首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A warmer climate leads to rising sea levels. Despite uncertainties about how rapid and substantial future sea-level rise (SLR) will be, society needs to prepare and adapt. This study examines the state of planning for future SLR in Sweden by surveying 33 coastal municipalities in southern Sweden and interviewing local, regional and national authorities with relevant accountability. The results reveal that there are considerable gaps in current planning for SLR. Almost one-third of municipalities lack guiding planning documents for SLR, and more than two-thirds do not discuss SLR beyond 2100. We argue that the prevailing uncertainty and ambiguity in assessments of future SLR is problematic within a traditional “predict-then-act” paradigm, and that robust approaches, such as scenario planning, can reduce many of these problems.  相似文献   

2.
Bacterial contamination accounts for more than 60% of the impairments included on the 2008 Texas 303(d) List. Many of these bacterial impairments are along the Texas Gulf Coast because coastal waters often are regulated for oyster harvesting, which have strict water quality standards. Under the Clean Water Act, each one of these impaired waterbodies requires a total maximum daily load (TMDL) study to be performed. A recent, statewide study recommended the development and application of simple modeling approaches to address the majority of Texas's bacteria TMDLs, including “… simple load duration curve, GIS [geographic information systems], and/or mass balance models.” We developed the TMDL Balance model in response to this recommendation. TMDL Balance is a steady state, mass balance, GIS‐based model for simulating pollutant loads and concentrations in coastal systems. The model uses plug‐flow reactor and continuously‐stirred tank reactor equations to route spatially distributed point and nonpoint source loads through a watershed via overland flow, non‐tidal flow, and tidal flow, decaying the loads via first‐order kinetics. In this paper, we explain the development of the watershed loading portion of the TMDL Balance model, demonstrating the methodology through a case study: computing bacterial loads in the Copano Bay watershed of southeast Texas. The application highlights an example of distributing bacterial sources spatially based on land use data.  相似文献   

3.
Coastal waters have been significantly influenced by increased inputs of nutrients that have accompanied population growth in adjacent drainage basins. In Tampa Bay, Florida, USA, the population has quadrupled since 1950. By the late 1970s, eutrophic conditions including phytoplankton and macroalgal blooms and seagrass losses were evident. The focus of improving Tampa Bay is centered on obtaining sufficient water quality necessary for restoring seagrass habitat, estimated to have been 16,400 ha in 1950 but reduced to 8800 ha by 1982. To address these problems, targets for nutrient load reductions along with seagrass restoration goals were developed and actions were implemented to reach adopted targets. Empirical regression models were developed to determine relationships between chlorophyll a concentrations and light attenuation adequate for sustainable seagrass growth. Additional empirical relationships between nitrogen loading and chlorophyll a concentrations were developed to determine how Tampa Bay responds to changes in loads. Data show that when nitrogen load reduction and chlorophyll a targets are met, seagrass cover increases. After nitrogen load reductions and maintenance of chlorophyll a at target levels, seagrass acreage has increased 25% since 1982, although more than 5000 ha of seagrass still require recovery. The cooperation of scientists, managers, and decision makers participating in the Tampa Bay Estuary Program’s Nitrogen Management Strategy allows the Tampa Bay estuary to continue to show progress towards reversing many of the problems that once plagued its waters. These results also highlight the importance of a multi-entity watershed management process in maintaining progress towards science-based natural resource goals.  相似文献   

4.
We modeled changes in area of five habitats, tidal-freshwater forest, salt marsh, maritime shrub-scrub (shrub), maritime broadleaf forest (oak) and maritime narrowleaf (pine) forest, in coastal Georgia, USA, to evaluate how simultaneous habitat loss due to predicted changes in sea level rise (SLR) and urban development will affect priority bird species of the south Atlantic coastal plain by 2100. Development rates, based on regional growth plans, were modeled at 1% and 2.5% annual urban growth, while SLR rates, based on the Intergovernmental Panel on Climate Change’s A1B mean and maximum scenarios, were modeled at 52 cm and 82 cm, respectively. SLR most greatly affected the shrub habitat with predicted losses of 35–43%. Salt marsh and tidal forest also were predicted to lose considerable area to SLR (20–45 and 23–35%, respectively), whereas oak and pine forests had lesser impact from SLR, 18–22% and 11–15%, respectively. Urban development resulted in losses of considerable pine (48–49%) and oak (53–55%) habitat with lesser loss of shrub habitat (21–24%). Under maximum SLR and urban growth, shrub habitat may lose up to 59–64% compared to as much as 62–65% pine forest and 74–75% oak forest. Conservation efforts should focus on protection of shrub habitat because of its small area relative to other terrestrial habitats and use by Painted Buntings (Passerina ciris), a Partners In Flight (PIF) extremely high priority species. Tidal forests also deserve protection because they are a likely refuge for forest species, such as Northern Parula and Acadian Flycatcher, with the decline of oak and pine forests due to urban development.  相似文献   

5.
Differences between scientist and policy-maker response types and times, or the “how” and “when” of action, constrain effective water resource management in suburbanizing watersheds. Policy-makers are often rushed to find a single policy that can be applied across an entire, homogeneous, geopolitical region, whereas scientists undertake multiyear research projects to appreciate the complex interactions occurring within heterogeneous catchments. As a result, watershed management is often practiced with science and policy out of synch. Meanwhile, development pressures in suburban watersheds create changes in the social and physical fabric and pose a moving target for science and policy. Recent and anticipated advances in the scientific understanding of urbanized catchment hydrology and pollutant transport suggest that management should become increasingly sensitive to spatial heterogeneities in watershed features, such as soil types, terrain slopes, and seasonal watertable profiles. Toward this end, policy-makers should encourage funding scientific research that characterizes the impacts of these watershed heterogeneities within a geopolitical zoning and development framework.  相似文献   

6.
A habitat transition model, based on the correlation between individual habitats and micro-elevation intervals, showed substantial changes in the future spatial distributions of coastal habitats. The research was performed within two protected areas in Slovenia: Se?ovlje Salina Nature Park and ?kocjan Inlet Nature Reserve. Shifts between habitats will occur, but a general decline of 42 % for all Natura 2000 habitats is projected by 2060, according to local or global (IPCC AR4) sea level rise predictions. Three different countermeasures for the long-term conservation of targeted habitat types were proposed. The most “natural” is displacement of coastal habitats using buffer zones (1) were available. Another solution is construction of artificial islets, made of locally dredged material (2); a feasible solution in both protected areas. Twenty-two islets and a dried salt pan zone at the desired elevations suitable for those habitats that have been projected to decease in area would offer an additional 10 ha in the Se?ovlje Salina. Twenty-one islets and two peninsulas at two different micro-altitudes would ensure the survival of 13 ha of three different habitats. In the area of Se?ovlje Salina, abandoned salt pans could be terrestrialized by using permanent, artificial sea barriers, in a manner close to poldering (3). By using this countermeasure, another 32 ha of targeted habitat could be preserved. It can be concluded that, for each coastal area, where wetland habitats will shrink, strategic plans involving any of the three solutions should be prepared well in advance. The specific examples provided might facilitate adaptive management of coastal wetlands in general.  相似文献   

7.
Coastal salt marshes are a buffer between the uplands and adjacent coastal waters in New England (USA). With increasing N loads from developed watersheds, salt marshes could play an important role in the water quality maintenance of coastal waters. In this study we examined seasonal relationships between denitrification enzyme activity (DEA) in salt marshes of Narragansett Bay, Rhode Island, and watershed N loadings, land use, and terrestrial hydric soils. In a manipulative experiment, the effect of nutrient enrichment on DEA was examined in a saltmeadow cordgrass [Spartina patens (Aiton) Muhl.] marsh. In the high marsh, DEA significantly (p < 0.05) increased with watershed N loadings and decreased with the percent of hydric soils in a 200-m terrestrial buffer. In the low marsh, we found no significant relationships between DEA and watershed N loadings, residential land development, or terrestrial hydric soils. In the manipulation experiment, we measured increased DEA in N-amended treatments, but no effect in the P-amended treatments. The positive relationships between N loading and high marsh DEA support the hypothesis that salt marshes may be important buffers between the terrestrial landscape and estuaries, preventing the movement of land-derived N into coastal waters. The negative relationships between marsh DEA and the percent of hydric soils in the adjacent watershed illustrate the importance of natural buffers within the terrestrial landscape. Denitrification enzyme activity appears to be a useful index for comparing relative N exposure and the potential denitrification activity of coastal salt marshes.  相似文献   

8.
Estuarine ecosystems are largely influenced by watersheds directly connected to them. In the Mobile Bay, Alabama watersheds we examined the effect of land cover and land use (LCLU) changes on discharge rate, water properties, and submerged aquatic vegetation, including freshwater macrophytes and seagrasses, throughout the estuary. LCLU scenarios from 1948, 1992, 2001, and 2030 were used to influence watershed and hydrodynamic models and evaluate the impact of LCLU change on shallow aquatic ecosystems. Overall, our modeling results found that LCLU changes increased freshwater flows into Mobile Bay altering temperature, salinity, and total suspended sediments (TSS). Increased urban land uses coupled with decreased agricultural/pasture lands reduced TSS in the water column. However, increased urbanization or agricultural/pasture land coupled with decreased forest land resulted in higher TSS concentrations. Higher sediment loads were usually strongly correlated with higher TSS levels, except in areas where a large extent of wetlands retained sediment discharged during rainfall events. The modeling results indicated improved water clarity in the shallow aquatic regions of Mississippi Sound and degraded water clarity in the Wolf Bay estuary. This integrated modeling approach will provide new knowledge and tools for coastal resource managers to manage shallow aquatic habitats that provide critical ecosystem services.  相似文献   

9.
Application of integrated Chesapeake Bay models of the airshed, watershed, and estuary support air and water nitrogen controls in the Chesapeake. The models include an airshed model of the Mid‐Atlantic region which tracks the estimated atmospheric deposition loads of nitrogen to the watershed, tidal Bay, and adjacent coastal ocean. The three integrated models allow tracking of the transport and fate of nitrogen air emissions, including deposition in the Chesapeake watershed, the subsequent uptake, transformation, and transport to Bay tidal waters, and their ultimate influence on Chesapeake water quality. This article describes the development of the airshed model, its application to scenarios supporting the Chesapeake Total Maximum Daily Load (TMDL), and key findings from the scenarios. Key findings are that the atmospheric deposition loads are among the largest input loads of nitrogen in the watershed, and that the indirect nitrogen deposition loads to the watershed, which are subsequently delivered to the Bay are larger than the direct loads of atmospheric nitrogen deposition to Chesapeake tidal waters. Atmospheric deposition loads of nitrogen deposited in coastal waters, which are exchanged with the Chesapeake, are also estimated. About half the atmospheric deposition loads of nitrogen originate from outside the Chesapeake watershed. For the first time in a TMDL, the loads of atmospheric nitrogen deposition are an explicit part of the TMDL load reductions.  相似文献   

10.
Concern for the environment has increased over the past century, and the US Congress has responded to this concern by passing legislation designed to protect the nation’s ecological biodiversity. This legislation, culminating with the Endangered Species Act of 1973, has been instrumental in defining methods for identifying and protecting endangered or threatened species and their habitats. Current legislation, however, assumes that the range of a protected species will stay constant over time. This assumption may no longer be valid, as the unprecedented increase in the number and concentration of greenhouse gases in the atmosphere has the potential to cause a global warming of 1.0–4.5°C and a sea-level rise (SLR) of 31–150 cm by the year 2100. Changes in climate of this magnitude are capable of causing shifts in the population structure and range of most animal species. This article examines the effects that SLR may have on the habitats of endangered and threatened species at three scales. At the regional scale 52 endangered or threatened plant and animal species were found to reside within 3 m of mean sea level in the coastal stages of the US Southeast. At the state level, the habitats of nine endangered or threatened animals that may be at risk from future SLR were identified. At the local level, a microscale analysis was conducted in the Cape Romain National Wildlife Refuge, South Carolina, USA, on the adverse effects that SLR may have on the habitats of the American alligator, brown pelican, loggerhead sea turtle, and wood stork. Prepared by the Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, Tennessee 37831, USA; managed by Martin Marietta Energy Systems. Inc. for the US Department of Energy under contract DE-AC05-84OR21400.  相似文献   

11.
Wetlands should not be considered as independent objects but as dynamically connected objects, collectively known as wetlandscapes. We developed a framework that analyzes the influences of wetland suitability and connectivity on amphibian distributions. We defined two indices: a Wetland Suitability Index describing wetland quality and a Movement Permeability Index characterizing wetland connectivity for amphibian population dynamics. These indices were calculated from raster datasets and time‐varying inundation estimates. The indices were used to define a wetlandscape and an amphibian model was used to simulate population dynamics within the wetlandscape. The framework was applied to the Nose Creek watershed, a highly modified wetlandscape in Alberta, Canada. Two amphibian species were selected with different habitat preferences: the Northern Leopard Frog that prefers wet habitats and has high mobility over land, and the Great Plains Toad that prefers terrestrial habitats and has low mobility over land. We found each amphibian species had a “preferred” wetlandscape, reflecting their life cycle traits and migration strategies which in turn were dependent on the hydrological and ecological connections within the wetlandscape. This study highlights the importance of investigating both individual wetlands and the wetlandscape and considering both wetland habitat quality and connectivity as non‐substitutable properties that act jointly, but differently, on population dynamics.  相似文献   

12.
Diadromous aquatic species that cross a diverse range of habitats (including marine, estuarine, and freshwater) face different effects of climate change in each environment. One such group of species is the anadromous Pacific salmon (Oncorhynchus spp.). Studies of the potential effects of climate change on salmonids have focused on both marine and freshwater environments. Access to a variety of estuarine habitat has been shown to enhance juvenile life-history diversity, thereby contributing to the resilience of many salmonid species. Our study is focused on the effect of sea-level rise on the availability, complexity, and distribution of estuarine, and low-freshwater habitat for Chinook salmon (Oncorhynchus tshawytscha), steelhead (anadromous O. mykiss), and coho salmon (O. kisutch) along the Oregon Coast under future climate change scenarios. Using LiDAR, we modeled the geomorphologies of five Oregon estuaries and estimated a contour associated with the current mean high tide. Contour intervals at 1- and 2-m increments above the current mean high tide were generated, and changes in the estuary morphology were assessed. Because our analysis relied on digital data, we compared three types of digital data in one estuary to assess the utility of different data sets in predicting the changes in estuary shape. For each salmonid species, changes in the amount and complexity of estuarine edge habitats varied by estuary. The simple modeling approach we applied can also be used to identify areas that may be most amenable to pre-emptive restoration actions to mitigate or enhance salmonid habitat under future climatic conditions.  相似文献   

13.
ABSTRACT: The degree of progress achieved under the 1972 Clean Water Act is reviewed by reference to traditional measures of program implementation, and to evidence of tangible, or “real-world” progress, such as beach closures, drinking water contamination, fishing bans and advisories, species health, and habitat degradation. Significant progress has been made in reducing pollution from point sources, but large point source releases of toxic and other pollutants remain. Little progress has been made in addressing runoff pollution, and in protecting aquatic habitats. Clean Water Act reauthorization should focus on pollution prevention to reduce further the release of toxics by point sources, a new program of mandatory but flexible controls on sources of runoff, and watershed protection programs to promote habitat protection and restoration. Economic factors should be considered in Clean Water Act programs, but must be balanced against scientific and governmental factors as well.  相似文献   

14.
We used a GIS-based approach to examine the influence of road density and physical watershed features (watershed size, wetland cover, and bedrock type) on water quality in coastal marshes of Georgian Bay, Ontario. We created a GIS that included landscape information and water-quality data from a 9-year synoptic survey of 105 coastal marshes covering 28 quaternary watersheds. Multiple regressions and partial correlations were used to discern confounding effects of human-induced (road density) versus natural physical watershed determinants of water quality. Road density was the dominant factor influencing many water quality variables, showing positive correlations with specific conductivity (COND), total suspended solids (TSS), and inorganic suspended solids (ISS) and a negative correlation with overall Water Quality Index scores. Road density also showed positive correlations with total nitrate nitrogen (TNN) and total phosphorus (TP). By comparison, larger watershed area was the main factor leading to elevated TP concentrations. The proportion of the watershed occupied by wetlands explained the largest amount of variation in TNN concentrations (negative correlation) and was also negatively correlated with COND and positively correlated with TSS and ISS when we controlled for road density. Bedrock type did not have a significant effect in any of the models. Our findings suggest that road density is currently the overriding factor governing water quality of coastal marshes in Georgian Bay during the summer low-flow period. We recommend that natural variation in physical watershed characteristics be considered when developing water quality standards and management practices for freshwater coastal areas.  相似文献   

15.
Intensive black tiger shrimp (Penaeus monodon) aquaculture ponds have replaced significant areas of coastal wetlands throughout tropical Asia. Few studies have assessed potential impacts on avian foraging habitats. At Khao Sam Roi Yod National Park, Thailand, seminatural wetlands have been converted to either shrimp ponds or to salinization ponds that provide saline water for shrimp aquaculture. Although shorebirds cannot feed in aquaculture ponds, hypersaline ponds can provide productive foraging areas. Thus, the overall impact of the shrimp industry on shorebirds depends partly on the relative quality of the salt ponds compared to seminatural wetlands. In this study, we examined wintering shorebird use of tidal (N = 5 sites) and supratidal areas (four wetland sites, four salt pond sites) and compared the shorebird community (14 species), prey availability, profitability, and disturbance rates between wetlands and salt ponds. Two shorebird species fed in higher densities in wetlands, whereas seven species were more abundant in salt ponds. Large juvenile fish and dragonfly larvae were more abundant in wetlands, whereas there were more small Chironomid midge and fly larvae in salt ponds. We conclude that salt ponds might provide higher-quality foraging habitats compared to wetlands for small shorebirds species because of the abundance of small larvae. However, the shrimp aquaculture industry reduces habitat availability for shorebirds feeding on larger prey. This study demonstrates a comprehensive, multispecies approach to assess the impacts of a large-scale change in coastal habitats for wintering shorebirds.  相似文献   

16.
Limiting the spread of invasive plants has become a high priority among natural resource managers. Yet in some regions, invasive plants are providing important habitat components to native animals that are at risk of local or regional extirpation. In these situations, removing invasive plants may decrease short-term survival of the at-risk taxa. At the same time, there may be a reluctance to expand invaded habitats to benefit at-risk species because such actions may increase the distribution of invasive plants. Such a dilemma can result in “management paralysis,” where no action is taken either to reduce invasive plants or to expand habitats for at-risk species. A pragmatic solution to this dilemma may be to develop an approach that considers site-specific circumstances. We constructed a “discussion tree” as a means of initiating conversations among various stakeholders involved with managing habitats in the northeastern USA to benefit several at-risk taxa, including New England cottontails (Sylvilagus transitionalis). Major components of this approach include recognition that expanding some invaded habitats may be essential to prevent extirpation of at-risk species, and the effective control of invasive plants is dependent on knowledge of the status of invasives on managed lands and within the surrounding landscape. By acknowledging that management of invasive plants is a complex issue without a single solution, we may be successful in limiting their spread while still addressing critical habitat needs.  相似文献   

17.
This paper is aimed to identify the factors that influence peoples' preference for adaptation against the impacts of sea level rise (SLR). A total of 285 respondents from three coastal villages in Bangladesh are randomly interviewed using a semi-structured questionnaire. First, employing the principal component analysis various factors that influence adaptation preferences of people are identified. These factors are related to “demographic and social aspects”, “wealth and economic standing”, “past coping and adaptive behaviour”, “climate knowledge and information” and “spatial aspect” of life. What is common in these factors is their ability to influence peoples' vulnerability. Finally, the binomial logistic regression model is employed to compute the explanatory power of these factors to predict the respondents' preference for adaptation in situ over retreat or vice versa. Model findings are robust for two scenarios of SLR, i.e. 2050–2075 (LR χ 2?=?133.65, pseudo-R 2?=?0.53, p?<?0.001) and 2080–2100 (LR χ 2?=?282.61, pseudo-R 2?=?0.85, p?<?0.001). Therefore, it is concluded that to avoid relocation of substantial number of people initiative for encouraging adaptation in situ must be taken along side establishment of safe shelter, community radio service and campaign for raising climate awareness.  相似文献   

18.
ABSTRACT: Farmers can generate environmental benefits (improved water quality and fisheries and wildlife habitat), but they may not be able to quantify them. Furthermore, farmers may reduce their incomes from managing lands to produce these positive externalities but receive little monetary compensation in return. This study simulated the relationship between agricultural practices, water quality, fish responses to suspended sediment and farm income within two small watersheds, one of a cool water stream and one of a warm water stream. Using the Agricultural Drainage and Pesticide Transport (ADAPT) model, this study related best management practices (BMPs) to calculated instream suspended sediment concentrations by estimating sediment delivery, runoff, base flow, and streambank erosion to quantify the effects of suspended sediment exposure on fish communities. By implementing selected BMPs in each watershed, annual net farm income declined $18,000 to $28,000 (1 to 3 percent) from previous levels. “Lethal” fish events from suspended sediments in the cool water watershed decreased by 60 percent as conservation tillage and riparian buffers increased. Despite reducing suspended sediments by 25 percent, BMPs in the warm water watershed did not reduce the negative response of the fisheries. Differences in responses (physical and biological) between watersheds highlight potential gains in economic efficiency by targeting BMPs or by offering performance based “green payments.”  相似文献   

19.
Roads, bridges, causeways, impoundments, and dikes in the coastal zone often restrict tidal flow to salt marsh ecosystems. A dike with tide control structures, located at the mouth of the Herring River salt marsh estuarine system (Wellfleet, Massachusetts) since 1908, has effectively restricted tidal exchange, causing changes in marsh vegetation composition, degraded water quality, and reduced abundance of fish and macroinvertebrate communities. Restoration of this estuary by reintroduction of tidal exchange is a feasible management alternative. However, restoration efforts must proceed with caution as residential dwellings and a golf course are located immediately adjacent to and in places within the tidal wetland. A numerical model was developed to predict tide height levels for numerous alternative openings through the Herring River dike. Given these model predictions and knowledge of elevations of flood-prone areas, it becomes possible to make responsible decisions regarding restoration. Moreover, tidal flooding elevations relative to the wetland surface must be known to predict optimum conditions for ecological recovery. The tide height model has a universal role, as demonstrated by successful application at a nearby salt marsh restoration site in Provincetown, Massachusetts. Salt marsh restoration is a valuable management tool toward maintaining and enhancing coastal zone habitat diversity. The tide height model presented in this paper will enable both scientists and resource professionals to assign a degree of predictability when designing salt marsh restoration programs.  相似文献   

20.
In nature reserves and habitat conservation areas, monitoring is required to determine if reserves are meeting their goals for preserving species, ecological communities, and ecosystems. Increasingly, reserves are established to protect multiple species and communities, each with their own conservation goals and objectives. As resources are always inadequate to monitor all components, criteria must be applied to prioritize both species and communities for monitoring and management. While methods for prioritizing species based on endangerment or risk have been established, approaches to prioritizing ecological communities for monitoring are not well developed, despite a long-standing emphasis on communities as target elements in reserve design. We established guidelines based on four criteria derived from basic principles of conservation and landscape ecology--extent, representativeness, fragmentation, and endangerment--to prioritize communities in the San Diego Multiple Species Conservation Plan (MSCP). The MSCP was one of the first multiple-species habitat conservation areas established in California, USA, and it has a complex spatial configuration because of the patterns of surrounding land use, which are largely urbanized. In this case study, high priority communities for monitoring include coastal sage scrub (high endangerment, underrepresented within the reserve relative to the region, and moderately fragmented), freshwater wetlands, and coastal habitats (both have high fragmentation, moderate endangerment and representativeness, and low areal extent). This framework may be useful to other conservation planners and land managers for prioritizing the most significant and at-risk communities for monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号