首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of body size and suspension density on filtration rates, assimilation efficiencies and respiration rates in the ribbed musselAulacomya ater (Molina) have been determined by means of short-term laboratory experiments. Filtration rates accelerate rapidly in response to increasing algal concentration up to approximately 10×106 cellsDunaliella primolecta l-1, beyond which a plateau is approached. Percentage increments are greatest in small individuals. Assimilation efficiencies are independent of body size, but decline rapidly with increasing ration to approach zero above 32×106 cells l-1. Increases in respiration rate accompany increments in filtration rate in all but the smallest size class tested. Filtration, assimilation efficiency and respiration measurements are used to calculate ingestion rations, assimilation rations and scope for growth for mussels of different sizes over a range of algal concentrations. Scope for growth, expressed as percentage change in body energy per day, is a declining function of body size, but larger individuals achieve their maximum growth rates at lower ration levels than smaller ones. Growth efficiency is independent of body size, and is maximal at 5×106 cells l-1, where 29 to 43% of ingested ration is converted into body energy. The applicability of these experimental results to natural ecosystems is discussed.  相似文献   

2.
The control mechanisms within the pelagic microbial food web of the oligotrophic Gulf of Aqaba and the northern Red Sea were investigated in the spring of 1999. Nutrient conditions and potential grazer impact were manipulated in a series of dilution experiments. Ambient nutrient concentrations and autotrophic biomass were very low (0.23–1.21 µmol NO3 l–1, 0.06–0.98 µmol NH4 l–1, 1.08–1.17 µmol Si l–1, 0.08–0.12 µmol P l–1, 0.15–0.36 µg chlorophyll a l–1). The planktonic community was characterized by low abundances [3.0–5.5×105 heterotrophic bacteria ml–1, 0.58–7.2×103 ultraphytoplankton <8 µm ml–1 (small eukaryotic photoautotrophs and Prochlorococcus sp., excluding Synechococcus sp.), 0.45–4.4×104 Synechococcus sp. ml–1, 0.32–1.2×103 heterotrophic nanoflagellates ml–1, 1.3–3.8×103 phytoplankton >8 µm l–1, 0.93–5.4×102 microzooplankton l–1] and dominated by small forms (0.2–8 µm). Dinoflagellates and oligotrichous ciliates were the most common groups in initial samples among the phytoplankton >8 µm and microzooplankton, respectively. Results show that bottom-up and top-down control mechanisms operated simultaneously. Small organisms were vulnerable to grazing, with maximum grazing rates of 1.1 day–1 on heterotrophic bacteria and 1.3 day–1 on ultraphytoplankton. In contrast, algae >8 µm showed stronger signs of nutrient limitation, especially when the final assemblages were dominated by diatoms. Synechococcus sp. were not grazed and only showed moderate to no response to nutrient additions. The high spatial and temporal variation of our results indicates that the composition of the planktonic community determines the prevailing control mechanisms. It further implies that, at this transitional time of the year (onset of summer stratification), the populations fluctuate about an equilibrium between growth and grazing.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

3.
The daily abundance of aloricate ciliates at Lime Cay, Jamaica, a shallow neritic site, ranged from 29 to 118 × 106 m–2 (0.97 to 3.93 × 106 m–3) between November 1985 and November 1986. Biomass was converted to kilojoules (1 kcal=4.1855 kJ) assuming 42% carbon, 20.15 kJ (g dry wt)–1, and 20% cell shrinkage. Biomass ranged from 0.40 to 3.00 kJ m–2 (13.3 to 100 J m–3; 0.28 to 2.08µg C l–1) with an annual mean of 1.11 kJ m–2 (36.8 J m–3; 0.764µg C l–1). Nanociliates (<20µm equivalent spherical diameter, ESD) dominated abundance, but microciliates (> 20µm ESD) dominated biomass.Strombidium, Strobilidium, Tontonia andLaboea species were conspicuous taxa. Annual production estimates of the aloricate assemblage, based on literature growth rates, ranged from 404 kJ m–2 yr–1 (37 J m–3 d–1) to 1614 kJ m–2 yr–1 (147 J m–3 d–1). A compromise estimate of 689 kJ m–2 yr–1 (i.e., 63 J m–3 d–1) is comparable to other estimates from tropical and subtropical regions. A model of annual energy flow through 11 planktonic compartments suggests the total ciliate assemblage (aloricates and tintinnines) to be as productive as metazoan herbivores and metazoan carnivores.  相似文献   

4.
A. Grémare 《Marine Biology》1990,106(1):139-143
Rates of organic uptakes of three live diatoms (Nitzschia acicularis, Nitzschia sp. andNavicula incerta), and of three corresponding filtrates by the deposit-feeding polychaeteEupolymnia nebulosa (Montagu) were measured under similar experimental conditions. Worms used during this study were collected by SCUBA diving at Port-Vendres in shallow water (7 m deep) during the summer of 1986. Uptake rates of live diatoms were affected both by length of the experiments and by the nature of the food offered. The highest rate of uptake (11.8 10–4 mg algal ash-free dry wt mg–1 worm dry wt h–1) was recorded during a short-term experiment (4 h) with the smallest diatom (Nitzschia sp.). The lowest rate (1.1 10–4 mg algal ash-free dry wt mg–1 worm dry wt h–1) was recorded during a long-term experiment (48 h) with the largest diatom (Nitzschia acicularis). Filtrates ofN. acicularis were more readily utilized than those ofNitzschia sp. andNavicula incerta. Because of differences in uptake rates of algal filtrates as a function of species, it is not possible to evaluate the bias due to interaction with dissolved substances in experimental studies assessing ingestion of live benthic diatoms byE. nebulosa.  相似文献   

5.
Growth rates and intracellular-dimethylsulphoniopropionate (DMSP) concentrations of five green algal species collected from different geographic regions in 1986 and 1989 were determined under four photon flux rates. InUlothrix implexa, U. subflaccida andAcrosiphonia arcta from Antarctica, growth was light-saturated at lower irradiances than in temperateUlva rigida from Southern Chile andBlidingia minima from Germany. The DMSP content ofUlothrix implexa, A. arcta andUlva rigida was directly correlated with the light factor: with increasing irradiance, algal DMSP level increased. In contrast, inUlothrix subflaccida andB. minima DMSP concentrations gradually decreased up to a photon flux rate of 30µmol m–2 s–1, then increased markedly under the highest photon flux rate tested. In non-growing, dark-incubatedA. arcta DMSP content was reduced by 35%, while the DMSP pool of all other species remained unchanged, at the level of pre-culture conditions. Under full darkness all plants exhibited a significantly higher DMSP concentration compared with algae grown at low photon flux rates of 2 to 30µmol m–2 s–1. These data show a correlation between growth pattern and DMSP biosynthesis, and may point to a species-specific minimum amount of light energy necessary for DMSP accumulation.Contribution no. 302 of the Alfred Wegener Institute of Polar and Marine Research  相似文献   

6.
The energetic cost of metamorphosis in cyprids of the barnacle Balanus amphitrite Darwin was estimated by quantification of lipid, carbohydrate and protein contents. About 38–58% (4–5 mJ individual–1) of cypris energy reserves were used during metamorphosis. Lipids accounted for 55–65%, proteins for 34–44% and carbohydrates for <2% of the energy used. Juveniles obtained from larvae fed 106 cells ml–1 of Chaetoceros gracilis were bigger (carapace length: 560–616 µm) and contained more energy (5.56±0.10 mJ juvenile–1) than their counterparts (carapace length: 420–462 µm; energy content: 2.49±0.20 mJ juvenile–1) obtained from larvae fed 104 cells ml–1. At water temperatures of 30°C and 24°C and food concentrations of 104 and 102 cells ml–1 (3:1 mixture of C. gracilis and Isochrysis galbana) as well as under field conditions (26.9±3.1°C and 2.2±0.8 µg chlorophyll a l–1), juveniles obtained from larvae fed the high food concentration grew faster than juveniles obtained from larvae fed low food concentration until 5 days post-metamorphosis. Laboratory experiments revealed a combined effect of early juvenile energy content, temperature and food concentration on growth until 5 days post-metamorphosis. After 10 days post-metamorphosis, the influence of the early juvenile energy content on growth became negligible. Overall, our results indicate that the energy content at metamorphosis is of critical importance for initial growth of juvenile barnacles and emphasize the dependency of the physiological performance of early juvenile barnacles on the larval exposure to food.Communicated by O. Kinne, Oldendorf/LuheAn erratum to this article can be found at  相似文献   

7.
Growth of Mytilus edulis L. was measured in aquaria with through-flowing sea water at different levels of constant algal concentrations. The amount of food and oxygen consumed by the mussels were measured over given periods as well as the changes in dry organic weight during the same periods. From these parameters it was possible to make simple energy budgets and to compare the estimated growth with actual growth, and, further, to determine growth efficiences at different food levels. Energy budgets were made for mussels grown at algal concentrations of 0, 1.6×103, 3.0×103 and 26.0×103 Phaeodactylum tricornutum cells x ml-1. The estimated growth was found to be close to actual growth at algal concentrations above maintenance level and the net growth efficiency was found to be between 18% (3.0×103 cells x ml-1) and 61% (26×103 cells x ml-1). It has been shown that the filtration rate is independent of algal concentrations between about 1.5×103 to 30×103 P. tricornutum cells x ml-1. Outside this range a decrease in filtration rate was noticed.  相似文献   

8.
Growth and herbivory of heterotrophic dinoflagellates (Gymnodinium sp.) from the Weddell Sea and the Weddell/Scotia Confluence were studied in 1988 in 100-liter microcosms. The microcosms were screened through 200-µm or 20-µm mesh nets and incubated for 12 d at 1 °C under artificial light. Mean cell volume of dinoflagellates was 1 000 to 1 500µm3, and that of their phytoplankton prey 360 to 430µm3. Dinoflagellate growth rate followed a Holling type II functional response, with a maximum growth rate of 0.3 d–1 and half-saturation food concentrations of 1.0µg chlorophylla l–1, 50µg C l–1, or 1 500 cells ml–1. Carbon budgets based on14CO2 assimilation and biomasses of phytoplankton and heterotrophic dinoflagellates suggested a balance between phytoplankton grazing loss and dinoflagellate consumption, assuming a dinoflagellate carbon conversion efficiency of 40%. Applying this to the functional response yielded estimates of maximum ingestion rate (0.8µg Cµg–1 C d–1, or 6 pg C dinoflagellate–1 h–1) and maximum clearance (0.8 to 1.2 × 105 body volumes h–1, or 80 to 120 nl ind.–1 h–1). The microcosm experiments suggested that heterotrophic dinoflagellates may contribute significantly to maintenance of low phytoplankton biomass in the Southern Ocean.  相似文献   

9.
The plankton community in the Polar Front area of the Barents Sea was investigated during a cruise from 14 to 28 July 1987. The colonial algaePhaeocystis pouchetii andDinobryon pellucidum dominated the phytoplankton. Depth integrated carbon assimilation rates varied from 190 to 810 mg C m–2 d–1. A high carbon:chlorophyll ratio (which varied from 123 to 352) prevailed at the three stations investigated, which may relate to facultative heterotrophic behaviour byD. pellucidum. The herbivorous zooplankton community was dominated byCalanus glacialis, C. finmarchicus, andC. hyperboreus. Maximum zooplankton biomass was found in the same depth strata as phytoplankton chlorophyll maximum. The herbivorous copepod populations did not display consistent day-night vertical migration patterns. Phytoplankton consumption rates of the various life stages were estimated from the turnover rate of plant pigments in the gut. The gut defecation rate constant (R) varied from 0.014 to 0.027 min–1 at 0°C in copepodites (Stage II to adult female) ofC. glacialis, independent of developmental stage.Calanus spp. community carbon ingestion rates calculated from particulate carbon:chlorophyll ratios, were 10, 65 and 400% of daily phytoplankton carbon fixation rates at Stations 1, 2 and 3, respectively.  相似文献   

10.
The distribution of prokaryotic and eukaryotic picoplankton in the west coast upwelling-region off the South Island of New Zealand was investigated during midwinter (1988) the time of year when several commercially important fish species migrate into the region to breed. Picoplanktonic cells were major contributors to the autotrophic biomass, with > 80% of the particulate nitrogen and 39 to 55% of the total chlorophylla contained in the <2µm size-fraction. The prokaryotic picoplankton concentrations ranged from 6.3 × 105 to 2.1 × 107 cell l–1, and the eukaryotic picoplankton between 3.9 × 105 to 1.2 × 107 cells l–1. Picoplankton numbers increased with distance offshore to a maximum of ~ 3.0 × 107 cells l–1 at ~ 35 km from the coast, and then diminished towards the outer shelf and open ocean. The ratio of prokaryotic to eukaryotic cells varied between 1.01 and 4.71 in the mixed layer. Both groups declined substantially beneath the pycnocline, with no evidence of deep maxima. Prokaryotic cells dominated the planktonic cell concentrations at all but two stations, but eukaryotic cells dominated picoplankton biovolume as a result of their larger average cell size. The prokaryotic to eukaryotic picoplankton cell-number ratios in this system were considerably lower than often recorded elsewhere, and were inversely correlated with nitrate concentration. These observations show that a eukaryoticdominated picoplankton community makes a substantial contribution to autotrophic biomass in this nutrient-rich upwelling system, and may thereby play a major role in the food-web dynamics of this coastal fishery.  相似文献   

11.
The effect of cholinergic antagonists on the bradycardia induced by waterborne copper in the Mediterranean limpet Patella caerulea was investigated by using non-invasive recording of cardiac activity of whole animals. Preliminary tests were conducted to check the role of cholinergic and serotoninergic systems in the control of heart rate of P. caerulea. Superfusing the whole limpets with carbachol (cholinergic agonist) at 5×10–5 M produced a negative inotropic and chronotropic effect (bradycardia), while superfusion with 5-hydroxytryptamine produced a positive inotropic and chronotropic effect (tachycardia). Exposure of limpets to a solution of copper in artificial seawater (0.25 mg l–1, 3 h) reduced their heart rate to about 80% the value recorded in copper-free water. This bradycardia was inhibited by injecting the limpets with atropine (cholinergic muscarinic antagonist) at 21 g g–1 wet flesh weight and with benzoquinonium [cholinergic nicotinic antagonist blocking the K+ mediated acetylcholine (ACh) response] at 10 and 100 g g–1 prior to copper exposure. In contrast, D-tubocurarine (cholinergic nicotinic antagonist blocking Na+ mediated ACh response) had no effect at 85 g g–1. These results agree with the involvement of the cholinergic system in the bradycardic response of limpets to copper, and support the view that gastropod ACh receptors do not fit the vertebrate nicotinic–muscarinic classification.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

12.
The influence of suspended, natural silt (0 to 20 mg l-1) in addition to unicellular algal cells (Phaeodactylum tricornutum) (o to 20.000 cells ml-1) on clearance, growth and energetics in Mytilus edulis has been studied. Clearance increased by 32 to 43% by the addition of 5 mg silt l-1 as compared to clearance in a pure algal suspension. Ingestion and growth rate increased with algal concentration, and growth rate was further increased by 30 to 70% by the addition of 5 mg silt l-1. A growth rate comparable to maximum natural growth rates was reached only at the highest algal concentration in the presence of 5 mg siltl-1. Assimilation efficiency of P. tricornutum decreased from 77% at 5,000 cells ml-1 to 52% at 20,000 cells ml-1. In the experiments with silt added, some 20 to 30% of the assimilated organic matter originated from the suspended bottom material. Net growth efficiency increased with growth rate at a decelerating rate, approaching a maximum of about 70%. It is concluded that suspended bottom material, which is always present in M. edulis' natural habitats, serves as an additional food source, and that M. edulis depends on suspended bottom material to exploit fully its clearance potential, and to reach the maximum growth rates observed in nature.  相似文献   

13.
Weekly samples were collected near Kingston, Jamaica in 27 m vertical hauls, using 200 and 64µm mesh plankton nets, from July 1985 to January 1987. Thirtytwo copepod species were identified; nauplii and all copepodite stages were enumerated. Total copepod abundance ranged from 2.56 to 87.3 × 104 m–2. The annual abundance cycle was bimodal with peaks in October–November and May–June corresponding to the rainy seasons. Mean annual copepodite biomass was 0.15 g AFDW m–2 ranging from 0.03 to 0.41 g AFDW m–2. Mean generation time (from egg to adult) at 28°C was 19.5 d for the common speciesCentropages velificatus, Paracalanus aculeatus, andTemora turbinata. Isochronal development was demonstrated for copepodites ofP. aculeatus andT. turbinata, but not forC. velificatus. Mean daily specific growth rates (G) were 0.63, 0.63, and 0.48 d–1 forC. velificatus, P. aculeatus, andT. turbinata, respectively. In general, daily specific growth rates decreased in the later copepodite stages. Thus, it is postulated that growth of later stages and egg production may be food limited. Annual copepodite production was estimated as 419 kJ m–2 yr–1, while annual exuvial production and naupliar production were 35 and 50 kJ m–2 yr–1, respectively. Egg production was estimated as 44% (184 kJ m–2 yr–1) of the total copepodite production. Thus, mean total annual copepod production was 688 kJ m–2 yr–1. This estimate is within the range of copepod production estimates in coastal temperate regions.  相似文献   

14.
The effects of food limitation on growth rates and survival of marine invertebrate larvae have been studied for many years. Far less is known about how food limitation during the larval stage influences length of larval life or postmetamorphic performance. This paper documents the effects of food limitation during larval development (1) on how long the larvae ofCrepidula fornicata (L.) can delay metamorphosis in the laboratory after they have become competent to metamorphose and (2) on postmetamorphic growth rate. To assess the magnitude of nutritional stress imposed by different food concentrations, we measured growth rates (as changes in shell length and ash-free dry weight) for larvae reared in either 0.45-m filtered seawater or at phytoplankton concentrations (Isoehrysis galbana, clone T-ISO) of 1 × l03, 1 × 104, or 1.8 × 105 cells ml–1. Larvae increased both shell length and biomass at 1 × 104 cells ml–1, although significantly more slowly than at the highest food concentration. Larvae did not significantly increase (p > 0.10) mean shell length in filtered seawater or at a phytoplankton concentration of only 1 × 103 cells ml–1, and in fact lost weight under these conditions. To assess the influence of food limitation on the ability of competent individuals to postpone metamorphosis, larvae were first reared to metamorphic competence on a high food concentration ofI. galbana (1.8 × 105 cells ml–1). When at least 80% of subsampled larvae were competent to metamorphose, as assessed by the numbers of indlviduals metamorphosing in response to elevated K+ concentration in seawater, remaining larvae were transferred either to 0.45-m filtered seawater or to suspensions of reduced phytoplankton concentration (1 × 103, 1 × 104, or 5 × 104 cells ml–1), or were maintained at 1.8 × 105 cells ml–1. All larvae were monitored daily for metamorphosis. Individuals that metamorphosed in each food treatment were transferred to high ration conditions (1.8 × 105 tells ml–1) for four additional days to monitor postmetamorphic growth. Competent larvae responded to all food-limiting conditions by metamorphosing precociously, typically 1 wk or more before larvae metamorphosed when maintained at the highest food ration. Surprisingly, juveniles reared at full ration grew more slowly if they had spent 2 or 3 d under food-limiting conditions as competent larvae. The data show that a rapid decline in phytoplankton concentration during the larval development ofC. fornicata stimulates metamorphosis, foreshortening the larval dispersal period, and may also reduce the ability of postmetamorphic individuals to grow rapidly even when food concentrations increase.  相似文献   

15.
Interactions between mercury and selenium accumulation and subcellular binding inAsterias rubens (L.), collected in 1987 from Lille Bælt at Middelfart, Funen, Denmark, were investigated in laboratory experiments. Sea stars exposed to 10µg Hg l–1 for 30 d accumulated mercury in body wall, tube feet and stomach linearly with time at 1.2, 1.2 and 0.5µg Hg g–1 dry wt d–1, respectively. Mercury was accumulated in pyloric caeca and coelomic fluid initially at 1.4µg Hg g–1 dry wt d–1 and 9.4 ng Hg ml–1 d–1, respectively; after 10 d uptake rates decreased. Sea stars exposed to 75µg Se-SeO 3 - - l–1 accumulated selenium linearly with time over 30 d in the stomach, pyloric caeca, tube feet and body wall at 2.0, 1.2, 1.2 and 0.6µg Se g–1 dry wt d–1. Sea stars exposed to 75µg Se-SeO 4 - - l–1 maintained selenium levels in the coelomic fluid at 75µg Se l–1 over 30 d. Exposure to selenate did not alter the selenium concentrations in the tissues. Sea stars exposed concurrently to 75µg Se-SeO 3 - - and 10µg Hg l–1 accumulated more mercury and selenium in tube feet and body wall than did sea stars exposed to the two elements alone. In pyloric caeca and stomach concurrent exposure reduced accumulation of both elements. Mercury was bound predominantly in the insoluble fraction of the tissues, and soluble mercury was bound in proteins of high (> 70 kilodaltons) or very low (< 6000 daltons) molecular weight. Ca. half of the selenium recovered was bound in the insoluble fraction, and soluble selenium was bound in proteins of high (> 70 kilodaltons) or very low (< 6000 daltons) molecular weight. Interaction between the two elements was exerted predominantly in the insoluble fraction of the tissues.  相似文献   

16.
Turner  E. J.  Miller  D. C. 《Marine Biology》1991,111(1):55-64
Experiments were conducted in April–August 1989 on juvenileMercenaria mercenaria (L.) in an oscillatory water tunnel to simulate resuspension of bottom sediments by waves and to determine the effects of shortterm storm events on particle ingestion, pseudofeces production, and shell growth. Juveniles (mean length = 19.2 mm) were subjected to identical concentrations of algae in both low-flow, gentle waves (maximum velocity = 7 cm s–1) and high-velocity storm waves (maximum velocity = 22 cm s–1). Suspended sediment levels reached 193 mg 1–1 at 1 cm above the bed during storms. Shell growth decreased by a maximum of 38% during the storm when levels of phytoplankton were high (average cell concentration = 43 × 106 cells 1–1), and by 18% when phytoplankton levels were low (av cell conc = 6 × 106 cells 1–1). Orientation of clam siphons was not related to flow direction. Significantly more pseudofeces were produced when the clams were subjected to increased sediment resuspension under waves, and in troughs of sand ripples. The size of sediment grains ingested did not vary significantly among the flow treatments. The decrease in shell growth during storms may be due to a reduction in filtration rate coupled with a decrease in net energy gained from filtration due to costs of pseudofeces production. The magnitude of the decrease seems to be related to concentration of algae, water temperature, age of clams and sediment transport mode (bed load or suspended load). Thus, the interpretation of growth increments must be made in the context of these environmental variables.  相似文献   

17.
This study investigated the possible roles of superoxide produced by raphidophyte and prymnesiophyte microalgae as an ichthyotoxic agent to damselfish and an allelopathic agent to bacteria. We found that the rate of superoxide production varied with algal cell density, with cell densities of the raphidophyte Chattonella marina >10,000 cells ml–1 producing less environmental levels of superoxide per cell (94±14 chemiluminescence units) than cell densities <10,000 cells=">–1 (390±54 units per cell). Microalgal cells have the capacity to change their superoxide production rate over a period of 1 h, dependent on cell density and metabolic activity. We also examined the effect of superoxide on suppression of bioluminescence of the marine bacterium Vibrio fischeri as a model for bacterial alleopathy and found that both superoxide and free fatty acids such as eicosapentaenoic acid (EPA; 20:53) present in raphidophyte microalgal cells cause suppression of bacterial bioluminescence. The combination of superoxide in the presence of EPA further enhanced bioluminescence suppression. Superoxide was also found to enhance the toxicity of free fatty acid EPA to damselfish (Acanthochromis polycanthus) at concentrations as low as 0.2 mg l–1. In conclusion, consideration should be given to density dependent and/or metabolic variations of toxicity when publishing minimum alert levels for superoxide producing ichthyotoxic microalgal species. A secondary role of superoxide production may be to enhance the toxicity of algal exudates or serve as an allelopathic agent against bacterial fouling.  相似文献   

18.
Filtration rates and the extent of phagocytosed food particles were determined in the offshore lamellibranchs Artica islandica and Modiolus modiolus in relation to particle concentration, body size and temperature. Pure cultures of the algae Chlamydomonas sp. and Dunaliella sp. were used as food. A new method for determining filtration rates was developed by modifying the classical indirect method. The concentration of the experimental medium (100%) was kept constant to ±1%. Whenever the bivalves removed algae from the medium, additional algae were added and the filtration rate of the bivalves expressed in terms of percentage amount of algae added per unit time. The concentration of the experimental medium was measured continuously by a flow colorimeter. By keeping the concentration constant, filtration rates could be determined even in relation to different definite concentrations and over long periods of time. The amount of phagocytosed food was measured by employing the biuret-method (algae cells ingested minus algae cells in faeces). Filtration rates vary continuously. As a rule, however, during a period of 24 h, two phases of high food consumption alternate with two phases of low food consumption during which the mussels' activities are almost exclusively occupied by food digestion. Filtration rate and amount of phagocytosed algae increase with increasing body size. Specimens of A. islandica with a body length of 33 to 83 mm filter between 0.7 to 71/h (30–280 mg dry weight of algae/24 h) and phagocytose 21 to 122 mg dry weight of algae during a period of 24 h. The extent of food utilization declines from 75 to 43% with increasing body size. In M. modiolus of 40 to 88 mm body length, the corresponding values of filtration rate and amount of phagocytosed algae range between 0.5 and 2.5 l/h (20–100 mg dry weight of algae) and 17 to 90 mg dry weight of algae, respectively; the percentage of food utilization does not vary much and lies near 87%. Filtration rate and amount of phagocytosed algae follow the allometric equation y=a·x b. In this equation, y represents the filtration rate (or the amount of phagocytosed algae), a the specific capacity of a mussel of 1 g soft parts (wet weight), x the wet weight of the bivalves' soft parts, and b the specific form of relationship between body size and filtration rate (or the amount of phagocytosed algae). The values obtained for b lie within a range which indicates that the filtration rate (or the amount of phagocytosed algae) is sometimes more or less proportional to body surface area, sometimes to body weight. Temperature coefficients for the filtration rate are in Arctica islandica Q10 (4°–14°C)=2.05 and Q10 (10°–20°C)=1.23, in Modiolus modiolus Q10 (4°–14°C)=2.33 and Q10 (10°–20°C)=1.63. In A. islandica, temperature coefficients for the amount of phagocytosed algae amount to Q10 (4°–14°C)=2.15 and Q10 (10°–20°C)=1.55, in M. modiolus to Q10 (4°–14°C)=2.54 and Q10 (10°–20°C)=1.92. Upon a temperature decrease from 12° to 4°C, filtration rate and amount of phagocytosed algae are reduced to 50%. At the increasing concentrations of 10×106, 20×106 and 40×106 cells of Chlamydomonas/l offered, filtration rates of both mollusc species decrease at the ratios 3:2:1. At 12°C, pseudofaeces production occurs in both species in a suspension of 40×106, at 20°C in 60×106 cells of Chlamydomonas/l. At 12°C and 10–20×106 cells of Chlamydomonas/l, the maximum amount of algae is phagocytosed. At 40×106 cells/l, the amount of phagocytosed cells is reduced by 26% as a consequence of low filtration rates and intensive production of pseudofaeces. At 20°C and 20–50×106 cells of Chlamydomonas/l, the maximum amount of algae is sieved out and phagocytosed; the concentration of 10×106 cells/l is too low and cannot be compensated for by increased activity of the molluscs. With increasing temperatures, the amount of suspended matter, allowing higher rates of filtration and food utilization, shifts toward higher particle concentrations; but at each temperature a threshold exists, above which increase in particle density is not followed by increase in the amount of particles ingested. Based on theoretical considerations and facts known from literature, 7 different levels of food concentration are distinguishable. Experiments with Chlamydomonas sp. and Dunaliella sp. used as food, reveal the combined influence of particle concentration and particle size on filtration rate. Supplementary experiments with Mytilus edulis resulted in filtration rates similar to those obtained for M. modiolus, whereas, experiments with Cardium edule, Mya arenaria, Mya truncata and Venerupis pullastra revealed low filtration rates. These species, inhabiting waters with high seston contents, seem to be adapted to higher food concentrations, and unable to compensate for low concentrations by higher filtration activities. Adaptation to higher food concentrations makes it possible to ingest large amounts of particles even at low filtration rates. Suspension feeding bivalves are subdivided into four groups on the basis of their different food filtration behaviour.  相似文献   

19.
E. Lopez 《Marine Biology》1979,53(3):201-211
The ultrastructure and pigment content of algal chloroplasts (derived from Bacillariophyceae or Chrysophyceae) are described from 3 benthic species of brackish-water foraminiferans.Elphidium williamsoni Haynes contains 4×106 chloroplasts mg-1, whereas the contents ofNonion germanicum (Ehrenberg) andE. excavatum (Terquem) are about 10% of this value. The two former contain chlorophyllsa andc and fucoxanthin, but these pigments were not detectable in the latter.E. williamsoni andN. germanicum had a net uptake of14C–HCO 3 - , proportional to their content of chlorophyll and number of chloroplasts, increasing linearly up to approximately 10 Klux. At light saturation the former assimilates 2.3x10-3 mg C mg-1 h-1 and the latter only about 20% of this value. Dark uptake was insignificant in all cases. Uptake could not be demonstrated inE. excavatum. The photosynthesis effected by these species is trivial in terms of the total benthic carbon fixation effected by the microflora. The chloroplasts survived longer in forminiferans kept in the dark than in light/dark adapted individuals. To keep a steady state population of chloroplasts under light/dark conditions,E. williamsoni must eat at least 65 chloroplasts individual-1 h-1, whereas the minimum consuption rate inN. germanicum is 20.  相似文献   

20.
We conducted grazing experiments with the three marine cladoceran genera Penilia, Podon and Evadne, with Penilia avirostris feeding on plankton communities from Blanes Bay (NW Mediterranean, Spain), covering a wide range of food concentrations (0.02–8.8 mm3 l–1, plankton assemblages grown in mesocosms at different nutrient levels), and with Podon intermedius and Evadne nordmanni feeding on the plankton community found in summer in Hopavågen Fjord (NE Atlantic, Norway, 0.4 mm3 l–1). P. avirostris and P. intermedius showed bell-shaped grazing spectra. Both species reached highest grazing coefficients at similar food sizes, i.e. when the food organisms ranged between 15 and 70 µm and between 7.5 and 70 µm at their longest linear extensions, respectively. E. nordmanni preferred organisms of around 125 µm, but also showed high grazing coefficients for particles of around 10 µm, while grazing coefficients for intermediate food sizes were low. Lower size limits were >2.5 µm, for all cladocerans. P. avirostris showed upper food size limits of 100 µm length (longest linear extension) and of 37.5 µm particle width. Upper size limits for P. intermedius were 135 µm long and 60 µm wide; those for E. nordmanni were 210 µm long and 60 µm wide. Effective food concentration (EFC) followed a domed curve with increasing nutrient enrichment for P. avirostris; maximum values were at intermediate enrichment levels. The EFC was significantly higher for P. intermedius than for E. nordmanni. With increasing food concentrations, the clearance rates of P. avirostris showed a curvilinear response, with a narrow modal range; ingestion rates indicated a rectilinear functional response. Mean clearance rates of P. avirostris, P. intermedius and E. nordmanni were 25.5, 18.0 and 19.3 ml ind.–1 day–1, respectively. Ingestion rates at similar food concentrations (0.4 mm3 l–1) were 0.6, 0.8 and 0.9 g C ind.–1 day–1.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号