首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and Zn exceeded the decrease of the soluble metal concentrations by several orders of magnitude. Hence, desorption of metals must have occurred to maintain the soil solution concentrations. A coupled regression model was developed to describe the transfer of metals from soil to solution and plant shoots. This model was applied to estimate the phytoextraction duration required to decrease the soil Cd concentration from 10 to 0.5 mg kg−1. A biomass production of 1 and 5 t dm ha−1 yr−1 yields a duration of 42 and 11 yr, respectively. Successful phytoextraction operations based on T. caerulescens require an increased biomass production.  相似文献   

2.
Phytoremediation is a promising and cost-effective strategy to manage heavy metal polluted sites. In this experiment, we compared simultaneously phytoextraction and phytostabilisation techniques on a Cd and Zn contaminated soil, through monitoring of plant accumulation and leaching. Lolium perenne plants were cultivated for 2 months under controlled environmental conditions in a 27.6 dm3-pot experiment allowing the collect of leachates. The heavy metal phytoextraction was promoted by adding Na-EDTA (0.5 g kg−1 of soil) in watering solution. Phytostabilisation was assessed by mixing soil with steel shots (1%) before L. perenne sowing. Presence of plants exacerbated heavy metal leaching, by improving soil hydraulic conductivity. Use of EDTA for phytoextraction led to higher concentration of heavy metal in shoots. However, this higher heavy metal extraction was insufficient to satisfactory reduce the heavy metal content in soil, and led to important heavy metal leaching induced by EDTA. On the other hand, addition of steel shots efficiently decreased both Cd and Zn mobility, according to 0.01 M CaCl2 extraction, and leaching. However, improvement of growth conditions by steel shots led to higher heavy metal mass in shoot tissues. Therefore, soil heavy metal mobility and plant metal uptake are not systematically positively correlated.  相似文献   

3.
Metal uptake and its effect on foliar metallothionein 2b (MT2b) mRNA levels were studied in hybrid aspen (Populus tremula × tremuloides) in field conditions. The trees were planted on a site contaminated with several metals, including cadmium (mean 5.1 mg kg−1), chromium (80 mg kg−1), copper (180 mg kg−1), nickel (81 mg kg−1), vanadium (240 mg kg−1) and zinc (520 mg kg−1). Of the ten trace elements analyzed, only Cd and Zn accumulated in the leaves with maximal foliar concentrations of 35 and 2400 mg kg−1 (dry weight), respectively. There was a strong correlation between Cd and Zn concentrations and bioaccumulation factors (concentration in plant/soil) in the leaves, branches and roots, suggesting similar transport mechanisms for these two metals. The levels of MT2b correlated with Cd and Zn concentrations in the leaves, demonstrating that increased MT2b expression is one of the responses of hybrid aspen to chronic metal exposure.  相似文献   

4.
Experiments were conducted to investigate the effects of single and multiple metal contamination (Cd, Pb, Zn, Sb, Cu) on Scots pine seedlings colonised by ectomycorrhizal (ECM) fungi from natural soil inoculum. Seedlings were grown in either contaminated field soil from the site of a chemical accident, soils amended with five metals contaminating the site, or in soil from an uncontaminated control site. Although contaminated and metal-amended soil significantly inhibited root and shoot growth of the Scots pine seedlings, total root tip density was not affected. Of the five metals tested in amended soils, Cd was the most toxic to ECM Scots pine. Field-contaminated soil had a toxic effect on ECM fungi associated with Scots pine seedlings and caused shifts in ECM species composition on ECM seedlings. When compared to soils amended with only one metal, soils amended with a combination of all five metals tested had lower relative toxicity and less accumulation of Pb, Zn and Sb into seedlings. This would indicate that the toxicity of multiple metal contamination cannot be predicted from the individual toxicity of the metals investigated.  相似文献   

5.
Soil amendments previously shown to be effective in reducing metal bioavailability and/or mobility in calcareous metal-polluted soils were tested on a calcareous dredged sediment-derived soil with 26 mg Cd/kg dry soil, 2200 mg Cr/kg dry soil, 220 mg Pb/kg dry soil, and 3000 mg Zn/kg dry soil. The amendments were 5% modified aluminosilicate (AS), 10% w/w lignin, 1% w/w diammonium phosphate (DAP, (NH4)2HPO4), 1% w/w MnO, and 5% w/w CaSO4. In an additional treatment, the contaminated soil was submerged. Endpoints were metal uptake in Salix cinerea and Lumbricus terrestris, and effect on oxidation-reduction potential (ORP) in submerged soils. Results illustrated that the selected soil amendments were not effective in reducing ecological risk to vegetation or soil inhabiting invertebrates, as metal uptake in willows and earthworms did not significantly decrease following their application. Flooding the polluted soil resulted in metal uptake in S. cinerea comparable with concentrations for an uncontaminated soil.  相似文献   

6.
Growth performance and heavy metal uptake by willow (Salix viminalis) from strongly and moderately polluted calcareous soils were investigated in field and growth chamber trials to assess the suitability of willow for phytoremediation. Field uptakes were 2-10 times higher than growth chamber uptakes. Despite high concentrations of cadmium (≥80 mg/kg) and zinc (≥3000 mg/kg) in leaves of willow grown on strongly polluted soil with up to 18 mg Cd/kg, 1400 mg Cu/kg, 500 mg Pb/kg and 3300 mg Zn/kg, it is unsuited on strongly polluted soils because of poor growth. However, willow proved promising on moderately polluted soils (2.5 mg Cd/kg and 400 mg Zn/kg), where it extracted 0.13% of total Cd and 0.29% of the total Zn per year probably representing the most mobile fraction. Cu and Pb are strongly fixed in calcareous soils.  相似文献   

7.
Uptake of organochlorine pesticides and polychlorinated biphenyls from soil and air into radishes was measured at a heavily contaminated field site. The highest contaminant concentrations were found for DDT and its metabolites, and for β-hexachlorocyclohexane. Bioconcentration factor (BCF, defined as a ratio between the contaminant concentration in the plant tissue and concentration in soil) was determined for roots, edible bulbs and shoots. Root BCF values were constant and not correlated to log KOW. A negative correlation between BCF and log KOW was found for edible bulbs. Shoot BCF values were rather constant and varied between 0.01 and 0.22. Resuspended soil particles may facilitate the transport of chemicals from soil to shoots. Elevated POP concentrations found in shoots of radishes grown in the control plot support the hypothesis that the uptake from air was more significant for shoots than the one from soil. The uptake of POPs from air was within the range of theoretical values predicted from log KOA.  相似文献   

8.
The aim of this study was to investigate the effects of metal mobilizing plant-growth beneficial bacterium Phyllobacterium myrsinacearum RC6b on plant growth and Cd, Zn and Pb uptake by Sedum plumbizincicola under laboratory conditions. Among a collection of metal-resistant bacteria, P. myrsinacearum RC6b was specifically chosen as a most favorable metal mobilizer based on its capability of mobilizing high concentrations of Cd, Zn and Pb in soils. P. myrsinacearum RC6b exhibited a high degree of resistance to Cd (350 mg L−1), Zn (1000 mg L−1) and Pb (1200 mg L−1). Furthermore, P. myrsinacearum RC6b showed multiple plant growth beneficial features including the production of 1-aminocyclopropane-1-carboxylic acid deaminase, indole-3-acetic acid, siderophore and solubilization of insoluble phosphate. Inoculation of P. myrsinacearum RC6b significantly increased S. plumbizincicola growth and organ metal concentrations except Pb, which concentration was lower in root and stem of inoculated plants. The results suggest that the metal mobilizing P. myrsinacearum RC6b could be used as an effective inoculant for the improvement of phytoremediation in multi-metal polluted soils.  相似文献   

9.
Some higher plant species have developed heavy metal tolerance strategies which enable them to survive and reproduce in highly metal-contaminated soils. We have investigated such heavy metal uptake and accumulation strategies of two absolute metallophyte species (Armeria maritima ssp. halleri and Cardaminopsis halleri) and one pseudometallophyte (Agrostis tenuis) growing near a former metal smelter. Samples of plant parts and soil were analysed for Zn, Cd, Pb, and Cu. In soil, there were two dominant types of metal concentration gradients with depth. Under the absolute metallophytes, extremely high metal contents were measured in the surficial Ah horizon, followed by a strong decrease in the underlying soil horizons (L(11) and L(12)). Under the pseudometallophyte, metal concentrations in the Ah horizon were much lower and fewer differences were observed in metal concentrations among the Ah, L(11), and L(12) horizons. The concentrations of Zn, Cd, Pb, and Cu in Agrostis tenuis roots were greater than concentrations in leaves, indicating significant metal immobilisation by the roots. For C. halleri, Zn and Cd concentrations in leaves were >20,000 and >100 mg kg(-1), respectively, indicating hyperaccumulation of these elements. Armeria maritima ssp. halleri exhibited root concentrations of Pb and Cu that were 20 and 88 times greater, respectively, than those in green leaves, suggesting an exclusion strategy by metal immobilisation in roots. However, Zn, Cd, Pb, and Cu concentrations in brown leaves of Armeria maritima ssp. halleri were 3-8 times greater than in green leaves, suggesting a second strategy, i.e. detoxification mechanism by leaf fall.  相似文献   

10.
Leek (Allium ameloprasum) was grown in pot trials in two clay loams of contrasting organic contents, with and without indigenous mycorrhizal propagules. Sewage sludges containing varying levels of Cd, Cu and Zn were added. Extractable soil metals, plant growth, major nutrient content and accumulation of metals, and soil microbial indices were investigated. The aim was to establish whether soil organic content and mycorrhizal status affected plant and microbial exposure to these metals. Extractable metals were higher and responses to inputs more pronounced in the arable, lower organic matter soil, although only Cd showed a soil difference in the CaCl2 fraction. There were no metal toxic effects on plants and some evidence to suggest that they promoted growth. Uptake of each metal was higher in the larger plants of the grassland, higher organic matter soil. Inoculation with arbuscular mycorrhizal fungi increased root Cd and Zn concentrations. With the exception of Cd (roots) and Zn (shoots), higher inputs of sludge metals did not increase plant metals. Zn and Cu, but not Cd, concentrations were higher in roots than in shoots.  相似文献   

11.
The effect of increasing soil Zn concentrations on growth and Zn tissue concentrations of a metal-accumulating aspen clone was examined in a dose–response study. Plants were grown in a soil with a low native Zn content which was spiked with Zn salt solutions and subsequently aged. Plant growth was not affected by NH4NO3-extractable soil Zn concentrations up to 60 μg Zn g?1 soil, but it was completely inhibited at extractable concentrations above 90 μg Zn g?1 soil. From these data an effective concentration of 68.5 μg extractable Zn g?1 soil was calculated at which plant growth was reduced by 50%. The obtained information on toxicity threshold concentrations, and the relation between plant Zn accumulation and extractable soil Zn concentrations may be used to assess the suitability of the investigated Populus canescens clone for various phytoremediation strategies. The potential risk of metal transfer into food webs associated with P. canescens stands on Zn-polluted sites may also be estimated.  相似文献   

12.
Remediation by means of soil leaching with ethylenediaminetetraacetic acid (EDTA) is capable of extracting the most labile soil fractions, leaving the residual metals in biologically non-available forms. We evaluated the feasibility of the standardized earthworm (Eisenia fetida) avoidance test for assessing the efficiency of soil remediation of Pb, Zn and Cd polluted soil. Chemical extraction tests (six-step sequential extraction, toxicity characteristic leaching procedure, physiologically based extraction test, diethylenediaminepentaacetic acid extraction) indicated that the mobility, oral bioaccessibility and phytoavailability of Pb, Zn and Cd were consistently reduced. However, the avoidance test showed no significant avoidance of polluted soil in favor of that which had been remediated. Pb, Zn and Cd accumulation in E. fetida mirrored the decreasing pattern of metal potential bioavailability gained by leaching the soil with increasing EDTA concentrations. The calculated bioaccumulation factors indicated the possibility of underestimating the metal bioavailability in soil using chemical extraction tests.  相似文献   

13.
The effects of elevated CO2 on metal species and mobility in the rhizosphere of hyperaccumulator are not well understood. We report an experiment designed to compare the effects of elevated CO2 on Cd/Zn speciation and mobility in the rhizosphere of hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii grown under ambient (350 μl l?1) or elevated (800 μl l?1) CO2 conditions. No difference in solution pH of NHE was observed between ambient and elevated CO2 treatments. For HE, however, elevated CO2 reduced soil solution pH by 0.22 unit, as compared to ambient CO2 conditions. Elevated CO2 increased dissolved organic carbon (DOC) and organic acid levels in soil solution of both ecotypes, but the increase in HE solution was much greater than in NHE solution. After the growth of HE, the concentrations of Cd and Zn in soil solution decreased significantly regardless of CO2 level. The visual MINTEQ speciation model predicted that Cd/Zn–DOM complexes were the dominant species in soil solutions, followed by free Cd2+ and Zn2+ species for both ecotypes. However, Cd/Zn–DOM complexes fraction in soil solution of HE was increased by the elevated CO2 treatment (by 8.01 % for Cd and 8.47 % for Zn, respectively). Resin equilibration experiment results indicated that DOM derived from the rhizosphere of HE under elevated CO2 (HE-DOM-E) (90 % for Cd and 73 % for Zn, respectively) showed greater ability to form complexes with Cd and Zn than those under ambient CO2 (HE-DOM-A) (82 % for Cd and 61 % for Zn, respectively) in the undiluted sample. HE-DOM-E showed greater ability to extract Cd and Zn from soil than HE-DOM-A. It was concluded that elevated CO2 could increase the mobility of Cd and Zn due to the enhanced formation of DOM–metal complexes in the rhizosphere of HE S. alfredii.  相似文献   

14.
Leaching using EDTA applied to a Pb, Zn and Cd polluted soil significantly reduced soil metal concentrations and the pool of metals in labile soil fractions. Metal mobility (Toxicity Characteristic Leaching Procedure), phytoavailability (diethylenetriaminepentaacetic acid extraction) and human oral-bioavailability (Physiologically Based Extraction Test) were reduced by 85-92%, 68-91% and 88-95%, respectively. The metal accumulation capacity of the terrestrial isopod Porcellio scaber (Crustacea) was used as in vivo assay of metal bioavailability, before and after soil remediation. After feeding on metal contaminated soil for two weeks, P. scaber accumulated Pb, Zn and Cd in a concentration dependent manner. The amounts of accumulated metals were, however, higher than expected on the basis of extraction (in vitro) tests. The combined results of chemical extractions and the in vivo test with P. scaber provide a more relevant picture of the availability stripping of metals after soil remediation.  相似文献   

15.
The distribution of the elements Cd, Cr, Cu, Mn, Ni, Pb, Sr, V and Zn has been examined in the horizons of soils under aged Sitka spruce (Picea sitchensis (Bong.) Carr.) stands at a plantation in Northern England. The stands are under first-generation cultivation and are up to 33 years old. Cadmium, Mn, Pb and Zn concentrations were consistently higher in the organic layers than in the underlying mineral soil. This contrasted with the situation for Sr and V. Cadmium, Pb and Zn all showed an increase in concentration in the L + F horizons with stand age and a corresponding increase in the difference between L + F horizon concentrations. Soil pH declined with increasing stand age. Cadmium, Cr, Pb and Zn were all present at higher concentrations in the F horizon than in any other, while Cu and Ni were relatively constant through all the horizons studied. For all nine elements, the H horizon was the largest store of the three organic layers. Calculated rates of accumulation of Cd, Pb and Zn in the L + F horizons gave good agreement with estimated regional atmospheric deposition rates. In comparison to atmospheric deposition, biological mobilisation and deposition of Cd, Pb and Zn make a relatively minor contribution to the surface soil metal burden. Cadmium appeared to be the most readily leached of these three metals from the forest floor, although some transfer of atmospherically-derived Pb to the H+ soil horizons was indicated.  相似文献   

16.
The analysis of the horizons of 12 soil profiles confirm occasionally significant levels of Cd, Pb and Zn contamination in the areas surrounding two lead and zinc smelters in the North of France. A pedological approach enabled the original Cd, Pb and Zn content of the horizons to be estimated, based on physico-chemical characteristics of soil unaffected by contamination. The main contamination was found in the upper 20-30 cm. Traces of Cd and Zn contamination were found at a depth of around 2 m. The mobility of the metals may be classified in the following order: Cd>Pb> or =Zn. The concentration profile of a metal seems insufficient to evaluate its movement as the metal could have been leached beyond the contaminated horizons. The depth reached by the metals increases with their concentration in the surface horizon; a decrease in pH and an increase in sand content seem to facilitate their movement. The depth reached by Zn increases with the organic carbon content in the surface horizon. Earthworm galleries act as paths via which metals migrate downwards  相似文献   

17.
Concentration of ten metals (Cd, Cr, Co, Cu, Fe, Li, Mn, Ni, Pb and Zn) were analyzed in the egg contents, prey and soil samples of little egret (Egretta garzetta) and cattle egret (Bubulcus ibis) from two Headworks to determine habitat and species-specific differences; to assess the importance of prey and habitat contamination as an exposure source for heavy metals. Concentration of Cu, Mn, Cr and Pb in egg contents, Fe, Co, Cu, Mn, Zn in prey and Fe, Co, Cu, Ni, Li in surface soils were significantly different (P < 0.05). Mean metal concentrations of Cr, Pb and Cd were relatively higher in little egret whereas Cu and Mn were higher in the egg contents of cattle egret. The mean concentrations of Cu, Mn and Zn were higher in prey samples of cattle egrets and Cr, Cd and Pb in prey samples of little egrets. In soil samples collected from little egret heronries metal concentrations were higher except Cu and Ni. Correlation Analysis and Hierarchical Agglomerative Cluster Analysis (HACA) identified relatively similar associations of metals and their source identification. Metals such as Fe, Cu, Mn, and Li were related with geochemical origin from parent rock material as well as anthropogenic input whereas Cr, Cd, Pb, Ni, Co and Zn were associated mostly with anthropogenic activities. The study suggested that eggs are useful bio-monitor of local heavy metal contamination.  相似文献   

18.
19.
Soil amendments based on crop nutrient requirements are considered a beneficial management practice. A greenhouse experiment with maize seeds (Zea mays L.) was conducted to assess the inputs of metals to agricultural land from soil amendments. Maize seeds were exposed to a municipal solid waste (MSW) compost (50 Mg ha−1) and NPK fertilizer (33 g plant−1) amendments considering N plant requirement until the harvesting stage with the following objectives: (1) determine the accumulation of total and available metals in soil and (2) know the uptake and ability of translocation of metals from roots to different plant parts, and their effect on biomass production. The results showed that MSW compost increased Cu, Pb and Zn in soil, while NPK fertilizer increased Cd and Ni, but decreased Hg concentration in soil. The root system acted as a barrier for Cr, Ni, Pb and Hg, so metal uptake and translocation were lower in aerial plant parts. Biomass production was significantly enhanced in both MSW and NPK fertilizer-amended soils (17%), but also provoked slight increases of metals and their bioavailability in soil. The highest metal concentrations were observed in roots, but there were no significant differences between plants growing in amended soil and the control soil. Important differences were found for aerial plant parts as regards metal accumulation, whereas metal levels in grains were negligible in all the treatments.  相似文献   

20.
Okorie A  Entwistle J  Dean JR 《Chemosphere》2012,86(5):460-467
The pseudo-total and oral bioaccessible concentration of six potentially toxic elements (PTEs) in urban street dust was investigated. Typical pseudo-total concentrations across the sampling sites ranged from 4.4 to 8.6 mg kg−1 for As, 0.2-3.6 mg kg−1 for Cd, 25-217 mg kg−1 for Cu, 14-46 mg kg−1 for Ni, 70-4261 mg kg−1 for Pb, and, 111-652 mg kg−1 for Zn. This data compared favourably with other urban street dust samples collected and analysed in a variety of cities globally; the exception was the high level of Pb determined in a specific sample in this study. The oral bioaccessibility of PTEs in street dust is also assessed using in vitro gastrointestinal extraction (Unified Bioaccessibility Method, UBM). Based on a worst case scenario the oral bioaccessibility data estimated that Cd and Zn had the highest % bioaccessible fractions (median >45%) while the other PTEs i.e. As, Cu, Ni and Pb had lower % bioaccessible fractions (median <35%). The pseudo-total and bioaccessible concentrations of PTEs in the samples has been compared to estimated tolerable daily intake values based on unintentional soil/dust consumption. Cadmium, Cu and Ni are well within the oral tolerable daily intake rates. With respect to As and Pb, only the latter exceeds the TDIoral if we model ingestion rate based on atmospheric ‘dustiness’ rather than the US EPA (2008) unintentional soil/dust consumption rate of 100 mg d−1. We consider it unlikely that even a child with pica tendencies would ingest as much as 100 mg soil/dust during a daily visit to the city centre, and in particular to the sites with elevated Pb concentrations observed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号