首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna   总被引:1,自引:0,他引:1  
The acute toxicity of engineered nanoparticles (NPs) in aquatic environments at high concentrations has been well-established. This study demonstrates that, at a concentration generally considered to be safe in the environment, nano-TiO2 remarkably enhanced the toxicity of copper to Daphnia magna by increasing the copper bioaccumulation. Specifically, at 2 mg L−1 nano-TiO2, the (LC50) of Cu2+ concentration observed to kill half the population, decreased from 111 μg L−1 to 42 μg L−1. Correspondingly, the level of metallothionein decreased from 135 μg g−1 wet weight to 99 μg g−1 wet weight at a Cu2+ level of 100 μg L−1. The copper was found to be adsorbed onto the nano-TiO2, and ingested and accumulated in the animals, thereby causing toxic injury. The nano-TiO2 may compete for free copper ions with sulfhydryl groups, causing the inhibition of the detoxification by metallothioneins.  相似文献   

2.
Meighan MM  Fenus T  Karey E  MacNeil J 《Chemosphere》2011,83(11):1539-1545
In addition to increasing the mobility of metal ions in the soil solution, chelating agents such as EDTA have been reported to alter both the total metal accumulated by plants and its distribution within the plant structures. Here, mature Mini-Sun Hybrid dwarf sunflowers exposed to 300 μM Cd2+ in hydroponic solution had initial translocation rates of at least 0.12 mmol kg−1 h−1 and reached leaf saturation levels within a day when a 3-fold molar excess of EDTA was used. EDTA also promoted cadmium transfer from roots to the shoots. A threefold excess of EDTA increased the translocation factor (TF) 100-fold, resulting in cadmium levels in the leaves of 580 μg g−1 and extracting 1400 μg plant−1. When plants were exposed to dissolved cadmium without EDTA, the vast majority of the metal remained bound to the exterior of the root. The initial accumulation could be successfully modeled with a standard biosorption pseudo second-order kinetic equation. Initial accumulation rates ranged from 0.0359 to 0.262 mg g−1 min−1. The cadmium binding could be cycled, and did not show evidence of saturation under the experimental conditions employed, suggesting it might be a viable biosorbant for aqueous cadmium.  相似文献   

3.
Wu Q  Qu Y  Li X  Wang D 《Chemosphere》2012,87(11):1281-1287
Here we investigated whether the assay system (10-d) in Caenorhabditis elegans can be used to evaluate chronic toxicity of chromium (Cr(VI)) at environmental relevant concentrations ranging from 5.2 μg L−1 to 260 μg L−1. The results indicated that lethality, locomotion behavior as revealed by head thrash, body bend, and forward turn, metabolism as revealed by pumping rate and mean defecation cycle length, intestinal autofluorescence, and ROS production were severely altered in Cr chronically exposed nematodes at environmental relevant concentrations. The most surprising observations were that head thrash, body bend, intestinal autofluorescence, and ROS production in 13 μg L−1 Cr exposed nematodes were significantly influenced. The observed adverse effects of Cr on survival, locomotion behavior, and metabolism were largely due to forming severe intestinal autofluorescence and ROS production. Therefore, our findings demonstrate the usefulness of chronic toxicity assay system in C. elegans in evaluating the chronic toxicity of toxicants at environmental relevant concentrations.  相似文献   

4.
The regulation of endogenous metabolites is still not fully understood in aquatic invertebrates exposed concurrently to toxicants and hypoxia. Despite the prevalence of hypoxia in the aquatic environment, toxicity estimations seldom account for multiple stressors thereby differing from natural conditions. In this study, we examined the influence of hypoxia (<30% O2) on contaminant uptake and the composition of intracellular metabolites in Lumbriculus variegatus exposed to benzo(a)pyrene (B(a)P, 3 μg L−1), chlorpyrifos (CPF, 100 μg L−1) or pentachlorophenol (PCP, 100 μg L−1). Tissue extracts of worms were analyzed for 123 metabolites by gas chromatography–mass spectrometry and metabolite levels were then related to treatments and exposure time. Hypoxia markedly increased the accumulation of B(a)P and CPF, which underlines the significance of oxygen in chemical uptake. The oxygen effect on PCP uptake was less pronounced. Succinate and glycerol-3-phosphate increased significantly (p < 0.0001) following hypoxic treatment, whereas sugars, cysteine, and cholesterol were effectively repressed. The buildup of succinate coupled with the corresponding decline in intracellular 2-oxo- and 2-hydroxy glutaric acid is indicative of an active hypoxia inducible factor mechanism. Glutamate, and TCA cycle intermediates (fumarate, and malate) were disturbed and evident in their marked suppression in worms exposed concurrently to hypoxia and PCP. Clearly, hypoxia was the dominant stressor for individuals exposed to B(a)P or CPF, but to a lesser extent upon PCP treatment. And since oxygen deprivation promotes the accumulation of different toxicants, there may be consequences on species composition of metabolites in natural conditions.  相似文献   

5.
The aim of this study was to determine and quantify effects of copper and lithium in tissues of early juveniles of the ramshorn snail, Marisa cornuarietis. For this purpose, hatchlings of M. cornuarietis were exposed for 7 days to a range of five different sublethal concentrations of copper (5, 10, 25, 50, and 75 μg Cu2+ L−1) and lithium (50, 100, 200, 1000, and 5000 μg Li+ L−1). Both metals changed the tissue structure of epidermis, hepatopancreas, and gills, varying between slight and strong reactions, depending on the copper and lithium concentration. The histopathological changes included alterations in epithelial and mucous cells of the epidermis, swelling of hepatopancreatic digestive cells, alterations in the number of basophilic cells, abnormal apices of digestive cells, irregularly shaped cilia and changes in the amount of mucus in the gills. The most sensible organ in M. cornuarietis indicating Cu or Li pollution is the hepatopancreas (LOECs were 10 μg Cu2+ L−1, or 200 μg Li+ L−1). In epidermis, mantle and gills relevant effects occurred with higher LOECs (50 μg Cu2+ L−1, or 1000 μg Li+ L−1). Base on LOECs, our results indicated that histopathological endpoints are high sensitivity to copper and lithium compared to endpoints for embryonic developmental toxicity.  相似文献   

6.
The present investigation determined the effects of epibrassinolide (EBL) on the levels of indole-3-acetic acid (IAA), abscisic acid (ABA), and polyamine (PA) and antioxidant potential of 7-d old Raphanus sativus L. cv. ‘Pusa chetki’ seedlings grown under Cr (VI) metal stress. Reduced titers of free (0.767 μg g−1 FW) and bound (0.545 μg g−1 FW) IAA in Cr (VI) stressed seedlings were observed over untreated control. Supplementations of EBL to Cr (VI) stressed seedlings were able to enhance both free (2.14-5.68 μg g−1 FW) and bound IAA (2.45-7.78 μg g−1 FW) concentrations in comparison to Cr (VI) metal treatment alone. Significant rise in free (13.49 μg g−1 FW) and bound (12.17 μg g−1 FW) ABA contents were noticed for Cr (VI) stressed seedlings when compared to untreated control. No significant increase in ABA contents were recorded for Cr (VI) stressed seedlings upon supplementation with EBL over Cr (VI) treatment alone. A significant increase in Put (18.40 μg g−1 FW) and Cad (9.08 μg g−1 FW) contents were found for 10−9 M EBL plus Cr (VI) metal treatments when compared to Cr (VI) treatment alone. Spermidine (Spd) contents were found to decline significantly for EBL treatment alone or when supplemented with Cr (VI) treatments over untreated controls and Cr (VI) treatment alone. Antioxidant levels were found to enhance, with glutathione (57.98 mg g−1 FW), proline (4.97 mg g−1 FW), glycinebetaine (39.01 μmol mL−1), ascorbic acid (3.17 mg g−1 FW) and phytochelatins (65.69 μmol g−1 FW) contents noted for EBL supplemented to Cr (VI) metal solution over Cr (VI) treatment alone. Reduced activities of guaiacol peroxidase (0.391 U mg−1 protein) and catalase (0.221 U mg−1 protein) and enhanced activities of glutathione reductase (7.14 U mg−1 protein), superoxide dismutase (15.20 U mg−1 protein) and ascorbate peroxidase (4.31 U mg−1 protein) were observed in seedlings treated with EBL plus Cr (VI) over Cr metal treatment alone. Reduced MDA (2.55 μmol g−1 FW) and H2O2 (33.24 μmol g−1 FW) contents were recorded for 10−9 M EBL supplemented to Cr (VI) stress over Cr (VI) treatment alone. Enhancement in free radical scavenging potential as indicated by higher values of 1,1-diphenylpicrylhydrazyl, deoxyribose and reducing power activity assays, and increased levels of phenols and soluble sugars also showed significant influence of EBL in alleviating Cr (VI) stress in radish seedlings.  相似文献   

7.
Sediment quality guidelines (SQGs) assess the ability of bottom sediment to sustain healthy infauna and water quality guidelines (WQGs) provide protection for a designated percentage of aquatic species. Filter-feeding marine species, e.g. oysters and mussels, acquire food from particles in the water column and protection of these animals is not provided by SQGs or WQGs. The current work investigated the relationship between metal (Cu, Zn) concentrations in total and fine-fraction (<62.5 μm) surficial sediment digested in a range of acids and chelating agents and oyster tissue metal concentrations. A strong correlation between oyster tissue Cu and Zn concentrations and fine-fraction surficial sediment digested in 1 M HCl provided a sedimentary guideline which predicted tissue metal concentrations in oysters and established a level (<45 μg g−1 and <1000 μg g−1, respectively) for protecting oysters from exceeding human consumption levels (70 μg g−1 and 1000 μg g−1, respectively).  相似文献   

8.
Shao MF  Zhang T  Fang HH  Li X 《Chemosphere》2011,85(1):1-6
Copepods have been widely used to evaluate toxicity of metals present in marine environments. However, a technical difficulty is to understand the possible routes of metal uptake and to identify in which tissues or organs metals are being accumulated. Traditional techniques are hard to be employed once each organ has to be analyzed separately. Autoradiography is an alternative technique to circumvent this limitation, since metal distribution in tissues can be visualized and quantified, even in small organisms like copepods. In the present study, accumulation and distribution of 64Cu in the copepod Calanus hyperboreus was studied using autoradiography. Copepods were exposed for 2 h to copper (2.3 mg L−1; 1.08 MBq 64Cu mg−1 Cu) and then allowed to depurate for 2 h in clean seawater. Total 64Cu was determined by gamma-spectrometry after a metal exposure and a depuration period. 64Cu distribution was determined based on images generated by autoradiography. Metal accumulation was observed on all external surfaces of the copepods, being accumulated mostly on the ventral region, followed by dorsal, urossoma and internal regions. After depuration, radioactivity levels had a decrease in the sum of external body surface. Our results show that copper uptake by C. hyperboreus is fast and that a non-negligible proportion of the accumulated metal can reach internal tissues, which may lead to detrimental physiological effects. Moreover, whole-body autoradiography was demonstrated to be an efficient technique to study copper accumulation and body distribution in a very small organism such as the copepod C. hyperboreus.  相似文献   

9.
Abamectin is used as an acaricide and insecticide for fruits, vegetables and ornamental plants, as well as a parasiticide for animals. One of the major problems of applying pesticides to crops is the likelihood of contaminating aquatic ecosystems by drift or runoff. Therefore, toxicity tests in the laboratory are important tools to predict the effects of chemical substances in aquatic ecosystems. The aim of this study was to assess the potential hazards of abamectin to the freshwater biota and consequently the possible losses of ecological services in contaminated water bodies. For this purpose, we identified the toxicity of abamectin on daphnids, insects and fish. Abamectin was highly toxic, with an EC50 48 h for Daphnia similis of 5.1 ng L−1, LC50 96 h for Chironomus xanthus of 2.67 μg L−1 and LC50 48 h for Danio rerio of 33 μg L−1.  相似文献   

10.
Cima F  Ballarin L 《Chemosphere》2012,89(1):19-29
After the widespread ban of TBT, due to its severe impact on coastal biocoenoses, mainly related to its immunosuppressive effects on both invertebrates and vertebrates, alternative biocides such as Cu(I) salts and the triazine Irgarol 1051, the latter previously used in agriculture as a herbicide, have been massively introduced in combined formulations for antifouling paints against a wide spectrum of fouling organisms. Using short-term (60 min) haemocyte cultures of the colonial ascidian Botryllus schlosseri exposed to various sublethal concentrations of copper(I) chloride (LC50 = 281 μM, i.e., 17.8 mg Cu L−1) and Irgarol 1051 (LC50 > 500 μM, i.e., >127 mg L−1), we evaluated their immunotoxic effects through a series of cytochemical assays previously used for organotin compounds. Both compounds can induce dose-dependent immunosuppression, acting on different cellular targets and altering many activities of immunocytes but, unlike TBT, did not have significant effects on cell morphology. Generally, Cu(I) appeared to be more toxic than Irgarol 1051: it significantly (< 0.05) inhibited yeast phagocytosis at 0.1 μM (∼10 μg L−1), and affected calcium homeostasis and mitochondrial cytochrome-c oxidase activity at 0.01 μM (∼1 μg L−1). Both substances were able to change membrane permeability, induce apoptosis from concentrations of 0.1 μM (∼10 μg L−1) and 200 μM (∼50 mg L−1) for Cu(I) and Irgarol 1051, respectively, and alter the activity of hydrolases. Both Cu(I) and Irgarol 1051 inhibited the activity of phenoloxidase, but did not show any interactive effect when co-present in the exposure medium, suggesting different mechanisms of action.  相似文献   

11.
We report the effect of lindane on fish experimentally exposed to lindane. Sublethal toxicity was assessed through (a) changes in histopathology; (b) the activity of GST in different organs; and (c) bioaccumulation in exposed fish. We present a survey on toxic effects of lindane at these three levels, proposing a sequence of dose-dependent effects. Physiological damage was reversible at lowest doses, but severe at the highest, including damage consistent with fibrosis in liver and karyolitic nucleus in brain of both studied species. Exposure of Jenynsia multidentata above 6 μg L−1 caused activation a GST in liver and gills, followed by inhibition at 75 μg L−1. Interestingly, the bioaccumulation rate was suddenly increased when GST was inhibited. Corydoras paleatus exposed to 6.0 μg L−1 lindane did not present significant changes in GST activity; however, enzymatic inhibition was observed above 25 μg L−1. The bioaccumulation rate in C. paleatus remained constant throughout the experiments. All in all, these results evidence that C. paleatus is more sensitive to lindane than J. multidentata.  相似文献   

12.
We assessed changes in spontaneous swimming activity and acetylcholinesterase (AchE) activity of Jenynsia multidentata exposed to Endosulfan (EDS). Females of J. multidentata were exposed to 0.072 and 1.4 μg L−1 EDS. Average speed and movement percentage were recorded during 48 h. We also exposed females to EDS at five concentrations between 0.072 and 1.4 μg L−1 during 24 h, and measured the AchE activity in brain and muscle. At 0.072 μg L−1 EDS swimming motility decreased relative to the control group after 45 h, while at 1.4 μg L−1 EDS swimming motility decreased after 24 h. AchE activity significantly decreased in muscle when J. multidentata were exposed to EDS above 0.072 μg L−1, while no significant changes were observed in brain. Thus, changes in swimming activity and AchE activity in muscle are good biomarkers of exposure to EDS in J. multidentata.  相似文献   

13.
Toxicity studies tend to use pure pesticides with single organisms. However, natural systems are complex and biological communities diverse. The organophosphate pesticide propetamphos (PPT) has been found exceeding regulatory limits (100 ng L−1) in rivers. We address whether solution properties affect the fate of Analar (Analar-PPT) or industrial PPT (PPT-Ind) propetamphos formulations and whether propetamphos and metal toxicant effects are additive, antagonistic or synergistic? The sorption, desorption, biodegradation and microbial toxicology of Analar-PPT and PPT-Ind were investigated in Conwy River and estuary sediment. Results showed elevated salinity enhanced PPT sorption, while higher salinities increased PPT-Ind retention. Higher dissolved organic matter (DOM) and low salinity slowed Analar-PPT biodegradation (1.9 × 10−3 h−1). Analar-PPT and PPT-Ind biodegradation was further reduced by low salinity, high DOM and dissolved Zn and Pb (6.3 × 10−4 h−1, 1100 h t½ for Analar-PPT; 7.5 × 10−4 h−1, 924 h t½ for PPT-Ind). Toxicity effects of PPT, Zn and Pb in equitoxic ratio were higher for PPT-Ind (4.7 μg PPT-Ind g−1; 581 μg Zn g−1; 395 μg Pb g−1) than for Analar-PPT (34.6 μg PPT g−1; 312 μg Zn g−1; 212 μg Pb g−1) whilst a toxicant ratio 1:100:10 suggested small quantities of Analar-PPT (EC10 = 0.06 μg g−1) affected microbial communities. The combined toxicity effect was more than additive. Thus, industrial formulations and pollutant mixtures should be considered when assessing environmental toxicity.  相似文献   

14.
The increased use of silver nanomaterials presents a risk to aquatic systems due to the high toxicity of silver. The stability, dissolution rates and toxicity of citrate- and polyvinylpyrrolidone-coated silver nanoparticles (AgNPs) were investigated in synthetic freshwater and natural seawater media, with the effects of natural organic matter investigated in freshwater. When sterically stabilised by the large PVP molecules, AgNPs were more stable than when charge-stabilised using citrate, and were even relatively stable in seawater. In freshwater and seawater, citrate-coated AgNPs (Ag–Cit) had a faster rate of dissolution than PVP-coated AgNPs (Ag–PVP), while micron-sized silver exhibited the slowest dissolution rate. However, similar dissolved silver was measured for both AgNPs after 72 h in freshwater (500–600 μg L−1) and seawater (1300–1500 μg L−1), with higher concentrations in seawater attributed to chloride complexation. When determined on a mass basis, the 72-h IC50 (inhibitory concentration giving 50% reduction in algal growth rate) for Pseudokirchneriella subcapitata and Phaeodactylum tricornutum and the 48-h LC50 for Ceriodaphnia dubia exposure to Ag+ (1.1, 400 and 0.11 μg L−1, respectively), Ag–Cit (3.0, 2380 and 0.15 μg L−1, respectively) and Ag–PVP (19.5, 3690 and 2.0 μg L−1, respectively) varied widely, with toxicity in the order Ag+ > Ag–Cit > Ag–PVP. Micron-sized silver treatments elicited much lower toxicity than ionic Ag+ or AgNP to P. subcapitata. However, when related to the dissolved silver released from the nanoparticles the toxicities were similar to ionic silver treatments. The presence of natural organic matter stabilised the particles and reduced toxicity in freshwater. These results indicate that dissolved silver was responsible for the toxicity and highlight the need to account for matrix components such as chloride and organic matter in natural waters that influence AgNP fate and mitigate toxicity.  相似文献   

15.
We used Caenorhabditis elegans to investigate whether acute exposure to TiO2-NPs at the concentration of 20 μg L−1 reflecting predicted environmental relevant concentration and 25 mg L−1 reflecting concentration in food can cause toxicity on nematodes with mutations of susceptible genes. Among examined mutants associated with oxidative stress and stress response, we found that genes of sod-2, sod-3, mtl-2, and hsp-16.48 might be susceptible for TiO2-NPs toxicity. Mutations of these genes altered functions of both possible primary and secondary targeted organs in nematodes exposed to 25 mg L−1 of TiO2-NPs for 24-h. Mutations of these genes caused similar expression patterns of genes required for oxidative stress in TiO2-NPs exposed mutant nematodes, implying their similar mechanisms to form the susceptible property. Nevertheless, acute exposure to 20 μg L−1 of TiO2-NPs for 24-h and 25 mg L−1 of TiO2-NPs for 0.48-h or 5.71-h did not influence functions of both possible primary and secondary targeted organs in sod-2, sod-3, mtl-2, and hsp-16.48 mutants. Therefore, our results suggest the relatively safe property of acute exposure to TiO2-NPs with certain durations at predicted environmental relevant concentrations or concentrations comparable to those in food in nematodes with mutations of some susceptible genes.  相似文献   

16.
The effects of the herbicide atrazine on the gill of the freshwater fish Prochilodus lineatus were evaluated after exposure of fish to 2, 10 and 25 μg L−1 atrazine during 48 h (acute exposure) and 14 d (subchronic exposure). Ions and osmolality were measured in plasma and gill samples were taken to determine the Na+/K+-ATPase (NKA) and carbonic anhydrase (CA) activities and for morphological analysis. Plasma osmolality and Na+ and Cl ions changed depending on atrazine concentration, but atrazine exposure had no effect on the Na+/Cl ratio. NKA activity did not change after atrazine exposure, but CA activity decreased in fish exposed to 25 μg L−1 for 14 d. Gill MRC density decreased after acute exposure but did not change in fish exposed to the subchronic treatment. The MRC density at the epithelial surface increased in fish exposed to 25 μg L−1, and the MRC fractional area (MRCFA) increased in fish exposed to 10 μg L−1. The changes in MRCs provide evidence of morphological adjustments to maintain ionic homeostasis in spite of the inhibition of CA activity at the highest atrazine concentration.  相似文献   

17.
Hoffmann F  Kloas W 《Chemosphere》2012,87(11):1246-1253
Endocrine disrupting compounds (EDCs) are well known to interfere with the hormone system of aquatic vertebrates and to affect their reproductive biology. 17α-Methyldihydrotestosterone (MDHT) is a widely used model compound for the assessment of androgenic EDCs, because it binds with high affinity to nuclear androgen receptors. It was previously shown to affect various aspects of reproductive biology in aquatic vertebrates, however, evidence for MDHT affecting mating behavior of aquatic vertebrate species is lacking. In order to test the assumption that MDHT affects reproductive behavior of aquatic vertebrates, we exposed male and female Xenopuslaevis to three environmentally relevant concentrations of MDHT (30.45 ng L−1, 3.05 μg L−1 and 30.45 μg L−1). In males, MDHT at all concentrations led to enhanced levels of advertisement calling and decreased the relative proportions of rasping, a call type characterizing a sexually unaroused state of the male, indicating an increase in sexual arousal of MDHT exposed males. Temporal and spectral parameters of the advertisement call itself, however, were not affected by MDHT exposure. In females, MDHT (30.45 ng L−1) did not have any effects, while MDHT at 3.05 μg L−1 increased female receptivity, increased the duration of time females spent close to the speaker playing male advertisement calls and reduced their latency to respond. MDHT at 30.45 μg L−1, on the other hand, decreased female receptivity and increased their latency to respond. In summary, this study illustrates that exposure to environmentally relevant concentrations of the androgenic EDC MDHT affects male and female mating behavior of X. laevis. Hence, we suggest that nonaromatizable androgens might play a direct and predominant role in the physiology and regulation of reproduction not only in male but also in female frogs.  相似文献   

18.
19.
In this study, different concentrations of transfluthrin and metofluthrin have been assayed for genotoxicity by using the Wing Spot Test on Drosophila melanogaster. Standard cross was used in the experiment. Third-instar larvae that were trans-heterozygous for the two genetic markers mwh and flr3 were treated at different concentrations (0.0103 mg mL−1, 0.103 mg mL−1 for transfluthrin and 6 μg mL−1, 60 μg mL−1 for metofluthrin) of the test compounds. Feeding ended with pupation of the surviving larvae and the genetic changes induced in somatic cells of the wing’s imaginal discs lead to the formation of mutant clones on the wing blade. Results indicated that two experimental concentrations of transfluthrin and 60 μg mL−1 metofluthrin showed mutagenic and recombinogenic effects in both the marker-heterozygous (MH) flies and the balancer-heterozygous (BH) flies.  相似文献   

20.
Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish   总被引:1,自引:0,他引:1  
Shi X  Gu A  Ji G  Li Y  Di J  Jin J  Hu F  Long Y  Xia Y  Lu C  Song L  Wang S  Wang X 《Chemosphere》2011,85(6):1010-1016
Cypermethrin, a type II pyrethroid insecticide, is widely used throughout the world in agriculture, forestry, horticulture and homes. Though the neurotoxicity of cypermethrin has been thoroughly studied in adult rodents, little is so far available regarding the developmental toxicity of cypermethrin to fish in early life stages. To explore the potential developmental toxicity of cypermethrin, 4-h post-fertilization (hpf) zebrafish embryos were exposed to various concentrations of cypermethrin (0, 25, 50, 100, 200 and 400 μg L−1) until 96 h. Among a suite of morphological abnormalities, the unique phenotype curvature was observed at concentrations as low as 25 μg L−1. Studies revealed that 400 μg L−1 cypermethrin significantly increased malondialdehyde production. In addition, activity of antioxidative enzymes including superoxide dismutase and catalase were significantly induced in zebrafish larvae in a concentration-dependent manner. To further investigate the toxic effects of cypermethrin on fish, acridine orange (AO) staining was performed at 400 μg L−1 cypermethrin and the result showed notable signs of apoptosis mainly in the nervous system. Cypermethrin also down-regulated ogg1 and increased p53 gene expression as well as the caspase-3 activity. Our results demonstrate that cypermethrin was able to induce oxidative stress and produce apoptosis through the involvement of caspases in zebrafish embryos. In this study, we investigated the developmental toxicity of cypermethrin using zebrafish embryos, which could be helpful in fully understanding the potential mechanisms of cypermethrin exposure during embryogenesis and also suggested that zebrafish could serve as an ideal model for studying developmental toxicity of environmental contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号