首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The colloidal stability of dry and suspended carbon nanotubes (CNTs) in the presence of amphiphilic compounds (i.e. natural organic matter or surfactants) at environmentally realistic concentrations was investigated over several days. The suspensions were analyzed for CNT concentration (UV-vis spectroscopy), particle size (nanoparticle tracking analysis), and CNT length and dispersion quality (TEM). When added in dry form, around 1% of the added CNTs remained suspended. Pre-dispersion in organic solvent or anionic detergent stabilized up to 65% of the added CNTs after 20 days of mild shaking and 5 days of settling. The initial state of the CNTs (dry vs. suspended) and the medium composition hence are critical determinants for the partitioning of CNTs between sediment and the water column. TEM analysis revealed that single suspended CNTs were present in all suspensions and that shaking and settling resulted in a fractionation of the CNTs with shorter CNTs remaining predominantly in suspension.  相似文献   

2.
Synthetic nanoparticles have already been detected in the aquatic environment. Therefore, knowledge on their biodegradability is of utmost importance for risk assessment but such information is currently not available. Therefore, the biodegradability of fullerenes, single, double, multi-walled as well as COOH functionalized carbon nanotubes and cellulose and starch nanocrystals in aqueous environment has been investigated according to OECD standards. The biodegradability of starch and cellulose nanoparticles was also compared with the biodegradability of their macroscopic counterparts. Fullerenes and all carbon nanotubes did not biodegrade at all, while starch and cellulose nanoparticles biodegrade to similar levels as their macroscopic counterparts. However, neither comfortably met the criterion for ready biodegradability (60% after 28 days). The cellulose and starch nanoparticles were also found to degrade faster than their macroscopic counterparts due to their higher surface area. These findings are the first report of biodegradability of organic nanoparticles in the aquatic environment, an important accumulation environment for manmade compounds.  相似文献   

3.
The objective of this study is to obtain information on the behaviour of carbon nanotubes (CNTs) as potential carriers of pollutants in the case of accidental CNT release to the environment and on the properties of CNTs as a potential adsorbent material in water purification. The effects of acid treatment of CNTs on (i) the surface properties, (ii) the colloidal stability and (iii) heavy metal sorption are investigated, the latter being exemplified by uranium(VI) sorption. There is a pronounced influence of surface treatment on the behaviour of the CNTs in aqueous suspension. Results showed that acid treatment increases the amount of acidic surface groups on the CNTs. Therefore, acid treatment has an increasing effect on the colloidal stability of the CNTs and on their adsorption capacity for U(VI). Another way to stabilise colloids of pristine CNTs in aqueous suspension is the addition of humic acid.  相似文献   

4.
Desorption behavior of pyrene, phenanthrene and naphthalene from fullerene, single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) was examined. Available adsorption space of carbon nanotubes (CNTs) was found to be the cylindrical external surface, neither the inner cavities nor inter-wall spaces due to impurities in the CNTs and restricted spaces (0.335nm) of the MWCNTs, respectively. Desorption hysteresis was observed for fullerene but not for CNTs. Deformation-rearrangement was proposed to explain the hysteresis of polycyclic aromatic hydrocarbons (PAHs) for fullerene, due to the formation of closed interstitial spaces in spherical fullerene aggregates. However, long, cylindrical carbon nanotubes could not form such closed interstitial spaces in their aggregates due to their length, thus showing no significant hysteresis. High adsorption capacity and reversible adsorption of PAHs on CNTs imply the potential release of PAHs if PAH-adsorbed CNTs are inhaled by animals and humans, leading to a high environmental and public health risk.  相似文献   

5.
Chen X  Xia X  Wang X  Qiao J  Chen H 《Chemosphere》2011,83(10):1313-1319
Perfluorooctane sulfonate (PFOS), as one of emerging contaminants, has been attracting increasing concerns in recent years. Sorption of PFOS by maize straw- and willow-derived chars (M400 and W400), maize straw-origin ash (MA) as well as three carbon nanotubes (CNTs) was studied in this work. The sorption kinetics of PFOS by the six adsorbents was well fitted by the pseudo-second-order model. CNTs reached equilibrium in 2 h, much faster than those by chars (384 h) and ash (48 h). According to the sorption isotherms, both single-walled carbon nanotubes (SWCNT) and MA had high sorption capacities (over 700 mg g−1), while the two chars had low sorption capacities (below 170 mg g−1) caused by their small BET surface area. In the case of MA, due to its positively charged surface, both hydrophobic interaction and electrostatic attraction involved in the sorption, and the formation of hemi-micelles further favored the sorption. This study suggested that SWCNT and MA were effective adsorbents for PFOS removal from water. Compared to SWCNT, MA is low cost and easy to obtain, so it could be a preferred adsorbent for PFOS removal.  相似文献   

6.
Quantification of natural and engineered carbon nanotubes (CNT) in the environment is urgently needed to study their occurrence and fate and to enable a proper risk assessment. Currently, such methods are lacking. Here, we tested the resistance of 15 structurally different CNTs to chemothermal oxidation at 375 °C (CTO-375), a method used to isolate soots from environmental samples. Depending on their structure, CNTs survived CTO-375 in proportions ranging from 26 to 93%. Standard addition of CNTs to soil and sediment yielded recoveries between 66 and 171%, demonstrating the capability of CTO-375 to isolate CNTs from complex environmental matrices. These data of pure and added CNTs correspond to recoveries obtained with “ordinary” soots under similar experimental conditions. Hence, soot fractions commonly isolated with CTO-375 from environmental matrices most probably encompass CNTs. Future work should attempt to enhance the method's selectivity, i.e., its capability to separate CNTs from other forms of soot.  相似文献   

7.
Gigault J  Grassl B  Lespes G 《Chemosphere》2012,86(2):177-182
This work focuses on the influence of humic acids (HAs) on the fate of carbon nanotubes (CNTs) in aqueous media. This influence was demonstrated by mixing CNT powder with HAs in aqueous solution in varying concentrations. The aqueous media containing HAs and CNTs were size-characterized by asymmetrical flow field-flow fractionation (AsFlFFF) coupled with multi-angle light scattering (MALS). This coupling yielded information concerning the size distribution of single- and multi-walled CNTs (SWCNTs and MWCNTs) and HAs under different physico-chemical conditions that can occur in environmental water. HAs can disperse individual CNTs in aqueous media. However, the difference in the physical structure between SWCNTs and MWCNTs leads to significant differences in the quantity of HA that can adsorb onto the nanotube surface and in the stability of the CNT/HA complex. Compared with MWCNTs, SWCNTs suspended in HAs are less affected by changing ionic strength with respect to stability and the amount suspended.  相似文献   

8.
Hyperaccumulators contain tubular cellulose and heavy metals, which can be used as the sources of carbon and metals to synthesize nanomaterials. In this paper, carbon nanotubes (CNTs), Cu0.05Zn0.95O nanoparticles, and CNTs/Cu0.05Zn0.95O nanocomposites were synthesized using Brassica juncea L. plants, and the ultraviolet (UV)-light-driven photocatalytic degradations of bisphenol A (BPA) using them as photocatalysts were studied. It was found that the outer diameter of CNTs was around 50 nm and there were a few defects in the crystal lattice. The synthesized Cu0.05Zn0.95O nanocomposites had a diameter of around 40 nm. Cu0.05Zn0.95O nanocomposites have grown on the surface of the CNTs and the outer diameter of them was around 100 nm. The synthesized hybrid carbon nanotubes using B. juncea could enhance the efficiency of photocatalytic degradation on BPA. The complete equilibration time of adsorption/desorption of BPA onto the surface of CNTs, Cu0.05Zn0.95O nanoparticles, and CNTs/Cu0.05Zn0.95O nanocomposites was within 30, 20, and 30 min, and approximately 14.9, 8.7, and 17.4 % BPA was adsorbed by them, respectively. The combination of UV light irradiation (90 min) with CNTs, Cu0.05Zn0.95O nanoparticles, and CNTs/Cu0.05Zn0.95O nanocomposites could lead to 48.3, 75.7, and 92.6 % decomposition yields of BPA, respectively. These findings constitute a new insight for synthesizing nanocatalyst by reusing hyperaccumulators.  相似文献   

9.

A number of methods have been reported for determining hydrophobic organic compound adsorption to dispersed carbon nanotubes (CNTs), but their accuracy and reliability remain uncertain. We have evaluated three methods to investigate the adsorption of phenanthrene (a model polycyclic aromatic hydrocarbon, PAH) to CNTs with different physicochemical properties: dialysis tube (DT) protected negligible depletion solid phase microextraction (DT-nd-SPME), ultracentrifugation, and filtration using various types of filters. Dispersed CNTs adhered to the unprotected polydimethylsiloxane (PDMS)-coated fibers used in nd-SPME. Protection of the fibers from CNT adherence was investigated with hydrophilic DT, but high PAH sorption to the DT was observed. The efficiency of ultracentrifugation and filtration to separate CNTs from the water phase depended on CNT physicochemical properties. While non-functionalized CNTs were efficiently separated from the water phase using ultracentrifugation, incomplete separation of carboxyl functionalized CNTs was observed. Filtration efficiency varied with different filter types (composition and pore size), and non-functionalized CNTs were more easily separated from the water phase than functionalized CNTs. Sorption of phenanthrene was high (< 70%) for three of the filters tested, making them unsuitable for the assessment of phenanthrene adsorption to CNTs. Filtration using a hydrophilic polytetrafluoroethylene (PTFE) filter membrane (0.1 μm) was found to be a simple and precise technique for the determination of phenanthrene adsorption to a range of CNTs, efficiently separating all types of CNTs and exhibiting a good and highly reproducible recovery of phenanthrene (82%) over the concentration range tested (70–735 μg/L).

  相似文献   

10.
Yang ST  Wang H  Wang Y  Wang Y  Nie H  Liu Y 《Chemosphere》2011,82(4):621-626
The potential health and environmental hazards of carbon nanotubes (CNTs) have been a concerned issue. However, in contrast to the wide recognition of the toxicity of CNTs, little attention has been paid to the decontamination/remediation of CNT pollution. In this study, we report that CNTs can be removed from aqueous environment. In the presence of Ca2+, CNTs aggregate quickly to micron size and then enable easy and effective removal via normal filtration. After filtration, CNT suspension becomes colorless with the remnant CNT concentration less than 0.5 μg mL−1, a safe dose based on the published data. The filtration approach also works well in the presence of typical surfactant and dissolved organic matter. The removal efficiency is Ca2+ concentration-dependent and regulated by the initial pH value and ionic strength. Our study is helpful for future decontamination of CNTs from aqueous environment.  相似文献   

11.
During three separate studies involving characterization of diesel particulate matter, carbon nanotubes (CNTs) were found among diesel exhaust particles sampled onto transmission electron microscopy (TEM) grids. During these studies, samples were collected from three different diesel engines at normal operating conditions with or without an iron catalyst (introduced as ferrocene) in the fuel. This paper is to report the authors’ observation of CNTs among diesel exhaust particles, with the intent to stimulate awareness and further discussion regarding the formation mechanisms of CNTs during diesel combustion.

Implications: Increased attention is being given to CNTs and other nanomaterials and a recent review paper showed that CNTs are capable of inflammation in the lung when inhaled. For this reason and because diesel engines are so common, it is important to acknowledge the existence of CNTs among diesel particles and possible regulation and online measurement method development.  相似文献   

12.
A wide range of environmental particulate matter (PM) both indoor and outdoor and consisting of natural and anthropogenic PM was collected by high volume air filters, electrostatic precipitation, and thermophoretic precipitation directly onto transmission electron microscope (TEM) coated grid platforms. These collected PM have been systematically characterized by TEM, energy-dispersive X-ray spectrometry (EDS) and scanning electron microscopy (SEM). In the El Paso, TX, USA/Juarez, Mexico metroplex 93% of outdoor PM1 is crystalline while 40% of PM1 is carbonaceous soot (including multiwall carbon nanotubes (MWCNTs) and multiconcentric fullerenes) PM. Multiply-replicated cytotoxicity (in vitro) assays utilizing a human epithelial (lung model) cell line (A549) consistently demonstrated varying degrees of cell death for essentially all PM which was characterized as aggregates of nanoparticulates or primary nanoparticles. Cytokine release was detected for Fe2O3, chrysotile asbestos, BC, and MWCNT PM while reactive oxygen species (ROS) production has been detected for Fe2O3, asbestos, BC, and MWCNT aggregate PM as well as natural gas combustion PM.Nanoparticulate materials in the indoor and outdoor environments appear to be variously cytotoxic, especially carbonaceous nano-PM such as multiwall carbon nanotubes, black carbon, and soot nano-PM produced by natural gas combustion.  相似文献   

13.
碳纳米管对嗜酸氧化亚铁硫杆菌的毒性效应及其作用机制   总被引:1,自引:1,他引:0  
以嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)为实验菌株,探讨不同条件下碳纳米管(CNTs)对其生长的影响,并采用SEM、EDS和FT-IR等手段分析CNTs对嗜酸氧化亚铁硫杆菌的毒性机制。实验结果表明,CNTs对Acidithiobacillus ferrooxidans生长有抑制作用,并随着CNTs剂量的增加,毒性增大。在CNTs投加量为500 mg/L时,培养40 h后菌株的生长量OD420达到最大值0.117,低于空白组的0.163。培养温度和培养基的pH对CNTs的细胞毒性效应有较大影响,在菌体生长的适宜条件下(pH 3.0,温度为30℃),CNTs对菌体的毒性最强。SEM、EDS和FT-IR分析结果显示,CNTs附着在细胞表面,与细胞表面的羟基、氨基等基团相互作用,并可能诱发菌体细胞产生活性氧自由基(ROS),从而导致细胞死亡。  相似文献   

14.
The stability of multiwalled carbon nanotubes (MWNTs) in particulate aggregates and surfactant-facilitated suspensions after being mixed into eight types of fresh surface water samples was investigated. MWNTs in particulate aggregates could not be stabilized in any of the water samples except for the one having relatively high content of dissolved organic matter with the aid of sonication. Sodium dodecyl benzenesulfonate (SDBS), polyethylene glycol octylphenyl ether (TX100) and cetyltrimethyl ammonium bromide (CTAB) were used to prepare MWNT suspensions. SDBS- and TX100-stabilized MWNTs could partly remain suspending after being mixed into the water samples, whereas CTAB-stabilized MWNTs readily sedimentated due to the surface charge neutralization by the surface water contained negatively-charged anions and colloids. This is a first systematic study examining the stability of carbon nanotubes in natural surface waters, the results from which will be useful for understanding the transport, fate and ecological effect of carbon nanotubes in the aqueous environment.  相似文献   

15.
Raw kaolinite was used in the synthesis of metakaolinite/carbon nanotubes (K/CNTs) and kaolinite/starch (K/starch) nanocomposites. Raw kaolinite and the synthetic composites were characterized using XRD, SEM, and TEM techniques. The synthetic composites were used as adsorbents for Fe and Mn ions from aqueous solutions and natural underground water. The adsorption by the both composites is highly pH dependent and achieves high efficiency within the neutral pH range. The experimental adsorption data for the uptake of Fe and Mn ions by K/CNTs were found to be well represented by the pseudo-second-order kinetic model rather than the intra-particle diffusion model or Elovich model. For the adsorption using K/starch, the uptake results of Fe ions was well fitted by the second-order model, whereas the uptake of Mn ions fitted well to the Elovich model rather than pseudo-second-order and intra-particle diffusion models The equilibrium studies revealed the excellent fitting of the removal of Fe and Mn ions by K/CNTs and Fe using K/starch with the Langmuir isotherm model rather than with Freundlich and Temkin models. But the adsorption of Mn ions by K/starch is well fitted with Freundlich rather than Temkin and Langmuir isotherm models. The thermodynamic studies reflected the endothermic nature and the exothermic nature for the adsorption by K/CNTs and K/starch nanocomposites, respectively. Natural ground water contaminated by 0.4 mg/L Fe and 0.5 mg/L Mn was treated at the optimum conditions of pH 6 and 120 min contact time. Under these conditions, 92.5 and 72.5% Fe removal efficiencies were achieved using 20 mg of K/CNTs and K/starch nanocomposites, respectively. Also, K/CNTs nanocomposite shows higher efficiency in the removal of Mn ions as compared to K/starch nanocomposite.  相似文献   

16.
Membrane separations are powerful tools for various applications, including wastewater treatment and the removal of contaminants from drinking water. The performance of membranes is mainly limited by material properties. Recently, successful attempts have been made to add nanoparticles or nanotubes to polymers in membrane synthesis, with particle sizes ranging from 4 nm up to 100 nm. Ceramic membranes have been fabricated with catalytic nanoparticles for synergistic effects on the membrane performance. Breakthrough effects that have been reported in the field of water and wastewater treatment include fouling mitigation, improvement of permeate quality and flux enhancement. Nanomaterials that have been used include titania, alumina, silica, silver and many others. This paper reviews the role of engineered nanomaterials in (pressure driven) membrane technology for water treatment, to be applied in drinking water production and wastewater recycling. Benefits and drawbacks are described, which should be taken into account in further studies on potential risks related to release of nanoparticles into the environment.  相似文献   

17.
18.
Adsorption of microcystins by carbon nanotubes   总被引:4,自引:0,他引:4  
Yan H  Gong A  He H  Zhou J  Wei Y  Lv L 《Chemosphere》2006,62(1):142-148
The production of cyanobacterial toxins microcystins (MCs) by cyanobacterial bloom which may promote the growth of tumor in human liver is a growing environmental problem worldwide. In this paper, the adsorption of MC-RR and LR, which were extracted from cyanobacterial cells in Dianchi Lake in China, by carbon nanotubes (CNTs), wood-based activated carbon (ACs) and clays were investigated. Compared with ACs and clay materials of sepiolite, kaolinite and talc tested, CNTs were found to have a strong ability in the adsorption of MCs. At the concentrations of 21.5 mg l(-1) MC-RR and 9.6 mg l(-1) MC-LR in 50 mmol phosphate buffer solution (pH 7.0), the adsorption amounts of MCs by CNTs with the range of outside diameter from 2 to 10nm were 14.8 and 5.9 mg g(-1), which were about four times higher than those by other adsorbents tested. It was shown that with the decrease of CNTs outside diameters from 60 to 2 nm, the adsorption amount of MCs was apparently increased, however the size of CNTs particles formed in solution declined. This result implies that the size of CNTs tube pore that is fit for the molecular dimension of MCs plays a dominant role. Furthermore the specific surface area of CNTs was also found to be a factor in the adsorption of MCs. The results suggested that the selection of suitable size of CNTs as a kind of adsorbent is very important in the efficient eliminating MCs from drinking water in future.  相似文献   

19.
This paper demonstrated the relative bactericidal activity of photoirradiated (6W-UV Torch, λ?>?340 nm and intensity?=?0.64 mW/cm2) P25–TiO2 nanoparticles, nanorods, and nanotubes for the killing of Gram-negative bacterium Agrobacterium tumefaciens LBA4404 for the first time. TiO2 nanorod (anatase) with length of 70–100 nm and diameter of 10–12 nm, and TiO2 nanotube with length of 90–110 nm and diameter of 9–11 nm were prepared from P-25 Degussa TiO2 (size, 30–50 nm) by hydrothermal method and compared their biocidal activity both in aqueous slurry and thin films. The mode of bacterial cell decomposition was analyzed through transmission electron microscopy (TEM), Fourier transform-infrared (FT-IR), and K+ ion leakage. The antimicrobial activity of photoirradiated TiO2 of different shapes was found to be in the order P25–TiO2?>?nanorod?>?nanotube which is reverse to their specific surface area as 54?<?79?<?176 m2 g?1, evidencing that the highest activity of P25–TiO2 nanoparticles is not due to surface area as their crystal structure and surface morphology are entirely different. TiO2 thin films always exhibited less photoactivity as compared to its aqueous suspension under similar conditions of cell viability test. The changes in the bacterial surface morphology by UV-irradiated P25–TiO2 nanoparticles was examined by TEM, oxidative degradation of cell components such as proteins, carbohydrates, phospholipids, nucleic acids by FT-IR spectral analysis, and K+ ion leakage (2.5 ppm as compared to 0.4 ppm for control culture) as a measure of loss in cell membrane permeability.  相似文献   

20.
Characterization of produced waters (PWs) is an initial step for determining potential beneficial uses such as irrigation and surface water discharge at some sites. A meta-analysis of characteristics of five PW sources [i.e. shale gas (SGPWs), conventional natural gas (NGPWs), conventional oil (OPWs), coal-bed methane (CBMPWs), tight gas sands (TGSPWs)] was conducted from peer-reviewed literature, government or industry documents, book chapters, internet sources, analytical records from industry, and analyses of PW samples. This meta-analysis assembled a large dataset to extract information of interest such as differences and similarities in constituent and constituent concentrations across these sources of PWs. The PW data analyzed were comprised of 377 coal-bed methane, 165 oilfield, 137 tight gas sand, 4000 natural gas, and 541 shale gas records. Majority of SGPWs, NGPWs, OPWs, and TGSPWs contain chloride concentrations ranging from saline (>30 000 mg L−1) to hypersaline (>40 000 mg L−1), while most CBMPWs were fresh (<5000 mg L−1). For inorganic constituents, most SGPW and NGPW iron concentrations exceeded the numeric criterion for irrigation and surface water discharge, while OPW and CBMPW iron concentrations were less than the criterion. Approximately one-fourth of the PW samples in this database are fresh and likely need minimal treatment for metal and metalloid constituents prior to use, while some PWs are brackish (5000-30 000 mg Cl L−1) to saline containing metals and metalloids that may require considerable treatment. Other PWs are hypersaline and produce a considerable waste stream from reverse osmosis; remediation of these waters may not be feasible. After renovation, fresh to saline PWs may be used for irrigation and replenishing surface waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号