首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Anthropogenic trace element emissions have declined. However, top soils all over the world remain enriched in trace elements. We investigated Pb and Cd migration in forest soils of a remote monitoring site in the Austrian limestone Alps between 1992 and 2004. Large spatial variability masked temporal changes in the mineral soil of Lithic Leptosols (Skeltic), whereas a significant reduction of Pb concentrations in their forest floors occurred. Reductions of concentrations in the less heterogeneous Cambisols (Chromic) were significant. In contrast, virtually no migration of Pb and Cd were found in Stagnosols due to their impeded drainage. Very low element concentrations (<1 μg l−1) in field-collected soil solutions using tension lysimeters (0.2 μm nylon filters) imply that migration largely occurred by preferential flow as particulate-bound species during intensive rainfall events. Our results indicate that the extent of Pb and Cd migration in soils is largely influenced by soil type.  相似文献   

2.
Studies of forest nitrogen (N) budgets generally measure inputs from the atmosphere in wet and dry deposition and outputs via hydrologic export. Although denitrification has been shown to be important in many wetland ecosystems, emission of N oxides from forest soils is an important, and often overlooked, component of an ecosystem N budget. During 1 year (2002–03), emissions of nitric oxide (NO) and nitrous oxide (N2O) were measured from Sessile oak and Norway spruce forest soils in northeast Hungary. Accumulation in small static chambers followed by gas chromatography-mass spectrometry detection was used for the estimation of N2O emission flux. Because there are rapid chemical reactions of NO and ozone, small dynamic chambers were used for in situ NO flux measurements. Average soil emissions of NO were 1.2 and 2.1 μg N m−2 h−1, and for N2O were 15 and 20 μg N m−2 h−1, for spruce and oak soils, respectively. Due to the relatively high soil water content, and low C/N ratio in soil, denitrification processes dominate, resulting in an order of magnitude greater N2O emission rate compared to NO. The previously determined N balance between the atmosphere and the forest ecosystem was re-calculated using these soil emission figures. The total (dry+wet) atmospheric N-deposition to the soil was 1.42 and 1.59 g N m−2 yr−1 for spruce and oak, respectively, while the soil emissions are 0.14 and 0.20 g N m−2 yr−1. Thus, about 10–13% of N compounds deposited to the soil, mostly as and , were transformed in the soil and emitted back to the atmosphere, mostly as greenhouse gas (N2O).  相似文献   

3.
The input of acidity to Swedish forest soils through forestry between 1955 and 2010 is compared with the acid input from atmospheric deposition. Depending on region, input of acidity from forestry was the minor part (25–45%) of the study period’s accumulated acid input but is now the dominating source (140–270 molc ha−1 year−1). The net uptake of cations due to the increase in standing forest biomass, ranged between 35 and 45% of the forestry related input of acidity while whole-tree harvesting, introduced in the late 1990s, contributed only marginally (< 2%). The geographical gradient in acid input is reflected in the proportion of acidified soils in Sweden but edaphic properties contribute to variations in acidification sensitivity. It is important to consider the acid input due to increases in standing forest biomass in acidification assessments since it is long-term and quantitatively important.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01540-y.  相似文献   

4.
Spinach plants were grown in soil pots contaminated with increasing mixtures of lead, mercury, cadmium, and nickel salts. Plants in the control soil were grown in the absence of the heavy metals mixture. The elemental distribution of Cd, Ni, Pb, and Hg in the roots and leaves of Spinach (Spinacia Oleracea) was determined in two stages, Stage 1, after five weeks of plant growth and Stage 2, after 10 weeks with full growth. Under the influence of contamination of soil with the heavy metal mixtures, Hg was the most accumulated element in the root of the spinach plant with a concentration of 283 ppm recorded in the highest contaminated soil, followed by Cd at 148 ppm.  相似文献   

5.
Several factors depending on the sludge, the soil, or the combination of both substrates, may affect element availability to plants. In this study, an assessment was done of the effect of two sludges obtained by different processes (activated sludge and facultative stabilization pond) on heavy-metal availability and uptake by sorghum plants in soils with high and low copper contents. Results obtained for DTPA-extractable metal indicated higher metal availability in sludge-amended soils. In addition, sludges caused changes in copper and zinc distribution in soil, indicating in most cases a discrete increase in the more labile metal forms. However, observed changes did not increase heavy metal concentration in plant leaves, indicating that assessment of metal availability by a chemical procedure (single extraction or metal fractionation) would not permit a good prediction of metal bioavailability. On the other hand, sludge application at a rate of 100 t ha−1 to high-copper agricultural soils would not imply greater mobility of this metal on account of a greater sorbing capacity provided by the sludges. Such results would indicate that sludges from wastewater treatment plants, meeting the standards of heavy metal contents, regardless of the process by which they were obtained, may be applied to several kinds of soil, even to high-copper soils, with no risk of increasing heavy metal bioavailability to phytotoxic levels in the short range.  相似文献   

6.
The uptake of an element by a plant is primarily dependent on the plant species, its inherent controls, and the soil quality. Amaranthus hybridus (green herbs) and Amaranthus dubius (red herbs) were chosen to investigate their response and ability to accumulate and tolerate varying levels of elements in their roots and shoots. Red herbs and green herbs were grown in soil pots contaminated with three mixtures of Cd(II), Ni(II), Pb(II), and Hg(II). Plants in the control treatment were grown in the absence of the heavy metals mixture. The distribution of Cd, Ni, Pb, and Hg in the plants (in roots, stems, and leaves) was determined in two stages. Stage 1, after 5 weeks of plant growth and stage 2, full grown after 10 weeks of growth. In the red herbs the Cd concentration in the leaves at stage 2 was 150 ppm and was present in higher concentrations than Ni, Hg, and Pb. At the highest contamination level, in the green herbs plant, Hg was present in the highest concentration in the root, i.e., 336 ppm at stage 1, while the level in the leaves was 7.12 ppm. Both the green and red herbs species showed an affinity for Ni and Cd with moderate to high levels detected in the leaves, respectively.  相似文献   

7.
Effects of lead (Pb) and chelators, such as EDTA, HEDTA, DTPA, NTA and citric acid, were studied to evaluate the growth potential of Sesbania drummondii in soils contaminated with high concentrations of Pb. S. drummondii seedlings were grown in soil containing 7.5 g Pb(NO(3))(2) and 0-10 mmol chelators/kg soil for a period of 2 and 4 weeks and assessed for growth profile (length of root and shoot), chlorophyll a fluorescence kinetics (F(v)/F(m) and F(v)/F(o)) and Pb accumulations in root and shoot. Growth of plants in the presence of Pb+chelators was significantly higher (P<0.05) than the controls grown in the presence of Pb alone. F(v)/F(m) and F(v)/F(o) values of treated seedlings remained unaffected, indicating normal photosynthetic efficiency and strength of plants in the presence of chelators. On application of chelators, while root uptake of Pb increased four-five folds, shoot accumulations increased up to 40-folds as compared to controls (Pb only) depending on the type of chelator used. Shoot accumulations of Pb varied from 0.1 to 0.42% (dry weight) depending on the concentration of chelators used.  相似文献   

8.
EDTA and citric acid were tested to solubilize metals and enhance their uptake by Datura innoxia, chosen because of its ability to accumulate and tolerate metals. Two application modes were used on an industrial soil contaminated mainly by Cr and Ni. The results showed that citric acid was the most effective at increasing the uptake of Cr and EDTA for Ni. These results are consistent with the effectiveness of both chelants in solubilizing metals from the soil. The translocation factor (TF) of Ni was 1.6- and 6.7-fold higher than the control, respectively, for one and two applications of 1mmolkg(-1) EDTA. After two applications of 5 and 10mmolkg(-1) citric acid, the TF of Cr increased 2- and 3.5-fold relative to the control. Whatever the concentration, the application of EDTA modified the plant physiology significantly. For citric acid this was only observed with the highest dose (10mmolkg(-1)).  相似文献   

9.
Plants grown in contaminated areas may accumulate trace metals to a toxic level via their roots and/or leaves. In the present study, we investigated the distribution and sources of Pb and Cd in maize plants (Zea mays L.) grown in a typical zinc smelting impacted area of southwestern China. Results showed that the smelting activities caused significantly elevated concentrations of Pb and Cd in the surrounding soils and maize plants. Pb isotope data revealed that the foliar uptake of atmospheric Pb was the dominant pathway for Pb to the leaf and grain tissues of maize, while Pb in the stalk and root tissues was mainly derived from root uptake. The ratio of Pb to Cd concentrations in the plants indicated that Cd had a different behavior from Pb, with most Cd in the maize plants coming from the soil via root uptake.  相似文献   

10.
BACKGROUND: The contamination of soils by heavy metals engenders important environmental and sanitary problems in Northern France where a smelter has been located for more than one hundred of years. It has been one of the most important Pb production sites in Europe until its closedown in March 2003. Ore smelting process generated considerable atmospheric emissions of dust. Despite an active environmental strategy, these emissions were still significant in 2002 with up to 17 tonnes of Pb, 32 tonnes of Zn and 1 tonne of Cd. Over the years, the generated deposits have led to an important contamination of the surrounding soils. Previous studies have shown pollutant transfers to plants, which can induce a risk for human and animal health. The objective of this study was to evaluate the consequences of the smelter closedown on the Cd and Pb contents of wheat (grain and straw) cultivated in the area. METHODS: Paired topsoil and vegetable samples were taken at harvest time at various distances to the smelter. The sample sites were chosen in order to represent a large range of soil metal contamination. Sampling was realised on several wheat harvests between 1997 and 2003. 25 samples were collected before the smelter closedown and 15 after. All ears of about 1 m long of two rows were manually picked and threshed in the lab. Similarly, straw was harvested at the same time. Total metal contents in soil and wheat samples were quantified. RESULTS: A negative correlation between metal concentrations in soil and the distance to the smelter was shown. The wheat grain and straw showed significant Cd and Pb contents. The straw had higher metal contents than the grain. During the smelter activity, the grain contents were up to 0.8 mg kg(-1) DM of Cd and 8 mg kg(-1) DM of Pb. For the straw, maximum contents were 5 mg kg(-1) DM of Cd and 114 mg kg(-1) DM of Pb. After the smelter closedown, we observed a very large decrease of Pb in the grain (82%) and in the straw (91%). A smaller decrease was observed for Cd in grain. Despite this improvement, 80% of the studied samples remained non-acceptable for human consumption, according to the European legislation values, due to a high Cd content. DISCUSSION: Results highlighted a difference in metal accumulation in the plant organs as well as a difference in metal uptake. The approach pointed out the importance of atmospheric fallout in the wheat contamination pathways for Pb. The smelter closedown has lead to a decrease of the Pb content in wheat. It is interesting to relate this finding with the lead blood levels in children living close to the smelter. CONCLUSIONS: Those results have confirmed the importance of dust fallout in the plant contamination pathways. Before the closedown, Pb measured in the plant was principally originating from the smelter dust emissions. It raised the question of the sanitary risks for humans and animals living in the surrounding a of the smelter. RECOMMENDATIONS AND PERSPECTIVES: In the literature, very few articles take the dust deposit as contamination pathways for crops into consideration. However, in highly contaminated sites, this pathway can be very important. Thus, it would be worthy studying the uptake of metal contaminants by plants through the foliar system.  相似文献   

11.
This study is aimed at investigating the impact of water quality on the uptake and distribution of three non-essential and toxic elements, namely, As, Cd and Pb in the watercress plant to assess for metal toxicity. The plant was hydroponically cultivated under greenhouse conditions, with the growth medium being spiked with varying concentrations of As, Cd and Pb. Plants that were harvested weekly for elemental analysis showed physiological and morphological symptoms of toxicity on exposure to high concentrations of Cd and Pb. Plants exposed to high concentrations of As did not survive and the threshold for As uptake in watercress was established at 5 ppm. Translocation factors were low in all cases as the toxic elements accumulated more in the roots of the plant than the edible leaves. The impact of Zn on the uptake of toxic elements was also evaluated and Zn was found to have an antagonistic effect on uptake of both Cd and Pb with no notable effect on uptake of As. The findings indicate that phytotoxicity or death of the watercress plant would prevent it from being a route of human exposure to high concentrations of As, Cd and Pb in the environment.  相似文献   

12.
Root and shoot lead concentrations and the impact of chelating agents on these were investigated in two populations of the novel metallophyte Matthiola flavida. Plants were exposed in hydroponics to Pb(NO3)2, supplied alone, or in combination with citric acid, or EDDS. When supplied at concentrations expected to bind about 95% of the Pb in a solution containing 1-μM Pb (1000 μM citrate or 3.1 μM EDDS, respectively), the root and shoot Pb concentrations were dramatically lowered, in comparison with a 1-μM free ionic Pb control exposure. A 1-mM EDDS + 1-μM Pb treatment decreased the plants’ Pb concentrations further, even to undetectable levels in one population. At 100 μM Pb in a 1-mM EDDS-amended solution the Pb concentration increased strongly in shoots, but barely in roots, in comparison with the 1-μM Pb + 1-mM EDDS treatment, without causing toxicity symptoms. Further increments of the Pb concentration in the 1-mM EDDS-amended solution, i.e. to 800 and 990 μM, caused Pb hyperaccumulation, both in roots and in shoots, associated with a complete arrest of root growth and foliar necrosis. M. flavida seemed to be devoid of constitutive mechanisms for uptake of Pb-citrate or Pb-EDDS complexes. Hyperaccumulation of Pb-EDDS occurred only at high exposure levels. Pb-EDDS was toxic, but is much less so than free Pb. Free EDDS did not seem to be toxic at the concentrations tested.  相似文献   

13.
Potentially hazardous trace elements such as Cd, Cu, Cr, Ni and Zn are expected to accumulate in biosolids–amended soil and remain in the soil for a long period of time. In this research, uptake of metals by food plants including cabbage, carrot, lettuce and tomato grown on soils 10 years after biosolids application was studied. All the five metals were significantly accumulated in the biosolids-amended soils. The accumulation of metal in soil did not result in significant increase in concentrations of Cu, Cr and Ni in the edible plant tissues. However, the Cd and Zn concentrations of the edible tissues of plants harvested from the biosolids receiving soils were significantly enhanced in comparison with those of the unaffected soils. The plant uptake under Greenfield sandy loam soil was generally higher than those under the Domino clayey loam soil. The metal concentration of edible plant tissue exhibited increasing trends with respect to the concentrations of the ambulated metals. The extents of the increases were plant species dependent. The indigenous soil metals were absorbed by the plants in much higher rates than those of the biosolids–receiving soils. It appeared that the plant uptake of the indigenous soil-borne metal and the added biosolids-borne metals are independent of one another and mathematically are additive.  相似文献   

14.
通过区域调查与田间实验相结合的方法探讨施用石灰对土壤-水稻系统镉(Cd)污染的控制效果和潜在风险.区域调查结果显示,研究区稻米Cd超标率高达72.6%;石灰处理可降低21.1%的土壤Cd活性和9.7%的稻米Cd超标率,并小幅提升土壤pH,但存在不确定性.田间实验结果显示,经石灰处理后,稻米Cd含量从0.26 mg·kg...  相似文献   

15.
为了研究抗生素污染土壤的修复方法,利用黑麦草对土壤中残留抗生素进行降解,并探讨土壤微生物生态活性及根系体表特征的响应。结果表明:黑麦草对土壤中四环素、金霉素、恩诺沙星、洛美沙星、环丙沙星、诺氟沙星的降解速率均显著大于对照(pr=-0.948,p<0.05)。  相似文献   

16.
表面活性剂淋滤对土壤中邻苯二甲酸酯纵向迁移的影响   总被引:1,自引:0,他引:1  
以无表面活性剂的去离子水为对照、设置1倍(1 CMC)和2倍临界胶束浓度(2 CMC)浓度,研究了单一和混合表面活性剂,包括十六烷基三甲基溴化铵(CTAB)、十二烷基苯磺酸钠(SDBS)和曲拉通X-100(TX-100)对人工污染土壤中邻苯二甲酸酯(PAEs)纵向迁移的影响,土柱中上层为PAEs污染土(3 cm),下层为清洁土(20 cm)。CTAB和SDBS在2 CMC时、TX-100为1 CMC时可增强污染土中PAEs的纵向迁移,其中DMP和DEP有无表面活性剂均可发生迁移,在相同表面活性剂条件下,延长老化时间对污染土中PAEs的迁移产生一定的影响。CTAB和SDBS在2 CMC时,清洁土中PAEs总含量较低,但TX-100在1 CMC时较低。清洁土中PAEs总含量均随土层深度的增加而降低。当老化时间较短时,土壤有机质对PAEs在清洁土柱的迁移影响较小,老化时间的延长对清洁土中的PAEs迁移影响较大。3种表面活性剂均可有效促进清洁土中DMP和DEP的迁移,CTAB和SDBS在2 CMC、TX-100在1 CMC时可促进DNBP和BBP的迁移,但3种表面活性剂对清洁土中DNOP迁移的影响较小。与单一表面活性剂相比,混合表面活性剂有助于污染土中PAEs的迁移,且随着浓度的升高,清洁土中PAEs的含量呈现降低的趋势。就整个土柱而言,单一表面活性剂CTAB和SDBS在较高浓度时、TX-100较低的浓度时对PAEs的淋滤效果更好;在较短老化时间下,土壤有机质含量的高低对淋滤率没有显著影响;老化时间延长有效降低了淋滤率;而混合表面活性剂的淋滤率有明显提高,更有助于PAEs的迁移。  相似文献   

17.
Hydroponic experiments were carried out to investigate the effects of root anatomy, induced by aeration and stagnation, and Fe plaque on arsenic (III&V) uptake and translocation by rice plants. The results showed that As uptake in rice plants (Gui Chao-2) treated by aeration was decreased due to lower root specific surface area. Rice roots with larger specific surface area tended to form more Fe plaque, and Fe plaque affected As uptake kinetics by changing As influx curves from linear to hyperbolic for As(III) and from hyperbolic to S-curve for As(V). Fe plaque increased As(III&V) adsorption and minimized the effects of root anatomy characteristics on As uptake into roots and subsequently translocation to shoots. Fe plaque increased As(III) uptake rate at As(III) concentrations of 0.5∼8 mg L−1, reduced As(V) uptake rate at low As(V) concentrations (<2 mg L−1), but increased As uptake rate at high As(V) concentrations (>6 mg L−1).  相似文献   

18.
Zhang WH  Huang Z  He LY  Sheng XF 《Chemosphere》2012,87(10):1171-1178
Bacterial communities in the rhizosphere soils of metal tolerant and accumulating Chenopodium ambrosioides grown in highly and moderately lead-zinc mine tailings contaminated-soils as well as the adjacent soils with low metal contamination were characterized by using cultivation-independent and cultivation techniques. A total of 69, 73, and 83 bacterial operational taxonomic units (OTUs) having 84.8-100% similarity with the closest match in the database were detected among high, moderate, and low-contamination soil clone libraries, respectively. These OTUs had a Shannon diversity index value in the range of 4.06-4.30. There were 9, 10, and 14 bacterial genera specific to high, moderate, and low metal-contaminated soil clone libraries, respectively. Phylogenetic analysis showed that the Pb-resistant isolates belonged to 8 genera. Pseudomonas and Arthrobacter were predominant among the isolates. Most of the isolates (82-86%) produced indole acetic acid and siderophores. More strains from the highly metal-contaminated soil produced 1-aminocyclopropane-1-carboxylate deaminase than the strains from the moderately and lowly metal-contaminated soils. In experiments involving canola grown in quartz sand containing 200 mg kg−1 of Pb, inoculation with the isolated Paenibacillusjamilae HTb8 and Pseudomonas sp. GTa5 was found to significantly increase the above-ground tissues dry weight (ranging from 19% to 36%) and Pb uptake (ranging from 30% to 40%) compared to the uninoculated control. These results show that C. ambrosioides harbor different metal-resistant bacterial communities in their rhizosphere soils and the isolates expressing plant growth promoting traits may be exploited for improving the phytoextraction efficiency of Pb-polluted environment.  相似文献   

19.
为推动铁屑在治理受硝基酚类化合物污染土壤中的实际应用,常温(25±1℃)常压下,利用不同前处理方式处理的铁屑、还原铁粉对土壤中的对硝基苯酚(p-NP)进行了还原降解研究;分析了土壤部分理化性质对p-NP还原效果的影响;并对反应时间、铁屑用量和土壤含水量3个人工易控因素作了最优化选择。结果表明:铁屑和铁粉对p-NP还原降解效果影响的大小顺序为:酸洗铁屑还原铁粉水洗铁屑碱洗铁屑;适中的土壤含水量、偏酸性的土壤初始pH值及较高的土壤有机质含量均可显著提高铁屑对p-NP的还原率;正交实验结果显示反应时间对p-NP还原效果影响最大,铁屑用量次之,土壤含水量最小;处理1.5 g p-NP浓度约为1.3×10-5mol/g的模拟污染土壤的反应最优化条件为:酸洗铁屑用量26 mg,土壤含水量0.35 mL,反应时间130 m in,还原率可达到96.4%。  相似文献   

20.
选取荧光假单胞菌(Pseudomonas fluorescence)作为代表微生物菌种,考察了菌体产铁载体的规律,并研究了添加菌体对水培油麦菜吸收砂基和水基中Cd2+的影响。在此基础上分析了根际微生物与重金属之间的相互作用机理,为典型微生物在重金属污染治理中的作用提供了可借鉴的理论基础。通过平板实验证实荧光假单胞菌菌体代谢能够产生铁载体,且产铁载体量随着菌体培养时间的增加而增大。铁载体能够与Cd2+络合,将Cd2+固定,使得油麦菜对Cd2+的吸收减少。添加菌体后,采用砂基和水基方式培养的油麦菜中Cd的含量分别减少了27.23%~50.74%和10.57%~45.53%,表明菌体形成的根际微生物能抑制油麦菜对Cd的吸收。因此,微生物代谢产生的铁载体可在重金属污染的植物修复中起到重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号