共查询到15条相似文献,搜索用时 15 毫秒
1.
Assessment of heavy metal contamination in Hindon River sediments: a chemometric and geochemical approach 总被引:22,自引:0,他引:22
The aim of this study was to assess the level of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the surface sediments of the Hindon River, India that receives both treated and untreated municipal and industrial discharges generated in and around Ghaziabad, India. Mean metals concentrations (mg kg−1) were in the range of; Cu: 21.70-280.33, Cd: 0.29-6.29, Fe: 4151.75-17318.75, Zn: 22.22.50-288.29, Ni: 13.90-57.66, Mn: 49.55-516.97, Cr: 17.48-33.70 and Pb: 27.56-313.57 respectively. Chemometric analysis was applied to identify contribution sources by heavy metals while geochemical approaches (enrichment factor and geo-accumulation index) were exploited for the assessment of the enrichment and contamination level of heavy metals in the river sediments. Chemometric analysis suggested anthropic origin of Cu, Cd, Pb, Zn, and Ni while Fe showed lithogenic origin. Mn and Cr was associated and controlled by mixed origin. Geochemical approach confirms the anthropogenic influence of heavy metal pollution in the river sediments. The study suggests that a complementary approach that integrates chemometric analysis, sediment quality criteria, and geochemical investigation should be considered in order to provide a more accurate appraisal of the heavy metal pollution in river sediments. Consequently, it may serve to undertake and design effective strategies and remedial measures to prevent further deterioration of the river ecosystem in future. 相似文献
2.
Eighty-year sedimentary record of heavy metal inputs in the intertidal sediments from the Nanliu River estuary, Beibu Gulf of South China Sea 总被引:6,自引:0,他引:6
210Pb analysis in the sediment core C11 was used to reconstruct the historical fluxes of Hg, Cu, Pb, Zn, Cd, Cr and As in the Nanliu River estuary during the last ∼81 year. The 210Pbxs-derived sedimentation rates, molar C/N ratios, enrichment factors and excess fluxes indicated that the natural inputs prevailed till the early 1990s. When the erosion related to land-use modifications enhanced, it promoted higher accumulation rates of the sedimentary material. In the recent sediments they were found a moderate enrichment of Cd and Hg (maximum 3.5- and 2.8-fold corresponding to the local background levels, respectively) and a slight enrichment of Cr, Zn, As and Pb (maximum 1.3-, 1.3-, 1.3- and 1.2-fold, respectively). The excess metal fluxes also showed a consistently increasing tread since the early 1990s, which could be associated with the intensive use of phosphate fertilizers and the combustion of fossil fuels derived from human activities. 相似文献
3.
Using stable lead isotopes to trace heavy metal contamination sources in sediments of Xiangjiang and Lishui Rivers in China 总被引:1,自引:0,他引:1
Lead isotopes and heavy metal concentrations were measured in two sediment cores sampled in estuaries of Xiangjiang and Lishui Rivers in Hunan province, China. The presence of anthropogenic contribution was observed in both sediments, especially in Xiangjiang sediment. In the Xiangjiang sediment, the lower 206Pb/207Pb and higher 208Pb/206Pb ratio, than natural Pb isotope signature (1.198 and 2.075 for 206Pb/207Pb and 208Pb/206Pb, respectively), indicated a significant input of non-indigenous Pb with low 206Pb/207Pb and high 208Pb/206Pb. The corresponding concentrations of heavy metals (As, Cd, Zn, Mn and Pb) were much higher than natural values, suggesting the contaminations of heavy metals from extensive ore-mining activities in the region. 相似文献
4.
The concentrations of heavy metals (Cr, Cd, Hg, Cu, Zn, Pb and As) in the water, sediment, and fish were investigated in the middle and lower reaches of the Yangtze River, China. Potential ecological risk analysis of sediment heavy metal concentrations indicated that six sites in the middle reach, half of the sites in the lower reach, and two sites in lakes, posed moderate or considerable ecological risk. Health risk analysis of individual heavy metals in fish tissue indicated safe levels for the general population and for fisherman but, in combination, there was a possible risk in terms of total target hazard quotients. Correlation analysis and PCA found that heavy metals (Hg, Cd, Pb, Cr, Cu, and Zn) may be mainly derived from metal processing, electroplating industries, industrial wastewater, and domestic sewage. Hg may also originate from coal combustion. Significant positive correlations between TN and As were observed. 相似文献
5.
选取滦河干流为研究对象,采集表层沉积物并分析其粒径分布、营养元素(N、P、C、S)及重金属(Cd、Ni、Cu、Zn、Cr和Pb)含量分布特征,对重金属采用富集系数法进行源解析,并利用地积累指数法、污染指数法和潜在生态危害指数法进行系统性的生态风险评价。结果表明:沉积物营养元素TN、TP、TC、TS均值为1 047.6、1 427.4、20 060.9和1 564.2 mg·kg-1,且分布存在空间差异性;粒径分布特征为粉砂或砂占比重大,黏土占比重小;重金属Cd、Cu、Ni、Zn、Cr和Pb含量均值分别为0.28、40.48、31.48、88.67、16.45和21.5 mg·kg-1,Cd、Cu、Ni、Zn超过河北省土壤背景值;Cd富集系数均值为2.31,其污染主要源是人为输入,其余重金属未见明显富集现象;相关性分析和主成分分析表明 Cd与Cr、Cu、Ni、Zn呈显著正相关,Cr与Cu、Ni、Zn呈显著正相关,Pb与Fe、TP呈显著正相关,Cu与Ni、Zn呈显著正相关,Ni与Zn呈显著正相关;基于地累积指数法得Cd为重金属首要污染物;单项生态危害指数均值大小顺序为Cd(94.39) > Cu(9.28) > Ni(5.11) > Pb(2.16) > Zn(1.13) > Cr(0.48);沉积物风险指数(SPI)相应等级为低风险级别(SPI=2.75<5),且整体潜在生态风险指数(RI)相应的亦为低生态风险(RI=112.561<150)。 相似文献
6.
Zhang R Wu F Liu C Fu P Li W Wang L Liao H Guo J 《Environmental pollution (Barking, Essex : 1987)》2008,152(2):366-372
In this study, the characteristics of organic phosphorus (Po) fractions in sediments of six lakes from the middle and lower reaches of Yangtze River region and Southwestern China Plateau, China were investigated using a soil Po fractionation scheme, and the relationships between Po, inorganic phosphorus (Pi) and pollution status were also discussed. The results show that the rank order of Po fractions was: residual Po>HCl-Po>fulvic acid-P>humic acid-P>NaHCO3-Po, with their average relative proportion 8.7:4.6:3.2:2.1:1.0. Po fractions, especially nonlabile Po, were significantly correlated with organic matter, Po and NaOH-Pi. Different distribution patterns of P fractions were observed in those two different regions. Po fractions in the heavily polluted sediments were higher than those in moderately and no polluted sediments, it is suggested that Po should be paid more attention in the lake eutrophication investigation. 相似文献
7.
分析了黄河三角洲实验区内表层沉积物中重金属的空间分布特征,评价了其污染状况和生态风险,并根据评价结果提出了相应的重金属污染防控措施。结果表明:表层沉积物(0~20 cm)中Cu、Zn、Cr、Cd、Pb、Ni、As和Hg的平均质量分数分别为24.87,73.75,78.16,0.21,25.66,34.66,13.68,0.02 mg·kg−1;各重金属均呈现南岸高于北岸的空间分布特征,且所有元素质量分数的最高值均出现在景区“鸟岛”处;内梅罗综合污染指数分析表明,鸟岛属于中污染到重污染,其余采样点均为轻污染;地累积指数评价表明沉积物中Cd和Hg污染相对严重;潜在生态风险指数表明研究区总体属于轻微-中等生态危害。黄河三角洲邻近核心区的实验区表层沉积物中重金属综合污染程度较低,但存在局部污染较重的区域,Cd和Hg是主要的潜在生态风险因子。基于以上研究结果,建议针对黄河三角洲实验区采取预防为主的防控策略,同时应加强区内Cd和Hg的监测并适时开展修复工作。 相似文献
8.
Heavy metal pollution status in surface sediments of Swan Lake lagoon and Rongcheng Bay in the northern Yellow Sea 总被引:1,自引:0,他引:1
The national ‘Shandong Peninsula Blue Economic Zone Development Plan’ compels the further understanding of the distribution and potential risk of metals pollution in the east coast of China, where the rapid economic and urban development have been taken off and metal pollution has become a noticeable problem. Surface sediments collected from the largest swan habitat in Asia, the Swan Lake lagoon and the surrounding coastal area in Rongcheng Bay in northern Yellow Sea, were analyzed for the total metal concentrations and chemical phase partitioning of five heavy metals (Cu, Zn, Pb, Cd, and Cr). Metal contents in the studied region have increased significantly in the past decade. The speciation analyzed by the sequential extraction showed that Zn and Cr were present dominantly in the residual fraction and thus of low bioavailability, while Cd, Pb and Cu were found mostly in the non-residual fraction thus of high potential availability, indicating significant anthropogenic sources. Among the five metals, Cd is the most outstanding pollutant and presents high risk, and half of the surface sediments in the studied region had a 21% probability of toxicity based on the mean Effect Range-Median Quotient. At some stations with comparable total metal contents, remarkably different non-residual fraction portions were determined, pointing out that site-specific risk assessment integrating speciation is crucial for better management practices of coastal sediments. 相似文献
9.
对黄河全流域表层沉积物样品中重金属元素 (As、Cd、Cr、Cu、Ni、Pb、Zn、V、Co) 的赋存形态进行分析,发现Cd的可利用态占比较高,其余重金属以残渣态为主。基于可利用态重金属含量计算重金属风险评价标准、次生相和原生相分布比值,从而对表层沉积物中重金属的生态风险进行评估。结果表明,整个流域中Cd的生态风险最高。此外,Cd和Pb等重金属在M6点位迁移性较高,存在一定的生态风险。对可利用态重金属进行人体健康风险评价,发现M6点位儿童的致癌 (8.76×10−6) 和非致癌风险总值 (0.32) 最高。成人与儿童非致癌健康风险总值中As的贡献率最大 (61.28%和62.71%) ,致癌健康风险总值中As的贡献率也最大 (75.91%和75.98%) ,但总体均未超过美国环境总署推荐的人体最大可接受范围。本研究可为识别黄河干流表层沉积物中重金属风险及制定相应污染防控策略提供参考。 相似文献
10.
Heavy metal (Cu, Zn, Cd and Pb) contamination of vegetables in urban India: a case study in Varanasi 总被引:8,自引:0,他引:8
Sharma RK Agrawal M Marshall FM 《Environmental pollution (Barking, Essex : 1987)》2008,154(2):254-263
The contributions of heavy metals in selected vegetables through atmospheric deposition were quantified in an urban area of India. Deposition rate of Zn was recorded maximum followed by Cu, Cd and Pb. The concentrations of Zn and Cu were highest in Brassica oleracea, Cd in Abelmoschus esculentus and B. oleracea, while Pb was highest in Beta vulgaris. Heavy metal pollution index showed that B. oleracea was maximally contaminated with heavy metals followed by A. esculentus and then B. vulgaris. The results of washing showed that atmospheric deposition has contributed to the increased levels of heavy metals in vegetables. Both Cu and Cd posed health risk to local population via test vegetables consumption, whereas Pb posed the same only through B. oleracea. The study concludes that atmospheric depositions can elevate the levels of heavy metals in vegetables during marketing having potential health hazards to consumers. 相似文献
11.
Occurrence and possible sources of polychlorinated biphenyls in surface sediments from the Wuhan reach of the Yangtze River, China 总被引:8,自引:0,他引:8
Twenty-seven surface sediment samples were collected from the mainstream and eight tributaries of the Wuhan reach of the Yangtze River, China, in 2005, in order to assess the distribution, possible sources, and potential risk of polychlorinated biphenyls (PCBs) in the environment. The total concentrations of PCBs (the sum of 39 congeners) ranged from 1.2 to 45.1 ng g−1 dry weight, with a mean value of 9.2 ng g−1. Sediment samples with the highest PCB concentrations came from the tributary sites, which are closer to PCB sources. Conversely, PCB concentrations in the sediment from the mainstream sites of Yangtze River were relatively low. The observed PCB levels were higher than those found in the sediments of other rivers in China, but lower than those in river sediments from other urban areas and harbors around the world. Low-chlorinated PCBs, dominated by tetra-PCBs and penta-PCBs, were identified as being prevalent in the surface sediments. Correlation analyses between the PCBs and the geochemistry and heavy metal content of the sediments suggest that the washing of these compounds from the land into the river by floods and heavy rains, or industrial wastewater and domestic sewage, may be the major sources of the PCBs. According to established sediment quality guidelines, the risk of adverse biological effects from the levels of PCBs recorded at most of the studied sites should be insignificant, although the higher concentrations at other sites could cause acute biological damage. 相似文献
12.
Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China 总被引:16,自引:0,他引:16
Bai J Xiao R Cui B Zhang K Wang Q Liu X Gao H Huang L 《Environmental pollution (Barking, Essex : 1987)》2011,159(3):817-824
Soils were sampled in three types of wetlands from the young (A) and old (B) reclaimed regions of the Pearl River Estuary. They were analyzed for total concentrations of heavy metals to investigate their distributions and pollution levels in both regions. Results showed that most heavy metals in ditch and riparian wetlands did not significantly differ from those in reclaimed wetlands in A region, while significantly lower for Cd, Cu, Pb, and Zn in reclaimed wetlands in B region, suggesting higher effects of long-term reclamation. Iron, Cr and Cu were identified as metal pollutants of primary concern and had higher contributions to the total toxic units compared to other metals. Almost all metals exceeded their lowest effect levels and Fe and Cr even exceeded the severe effect levels. Multivariate analysis shows that Fe and Mn are controlled by parent rocks and other metals mainly originate from anthropogenic source. 相似文献
13.
合肥市南淝河不同排口表层沉积物磷形态分布特征 总被引:4,自引:0,他引:4
对合肥市南淝河不同排口处表层沉积物进行了采样,并采用修正后的标准测试程序SMT和钼锑抗紫外分光光度法测定了其中的总磷(TP)、无机磷(IP)、有机磷(OP)、铁/铝磷(Fe/Al-P)和钙磷(Ca-P),同时分析了各形态磷之间以及与沉积物有机质之间的相关性。结果表明,由于各排口附近不同的水动力条件,污染状况以及沉积环境,各排口表层沉积物总磷(TP)的质量分数存在显著差异,其值在771.23~3 065.36 mg/kg之间,除二里河排口(S15)沉积物磷以钙磷(CaP)为主外,其他采样点表层沉积物磷均以铁/铝磷(Fe/Al-P)为主,各形态P的最低值均在位于南淝河上游的S4点,TP、IP、Fe/Al-P的最大值均出现在位于望塘污水厂排口下游60 m处的S6点,潜在释放磷比例最大值在南淝河上游受农业面源污染影响较大的S3点。沉积物各形态磷之间存在着不同程度的相关性,各形态磷与有机质存在着显著的正相关。以上结果表明,南淝河沉积物磷形态分布特征受排口类型影响显著,其中城市污水处理厂尾水可能是受纳水体沉积物重要的磷源。 相似文献
14.
湖北网湖位于长江中游,与长江干流相通,研究其沉积物中重金属分布特征及生态风险评价对长江经济带水质安全和水污染治理具有重要的意义。分析了网湖20个样点0~25 cm深度沉积物中As、Hg、Cu、Zn、Cd、Pb、Cr等7种重金属的质量分数和空间分布特征,利用相关分析和主成分分析探讨了表层沉积物中重金属的来源,并利用地累积指数法、潜在生态风险指数法和一致性沉积物质量基准进行重金属污染评价。结果表明:As、Hg、Cu、Zn、Cd、Pb、Cr等7种重金属的平均质量分数分别为37.5、0.137、108、123、0.283、37.8、108 mg·kg−1。与长江流域其他重要湖泊如巢湖、太湖等相比,网湖沉积物重金属含量处于较高水平。Pearson相关性分析表明,As、Zn、Cd两两之间呈极显著正相关 (p<0.01),这说明其具有同源性,分析主要来自于农业源;Cu和Pb之间也呈极显著正相关 (p<0.01),分析主要来源于交通运输污染源。重金属污染评价结果表明,沉积物整体受到极严重的重金属污染和很强的潜在生态危害,入湖区附近相对较严重,需及时防控和治理。一致性沉积物质量基准评价结果显示,Zn、Cd、Hg和Pb引发生物毒性的概率低于25%,As、Cu和Cr有25%~75%的概率产生有害生物效应。 相似文献
15.
Inconsistency and comprehensiveness of risk assessments for heavy metals in urban surface sediments 总被引:2,自引:0,他引:2
Numerous indices have been developed to assess environmental risk of heavy metals in surface sediments, including the total content based geoaccumulation index (Igeo), exchangeable fraction based risk assessment code (RAC), and biological toxicity test based sediment quality guidelines (SQGs). In this study, the three indices were applied to freshwater surface sediments from 10 sections along an urbanization gradient of the Grand Canal, China to assess the environmental risks of heavy metals (Cu, Pb, Zn, Cd, and Cr) and to understand discrepancies of risk assessment indices and urbanization effects regarding heavy metal contamination. Results showed that Cd, Zn, and Pb were the most enriched metals in urban sections assessed by Igeo and over 95% of the samples exceeded the Zn and Pb thresholds of the effect range low (ERL) of SQGs. According to RAC, Cu, Zn, Cd, and Cr had high risks of adversely affecting the water quality of the Grand Canal due to their remarkable portions of exchangeable fraction in surface sediment. However, Pb showed a relative low risk, and was largely bounded to Fe/Mn oxides in the urban surface sediments. Obviously, the three assessment indices were not consistent with each other in terms of predicting environmental risks attributed to heavy metals in the freshwater surface sediments of this study. It is recommended that risk assessment by SQGs should be revised according to availability and site specificity. However, the combination of the three indices gave us a comprehensive understanding of heavy metal risks in the urban surface sediments of the Grand Canal. 相似文献