fe0 and Cr(VI). In addition, Cr(VI) could be reduced by aqueous Fe(II), which dominated the whole removal efficiency. The primary aqueous Cr(III) was completely removed together with Cr(III) reduced from Cr(VI) even when Cr(VI) was detected in the effluent, which meant that the aqueous Cr(III) could occupy the adsorption sites. In general, the combined system was useful for the Cr(VI)-Cr(III) treatment based on galvanic corrosion, and the hardness ions had a negative effect on Cr(VI) removal by forming the carbonates which might promote the passivation of materials and decrease the removal capacity of the system.

  相似文献   

12.
The comparative effectiveness for hexavalent chromium removal from irrigation water, using two selected plant species (Phragmites australis and Ailanthus altissima) planted in soil contaminated with hexavalent chromium, has been studied in the present work. Total chromium removal from water was ranging from 55 % (Phragmites) to 61 % (Ailanthus). After 360 days, the contaminated soil dropped from 70 (initial) to 36 and 41 mg Cr/kg (dry soil), for Phragmites and Ailanthus, respectively. Phragmites accumulated the highest amount of chromium in the roots (1910 mg Cr/kg(dry tissue)), compared with 358 mg Cr/kg(dry tissue) for Ailanthus roots. Most of chromium was found in trivalent form in all plant tissues. Ailanthus had the lowest affinity for CrVI reduction in the root tissues. Phragmites indicated the highest chromium translocation potential, from roots to stems. Both plant species showed good potentialities to be used in phytoremediation installations for chromium removal.  相似文献   

13.
A thin-film continuous flow-through reactor was used to investigate reactions between aqueous Cr(VI) and two iron oxides, geothite and magnetite. Delayed effluent breakthrough of Cr(VI) indicated significant uptake by both oxides. Accumulation and remobilization of Cr(VI) depends on pH and the redox properties of the surface. For geothite the surface was quickly saturated and no further adsorption observed. Chromate anion (CrO42−) exhibited Langmuir-type adsorption. For magnetite, a significant slow steady-state rate of Cr(VI) uptake was observed. We propose two different mechanisms of chromium uptake: surface complexation of Cr(VI) species on geothite, and reductive precipitation of Cr(VI) at Fe(II) sites on magnetite.  相似文献   

14.
Chromium species behaviour in the activated sludge process   总被引:3,自引:0,他引:3  
The purpose of this research was to compare trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)) removal by activated sludge and to investigate whether Cr(VI) reduction and/or Cr(III) oxidation occurs in a wastewater treatment system. Chromium removal by sludge harvested from sequencing batch reactors, determined by a series of batch experiments, generally followed a Freundlich isotherm model. Almost 90% of Cr(III) was adsorbed on the suspended solids while the rest was precipitated at pH 7.0. On the contrary, removal of Cr(VI) was minor and did not exceed 15% in all experiments under the same conditions. Increase of sludge age reduces Cr(III) removal, possibly because of Cr(III) sorption on slime polymers. Moreover, the decrease of suspended solids concentration and the acclimatization of biomass to Cr(VI) reduced the removal efficiency of Cr(III). Batch experiments showed that Cr(III) cannot be oxidized to Cr(VI) by activated sludge. On the contrary, Cr(VI) reduction is possible and is affected mainly by the initial concentration of organic substrate, which acts as electron donor for Cr(VI) reduction. Initial organic substrate concentration equal to or higher than 1000 mgl(-1) chemical oxygen demand permitted the nearly complete reduction of 5 mgl(-1) Cr(VI) in a 24-h batch experiment. Moreover, higher Cr(VI) reduction rates were obtained with higher Cr(VI) initial concentrations, expressed in mg Cr(VI) g(-1) VSS, while decrease of suspended solids concentration enhanced the specific Cr(VI) reduction rate.  相似文献   

15.
Out of an array of bacterial strains isolated from soil contaminated with effluents from electroplating wastewater, Bacillus coagulans exhibited the maximum Cr(VI) reduction potential. The feasibility of an immobilized B. coagulans bioreactor for hexavalent chromium reduction was investigated. Experimental results demonstrated that near complete removal of Cr(VI) was achieved in the reactor with an initial Cr(VI) concentration of 26 mg/l and reactor time of 24 h. The removal efficiency in the bioreactor was significantly affected by the influent Cr(VI) concentration, the Cr(VI) loading rate, the reaction time and the amount of Cr(VI) reduced by the biomass.  相似文献   

16.
The Steam-Jet Aerosol Collector-long Pathlength Absorbance Spectroscopy (SJAC-LPAS), an on-line continuous instrument for mobile measurements of spatial distribution of water-soluble hexavalent and trivalent chromium in ambient aerosols, has been developed and is presented here. The system collects particles with the SJAC and analyzes the collected sample on-line using the diphenycarbazide (DPC) colorimetric method. By using a Teflon AF (Amorphous Fluoropolymer) liquid core wave guide, the limit of detection has been significantly improved, allowing on-line measurements at ambient concentrations. The limit of detection for Cr(VI) is 0.2 ng m−3. Water-soluble Cr(III) can also be measured by oxidizing it to Cr(VI) in a parallel line using hydrogen peroxide before the detection with the DPC method. The concentration of Cr(III) is then determined as the difference between the two lines (Cr(VI) and Cr(VI) plus Cr(III)). The instrument was specifically designed to be used on a mobile platform to study spatial distribution of the pollutant within a city on a scale of 100 m. Special attention was given to the time resolution and the stability of the instrument performance under driving conditions. The time resolution of the instrument is 15 s. At a typical driving speed of 30 km h−1 the instrument can detect variations in chromium concentration (“hot spots”) on the scale of about 150 m. The instrument has proven to operate reliably and capture temporal and spatial variability of Cr(VI) concentration during four mobile measurement campaigns in Wilmington, DE.  相似文献   

17.
Hexavalent chromium [Cr(VI)] in the form of potassium dichromate was photochemically reduced to trivalent chromium [Cr(III)] in aqueous solutions containing glycerol. This reaction occurred rapidly during irradiation with either unfiltered sunlight or a UVA-emitting light source. Photochemical reduction of Cr(VI) was pH-dependent and did not occur in dilute solutions of sodium hydroxide. In acidified solutions, the reduction occurred at elevated rates and at lower concentrations of glycerol. This reaction was found to be dependent on the unsubstituted alcohol groups of glycerol since alpha-phosphoglycerol and beta-phosphoglycerol did not support the photochemical reduction of Cr(VI). These findings suggest that glycerol or related polyols can be used for the remediation of hexavalent (toxic) chromium at contaminated environmental sites.  相似文献   

18.
Coupled Bi2O3/TiO2 photocatalysts were fabricated by sol–gel and hydrothermal methods and characterized using various spectroscopy techniques. Photocatalytic reduction of Cr(VI) in aqueous solution, together with the synergistic effect of photodegradation of bisphenol A (BPA), was investigated using these coupled Bi2O3/TiO2 under visible-light irradiation. Coupling of Bi2O3 inhibited the phase transformation from anatase to rutile and extended absorption region to visible light. Bi ions did not enter TiO2 lattice and were more likely to bond with oxygen atoms to form Bi2O3 on the surface of TiO2. Photovoltage signals in visible range revealed the effective interfacial charge transfer between Bi2O3 and TiO2. Two percent Bi2O3/TiO2 exhibited the highest photocatalytic activity of visible-light-induced reduction of Cr(VI). The addition of BPA effectively increased the photocatalytic reduction of Cr(VI). Simultaneously, the presence of Cr(VI) promoted the degradation of BPA, which was demonstrated by the investigation of TOC removal yield and generated intermediates. A possible mechanism of photocatalytic reduction of Cr(VI) and degradation of BPA in Bi2O3/TiO2 system was proposed. The synergistic effect, observed between reduction of Cr(VI) and degradation of BPA, provides beneficial method for environmental remediation and purification of the complex wastewater.  相似文献   

19.
Present work demonstrates Cr (VI) detoxification and resistance mechanism of a newly isolated strain (B9) of Acinetobacter sp. Bioremediation potential of the strain B9 is shown by simultaneous removal of major heavy metals including chromium from heavy-metals-rich metal finishing industrial wastewater. Strain B9 tolerate up to 350 mg L?1 of Cr (VI) and also shows level of tolerance to Ni (II), Zn (II), Pb (II), and Cd (II). The strain was capable of reducing 67 % of initial 7.0 mg L?1 of Cr (VI) within 24 h of incubation, while in presence of Cu ions 100 % removal of initial 7.0 and 10 mg L?1 of Cr (VI) was observed with in 24 h. pH in the range of 6.0–8.0 and inoculum size of 2 % (v/v) were determined to be optimum for dichromate reduction. Fourier transform infrared spectroscopy and transmission electron microscopy studies suggested absorption or intracellular accumulation and that might be one of the major mechanisms behind the chromium resistance by strain B9. Scanning electron microscopy showed morphological changes in the strain due to chromium stress. Relevance of the strain for treatment of heavy-metals-rich industrial wastewater resulted in 93.7, 55.4, and 68.94 % removal of initial 30 mg L?1 Cr (VI), 246 mg L?1 total Cr, and 51 mg L?1 Ni, respectively, after 144 h of treatment in a batch mode.  相似文献   

20.
Chromate-resistant bacterial strain isolated from the soil of tannery was studied for Cr(VI) bioaccumulation in free and immobilised cells to evaluate its applicability in chromium removal from aqueous solution. Based on the comparative analysis of the 16S rRNA gene, and phenotypic and biochemical characterization, this strain was identified as Paenibacillus xylanilyticus MR12. Mechanism of Cr adsorption was also ascertained by chemical modifications of the bacterial biomass followed by Fourier transform infrared spectroscopy analysis of the cell wall constituents. The equilibrium biosorption analysed using isotherms (Langmuir, Freundlich and Dubinin–Redushkevich) and kinetics models (pseudo-first-order, second-order and Weber–Morris) revealed that the Langmuir model best correlated to experimental data, and Weber–Morris equation well described Cr(VI) biosorption kinetics. Polyvinyl alcohol alginate immobilised cells had the highest Cr(VI) removal efficiency than that of free cells and could also be reused four times for Cr(VI) removal. Complete reduction of chromate in simulated effluent containing Cu2+, Mg2+, Mn2+ and Zn2+ by immobilised cells, demonstrated potential applications of a novel immobilised bacterial strain MR12, as a vital bioresource in Cr(VI) bioremediation technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号