首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
One of the most prominent behavioural features of many forest primates are the loud calls given by the adult males. Early observational studies repeatedly postulated that these calls function in intragroup spacing or intergroup avoidance. More recent field experiments with Diana monkeys (Cercopithecus diana) of Taï Forest, Ivory Coast, have clearly shown that loud male calls function as predator alarm calls because calls reliably (1) label different predator classes and (2) convey semantic information about the predator type present. Here, I test the alarm call hypothesis another primate, the Campbell's monkey (C. campbelli). Like Diana monkeys, male Campbell's monkeys produce conspicuous loud calls to crowned hawk eagles (Stephanoaetus coronatus) and leopards (Panthera pardus), two of their main predators. Playback experiments showed that monkeys responded to the predator category represented by the different playback stimuli, regardless of whether they consisted of (1) vocalisations of the actual predators (crowned hawk eagle shrieks or leopard growls), (2) alarm calls to crowned hawk eagles or leopards given by other male Campbell's monkeys or (3) alarm calls to crowned hawk eagles or leopards given by sympatric male Diana monkeys. These experiments provide further evidence that non-human primates have evolved the cognitive capacity to produce and respond to referential labels for external events.  相似文献   

2.
Some non-human primates produce acoustically distinct alarm calls to different predators, such as eagles or leopards. Recipients respond to these calls as if they have seen the actual predator, which has led to the notion of functionally referential alarm calls. However, in a previous study with free-ranging putty-nosed monkeys (Cercopithecus nictitans martini), we demonstrated that callers produced two acoustically distinct alarm calls to eagle shrieks and leopard growls, but both alarm calls were given to both predators. We can think of two basic explanations for this surprising result, a methodological and theoretical one. Firstly, acoustic predator models may not always be suitable to test alarm call behaviour in primates, sometimes causing uncharacteristic behaviour. Secondly, referential alarm calling may not be a universal feature of primate alarm call systems. Considering the methodological and theoretical importance of these possibilities, we conducted a follow-up study using life-sized leopard, eagle, and human models on the same population and compared the resulting vocal responses to those given to acoustic predator models. We compared the alarm call series given to each of these predator model types and found a considerable degree of consistency suggesting that the mode of presentation did not affect anti-predator calling strategies. However, evidence for audience effects on calling behaviour was inconclusive. While it appears that predator class is reliably encoded by different call series types irrespective of the mode of presentation, observations of these same call series given in non-predatory contexts indicate that predator class is unlikely to be the relevant organising principle underlying the alarm-calling behaviour in this species. We conclude by offering an alternative, non-referential, account of the alarm-calling system exhibited by this species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Upon encountering predators, many animals produce specific vocalisations that alert others and sometimes dissuade the predators from hunting. Callicebus monkeys are known for their large vocal repertoire, but little is known about the function and meaning of most call types. We recorded a large number of natural predator responses from five different groups of black-fronted titi monkeys in their Atlantic forest habitat in South Eastern Brazil. When detecting predatory threats, adult group members responded with call sequences that initially consisted of two brief, high-pitched calls with distinct frequency contours. Call A was mainly given to raptors but also to predatory capuchin monkeys and other threats within the canopy, while call B was given to predatory or non-predatory disturbances on the ground. In later parts of the sequences, we also recorded a high-pitched unmodulated call C and various low-pitched loud calls. Results therefore suggest that calls A and B provide listeners with rapid and reliable information about the general classes of danger experienced by the caller, while obtaining more specific information through other call types and combinations and behavioural responses. We discuss these findings in relation to current evolutionary theory of primate communication.  相似文献   

4.
Many mammalian and avian species produce conspicuous vocalizations upon encountering a predator, but vary their calling based on risk urgency and/or predator type. Calls falling into the latter category are termed “functionally referential” if they also elicit predator-appropriate reactions in listeners. Functionally referential alarm calling has been well documented in a number of Old World monkeys and lemurs, but evidence among Neotropical primates is limited. This study investigates the alarm call system of tufted capuchin monkeys (Cebus apella nigritus) by examining responses to predator and snake decoys encountered at various distances (reflecting differences in risk urgency). Observations in natural situations were conducted to determine if predator-associated calls were given in additional contexts. Results indicate the use of three call types. “Barks” are elicited exclusively by aerial threats, but the call most commonly given to terrestrial threats (the “hiccup”) is given in nonpredatory contexts. The rate in which this latter call is produced reflects risk urgency. Playbacks of these two call types indicate that each elicits appropriate antipredator behaviors. The third call type, the “peep,” seems to be specific to terrestrial threats, but it is unknown if the call elicits predator-specific responses. “Barks” are thus functionally referential aerial predator calls, while “hiccups” are better seen as generalized disturbance calls which reflect risk urgency. Further evidence is needed to draw conclusions regarding the “peep.” These results add to the evidence that functionally referential aerial predator alarm calls are ubiquitous in primates, but that noncatarrhine primates use generalized disturbance calls in response to terrestrial threats.  相似文献   

5.
Many mammals warn conspecifics with alarm calls about detected predators. These alarm calls are either functionally referential, urgency based, or they can have multiple functions, including predator deterrence. The taxonomic distribution of these alarm call systems is uneven, with primates providing the best-known examples for a functionally referential system and rodents most examples of an urgency-based system. Reports of different alarm call systems in lemurid primates prompted us to examine the anti-predator behavior of two additional lemur species. In an experimental field study we exposed adult redfronted lemurs (Eulemur fulvus rufus) and white sifakas (Propithecus verreauxi verreauxi) to playbacks of vocalizations of their main aerial and terrestrial predators, as well as to their own alarm calls given in response to the presentation of these predators. We scored the subjects' immediate behavioral responses, including alarm calls, from video recordings made during the first minute following a playback. We found that both species gave specific alarm calls only in response to raptor playbacks and the corresponding alarm calls, whereas calls given in response to carnivores and the corresponding alarm calls were also observed in other situations characterized by high arousal. Other behavioral responses, such as gaze and escape directions, corresponded to the hunting strategies of the two predator classes, suggesting that the corresponding vocalizations were categorized correctly. These two lemur species, which represent different families, have therefore independently evolved a mixed alarm call system, characterized by functionally referential calls for diurnal raptors, but not for carnivores. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00265-001-0436-0 Electronic Publication  相似文献   

6.
In many species, individuals suffer major mortality in their first year because of predation. Behaviours that facilitate successful escape are therefore under strong selection, but anti-predator skills often emerge gradually during an individual’s early development. Using long-term data and acoustic recordings of alarm calls collected during natural predator encounters, we aimed to elucidate two largely unsolved issues in anti-predator ontogeny: (1) whether incorrect predator assignment is adaptively age-appropriate, given that vulnerability often changes during development, or whether age-related differences reflect true mistakes made by immature individuals; and (2) the extent to which the development of adult-like competence in alarm-call production and usage is simply a function of maturational processes or dependent upon experience. We found that young meerkats (Suricata suricatta) were less likely to give alarm calls than adults, but alarmed more in response to non-threatening species compared to adults. However, stimuli that pose a greater threat to young than adults did not elicit more calling from young; this argues against age-related changes in vulnerability as the sole explanation for developmental changes in calling. Young in small groups, who were more likely to watch out for predators, alarmed more than less vigilant young in larger groups. Moreover, despite similarities in acoustic structure between alarm call types, calls appeared in the repertoire at different rates, and those that were associated with frequently encountered predators were produced relatively early on. These results indicate that experience is a more plausible explanation for such developmental trajectories than maturation.  相似文献   

7.
Monkey alarm calls have shown that in the primate clade, combinatorial rules in acoustic communication are not exclusive to humans. A recent hypothesis suggests that the number of different call combinations in monkeys increases with increased number of predator species. However, the existence of combinatorial rules in great ape alarm calls remains largely unstudied, despite its obvious relevance to ideas about the evolution of human speech. In this paper, we examine the potential use of combinatorial rules in the alarm calls of the only Asian great ape: the orangutan. Alarm calls in orangutans are composed of syllables (with either one or two distinct elements), which in turn are organized into sequences. Tigers and clouded leopards are predators for Sumatran orangutans, but in Borneo, tigers are extinct. Thus, orangutans make a suitable great ape model to assess alarm call composition in relation to the size of the predator guild. We exposed orangutans on both islands to a tiger and control model. Response compositionality was analyzed at two levels (i.e., syllable and syllable sequences) between models and populations. Results were corroborated using information theory algorithms. We made specific, directed predictions for the variation expected if orangutans used combinatorial rules. None of these predictions were met, indicating that monkey alarm call combinatorial rules do not have direct homologues in orangutans. If these results are replicated in other great apes, this indicates that predation did not drive selection towards ever more combinatorial rules in the human lineage.  相似文献   

8.
Predator-prey interactions are usually regarded as evolutionary “arms races”, but evidence is still scarce. We examined whether the anti-predation strategies of red colobus monkeys (Procolobus badius) are adapted to the hunting strategies of chimpanzees (Pan troglodytes) in the Taï National Park, Ivory Coast. Taï chimpanzees search for red colobus groups, approach them silently and hunt co-operatively. Our playback experiments and observations of natural encounters revealed that red colobus hid higher up the trees in positions where exposure to the forest floor is minimal and became silent, when chimpanzees were close. They moved away silently through the canopy, when chimpanzees were still at some distance. However, if a group of diana monkeys was nearby in the latter situation, red colobus sought their presence even if they had to move towards the chimpanzees. Chimpanzees refrained from hunting associated red colobus groups, probably because diana monkeys are excellent sentinels for predators approaching over the forest floor. Thus several elements of both the predator's and the prey's strategies correspond to each other. Finally, we compared the interactions between the two species in Taï and in Gombe, Tanzania. We suggest that the difference in size ratio between the two species at the two sites and adaptation of hunting techniques and of escape modes to different forest structures can explain why Gombe red colobus attack chimpanzees while Taï red colobus try to escape. We conclude that predator-prey interactions can indeed lead to evolutionary arms races, with the specific form of co-adaptations depending on environmental factors.  相似文献   

9.
Although much is known about the relationship between vigilance, group size and predation risk, behavioural responses to predation risk and their resultant costs are less clear. We investigated the response of Diana monkeys to increased predation risk by looking at behavioural changes associated with male long-distance calls, which are reliably given to certain predators. After male long-distance calls, group spread and nearest-neighbour distance decreased whilst travel and association rates for the group increased. The average height and exposure level of individuals in the group did not change after calls. Individual Diana monkeys changed their behaviour and were more likely to be vigilant or travel and less likely to engage in social or resting behaviours after long-distance calls. In addition, movement rates increased with the number of species the Diana monkeys were associated with. Diana monkey long-distance calls facilitate the joining of groups of other species. Black and white colobus and lesser spot-nosed monkeys were more likely to be in an association following a long-distance call than before. Behavioural responses, such as increased travel or association rates, that reduce foraging efficiency are interpreted as evidence of a non-lethal impact of increased predation risk.  相似文献   

10.
Chick-a-dee calls function in social organization in Poecile (chickadee) species. Recent field and aviary studies have found that variation in chick-a-dee calls relates to the type or proximity of avian predator, or level of threat. Earlier studies on calls in the context of predator stimuli have typically used stationary and perched predator models. For chickadees and other small songbirds, more frequently detected and more dangerous avian predatory stimuli are flying predators. In the present study, we tested whether simulated flying avian predator and control models influenced chick-a-dee calling behavior of wild Carolina chickadees, Poecile carolinensis. At 20 independent field sites, chickadee subjects were presented with wooden models that were painted to resemble either a predatory sharp-shinned hawk (Accipiter striatus) or a blue jay (Cyanocitta cristata) and that were made to “fly” down a zip line near a feeding station chickadees were using. The note composition of chick-a-dee calls was affected by both the flight of stimuli and type of model. Call variation in this flying predator context suggests interesting similarities and differences with experimental findings with congeners. Finally, increased production of certain notes to the flying of both model types provides support for a “Better Safe than Sorry” strategy. When costs of alarm calling are low but costs of discriminating potentially serious threats may be extremely high, individuals should err on the side of caution, and alarm call to any potentially threatening stimulus.  相似文献   

11.
In Taï National Park, Ivory Coast, humans with guns hunt monkeys for their meat. The poachers imitate animal calls to feign the presence of eagles or leopards, two predators to which monkeys react with high calling rates and approach. In the presence of humans, monkeys become silent and move off. A small area of the park is now avoided by poachers, due to the establishment of a field project on chimpanzees in 1979. This offered the opportunity to investigate whether sudden changes in predation pressure lead to a rapid alteration in prey behaviour. Playback experiments, using groups of Diana monkeys, Cercopithecus diana, as subjects, revealed that the poachers' strategy works well in the home range of the habituated chimpanzee group. However, monkeys which are frequently exposed to poachers are rarely fooled by the imitations. Adaptive discrimination abilities can thus be acquired or lost within the lifespan of individual monkeys.  相似文献   

12.
The global diversity of human languages is a remarkable feature of our species, which requires a capacity for rapid vocal learning. Given that primate alarm calling systems have played an important role in the language origin debate, identifying geographic variation in primate alarm calls and understanding the underlying causal mechanisms are important steps to help uncover evolutionary precursors to language. This study investigates geographic variation in the alarm bark of the widely distributed African green monkey (Chlorocebus). To quantify geographic variation in spectral and temporal call structure, acoustic analysis was used to compare the adult male barks of green monkeys (Chlorocebus sabaeus) and two subspecies of vervet (Chlorocebus pygerythrus pygerythrus and Chlorocebus pygerythrus hilgerti). Playback experiments were also carried out to test whether adult male vervets would distinguish between the barks of own-group males, unknown conspecific males and green monkey males. Acoustic analysis showed that, whilst similar in overall structure, the barks of green monkeys could be distinguished from vervet barks with a high degree of accuracy; the barks of vervet subspecies could also be discriminated, although to a lesser degree. Males responded most strongly to unknown conspecific males’ barks, and exhibited responses typical of leopard-avoidance and territorial defence. Taken together, these findings indicate that variation in alarm calls can be best explained by phylogenetic distance, and that intra- and inter-species differences are relevant during social interactions. Moreover, barks may function as an alarm and display call, which could explain the observed sexual dimorphism in barks in this genus.  相似文献   

13.
Predation on gibbons is rarely observed in the wild. However, the gibbons' moderate body size and relatively small social groups suggest high vulnerability to predation. To assess the role of predation and to study their anti-predator behaviour, we presented visual predator models to nine groups of wild white-handed gibbons at Khao Yai National Park, Thailand. We measured subjects' immediate and delayed responses to four potential predators: tiger, clouded leopard, crested serpent eagle and reticulated python. Subjects reliably approached all four predators. In response to tigers and leopards, they additionally produced predator-specific songs and defecated copiously. In terms of delayed responses, distance between mated adults decreased, but only after exposure to the tiger model. In response to eagles and pythons, gibbons consistently vocalised, but this did not always include predator singing, and we found no long-term effects in overall activity or strata use. However, during 6 of 26 predator encounters, the gibbons produced songs with a structure that was intermediate between a duet song and a predator song more than 20 min after the predator encounter, indicating a long-term effect on their vocal behaviour. This study demonstrates that gibbons discriminate between different potential predators and respond to them with adaptive anti-predator behaviour, which include predator-specific vocal responses. We conclude that gibbons are not immune to predation and that terrestrial predators elicit consistent immediate and delayed anti-predation responses.  相似文献   

14.
We conducted four experiments to determine whether yellow-bellied marmots, Marmota flaviventris, discriminate among predator vocalizations, and if so, whether the recognition mechanism is learned or experience-independent. First, we broadcast to marmots the social sounds of coyotes, Canis latrans, wolves, Canis lupus, and golden eagles, Aquila chrysaetos, as well as conspecific alarm calls. Coyotes and eagles are extant predators at our study site, while wolves have been absent since the mid-1930s. In three follow-up experiments, we reversed the eagle call and presented marmots with forward and reverse calls to control for response to general properties of call structure rather than those specifically associated with eagles, we tested for novelty by comparing responses to familiar and unfamiliar birds, and we tested for the duration of predator sounds by comparing a wolf howl (that was much longer than the coyote in the first experiment) with a long coyote howl of equal duration to the original wolf. Marmots suppressed foraging and increased looking most after presentation of the conspecific alarm call and least after that of the coyote in the first experiment, with moderate responses to wolf and eagle calls. Marmots responded more to the forward eagle call than the reverse call, a finding consistent with a recognition template. Marmots did not differentiate vocalizations from the novel and familiar birds, suggesting that novelty itself did not explain our results. Furthermore, marmots did not differentiate between a wolf howl and a coyote howl of equal duration, suggesting that the duration of the vocalizations played a role in the marmots’ response. Our results show that marmots may respond to predators based solely on acoustic stimuli. The response to currently novel wolf calls suggests that they have an experience-independent ability to identify certain predators acoustically. Marmots’ response to predator vocalizations is not unexpected because 25 of 30 species in which acoustic predator discrimination has been studied have a demonstrated ability to respond selectively to cues from their predators.  相似文献   

15.
Spider monkeys (Ateles spp.) live in social groups that exhibit high levels of fission–fusion dynamics, in which group members form subgroups of varying sizes and compositions. Within these fluid societies, how individuals establish contact with dispersed group members with whom they might choose to associate remains unclear. Long-range vocalizations might facilitate interactions between group members and provide a means of social coordination in fission–fusion societies. We evaluated this possibility for one spider monkey vocalization, the loud call, by examining calling behavior, the relationship between loud calls and changes in subgroup size, and the response of individuals to distant calls and playback experiments in a single study group. We found that 82 % of loud calls were emitted within 30 min of a call from a different location, suggesting that individuals frequently emit loud calls in response to the calls of distant group members. Subgroups that emitted loud calls, especially those that responded to distant calls, were much more likely to experience an increase in subgroup size within an hour after calling than those that did not. Animals also approached distant loud calls more than they avoided or ignored these calls. Finally, playbacks of male calls demonstrated that females respond preferentially to the calls of some individuals over others. Taken together, these results provide support for the hypothesis that spider monkey loud calls function to facilitate and initiate interactions between dispersed group members and suggest that vocal signals can play an important role in influencing social interactions in fission–fusion societies.  相似文献   

16.
Intensive study of arboreal forest-dwelling primates and their predators in Africa is increasingly revealing that crowned eagles (Stephanoaetus coronatus) are major predators of primates. Gray-cheeked mangabeys (Lophocebus albigena) are overrepresented in the diets of crowned eagles in Kibale National Park, Uganda, and adult male mangabeys are represented more than females. We focused on the behavior of adult male gray-cheeked mangabeys living in social groups in Kibale National Park (1) to clarify the interactions between mangabeys and eagles that might put adult males at greater risk and (2) to better understand individual variation in behavioral responses to predators. Adult male mangabeys in five groups responded to observer-confirmed presence of crowned eagles 88 times over a 13-month period. While all males gave alarm calls, only the highest-ranking male in each of four groups chased eagles. These males had elevated levels of fecal cortisol metabolites in the days immediately after they engaged in active defense, suggesting that they perceived such behavior as risky. In the one group where male ranks were unstable and there were no infants, no male was observed to chase eagles. We suggest that males pursue the dangerous tactic of chasing eagles only when they are likely to have offspring in the group. Males in larger groups also spent less time alarm calling to crowned eagles (from first to last call in a group), and our observations confirmed that the duration of their alarm calls was related to eagle presence. Thus, eagles spent less time around larger mangabey groups. Alarm calling by adult male mangabeys may signal to this ambush predator that it has been detected and should move on.  相似文献   

17.
Captive bred animals often lack the ability of predator recognition and predation is one of the strongest causes of failure of breed and release projects. Several tadpole and fish species respond defensively to chemical cues from injured or dead conspecifics, often referred to as alarm pheromones. In natural conditions and in species that school, the association of chemical cues from predators to alarm pheromones released by attacked conspecifics may lead to the learning of the predator-related danger without experiencing an attack. In the laboratory, this chemical communication can also be used in associative learning techniques to teach naïve tadpoles to avoid specific predators and improve survivorship of released animals. In our experimental trials, tadpoles of the threatened green and golden bell frog (Litoria aurea) did not avoid or decrease their activity when exposed to solutions of conspecific macerate, suggesting that the chemicals released into the water by dead/injured conspecifics do not function as an alarm pheromone. This non-avoidance of dead conspecific chemicals may explain why green and golden bell frog tadpoles have seemingly not developed any avoidance behaviour to the presence of introduced mosquito fish, and may render attempts to teach naïve tadpoles to avoid this novel predator more difficult.  相似文献   

18.
Summary Alarm calling in a population of thirteenlined ground squirrels, Spermophilus tridecemlineatus, was studied over a three-year period. Data on ground squirrel reactions to human and canine approaches and to the approach or presence of avian predators were used to quantify alarm calling behavior.The results support the hypothesis that alarm calling in this species functions to warn genetic relatives. Human and canine approach-elicited calls were most frequently given by mothers and their recently emerged young; adult males and nonparous females rarely called. The onset of maternal calling coincided with the aboveground appearance of a mother's own litter, and both juvenile and maternal calling were terminated at approximately three weeks post-emergence. Alarm calls were rarely emitted during encounters with avian predators.Alarm calling behavior in S. tridecemlineatus thus appeared to be dependent upon the presence of newly emerged juvenile relatives. To investigate whether the population structure of S. tridecemlineatus was perhaps incompatible with the evolution of alarm calling directed toward adult relatives, the distance between the home ranges of adult relatives and the distance over which the alarm vocalization is audible to ground squirrels were measured. The results revealed that females were likely to have adult relatives relatives residing within audible range of the call.  相似文献   

19.
Associations among organisms are thought to form because the benefits, such as increased foraging efficiency or decreased risk of predation, outweigh any costs, such as resource competition. Though many interspecific associations have been described for closely related mammals, few studies have examined the associations between mammals in different orders. The yellow mongoose (Cynictus pencillata), a carnivore, and the Cape ground squirrel (Xerus inauris), a rodent, co-occur in arid and semi-arid South Africa where they share sleeping burrows, predators, a similar body size, and the capability to emit alarm calls in response to predators. To investigate enhanced predator avoidance as a potential benefit explaining the persistence of this association, we assessed individual mongoose vigilance alone and with squirrels or other mongooses, and with varying interspecific group size, using field observations. We also tested for responses to conspecific and heterospecific alarm calls in both study species using playback experiments. The proportion of time mongoose individuals spent vigilant decreased in the presence of squirrels or other mongooses and was negatively correlated with interspecific group size; a similar pattern was previously shown for conspecific groups of Cape ground squirrels. These results are predicted by both the dilution and collective detection hypotheses. In addition, hetero- and conspecific alarm calls elicited vigilance responses in both species. These results suggest that both species can benefit from the collective detection and dilution arising from their interspecific association and that this interspecific association could be mutualistic.  相似文献   

20.
Sooty mangabeys are terrestrial monkeys exhibiting female philopatry and male dispersal. Studies in captivity as well as in the wild have found that adult females form linear dominance hierarchies. However, while captive studies found no evidence for a matrilineal social system, a previous study in Taï National Park, Ivory Coast, suggested that relatedness could influence both dominance rank and affiliation pattern among adult females. Here I test whether the dominance rank, coalitionary behavior, and affiliative behavior of juveniles in a group of free-ranging mangabeys in the Taï National Park are in accordance with a matrilineal, individual, or age-related dominance system. I found that juvenile females' dominance ranks remained stable over time and were highly correlated with the dominance ranks of their mothers, whereas juvenile males' dominance ranks were initially correlated with the ranks of their mothers, but showed greater instability with increasing age. Moreover, coalitions occurred mainly between juveniles and animals that were close in rank, including their mothers and siblings. Finally, juvenile females associated and groomed preferentially with close-ranking juvenile and adult females. Juvenile males showed similar preferences in affiliation with adult females, but when associating with juvenile males, they preferred peers. The observed social behavior of free-ranging juvenile sooty mangabeys resembled the social behavior described for juveniles of many matrilineal primate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号