首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experiment was designed to examine in a long-lived seabird, the thin-billed prion (Pachyptila belcheri), how adults adjust their food provisioning strategy when their foraging abilities are reduced and when the chick's needs are increased. To reduce the foraging abilities of adults we impaired their flying ability by removing some flight feathers (handicapped), and to increase the food needs of the chick one parent was retained (single). Birds made either short foraging trips lasting 1–3 days, or long trips lasting 5–9 days. Control birds alternated long and short trips whereas single birds or handicapped birds made several successive short trips and thereafter a long trip. In each treatment, food loads tended to be heavier after long trips than after short trips, and single birds tended to bring heavier loads than control or handicapped birds. Birds in the three treatments lost similar amounts of mass after short trips and gained similar amounts of mass after long trips. However, the mass of handicapped birds declined through the experiment, while that of control and single birds remained stable. Although the proportion of chicks that died during the experiment was similar among the three treatments, the chicks fledged by a single bird were lighter than those in control nests. The results of the experiment suggest that thin-billed prions adjust their breeding effort differently to decreased flying ability or increased food demand by the chick. Single birds increase foraging effort without allowing their condition to deteriorate. Conversely, handicapped birds are unable to maintain their body condition while sustaining the chick at the same rate as control birds. It is suggested that in this long-lived seabird, adults probably adjust their breeding effort so that they do not incur the risk of an increased mortality, this risk being monitored by the body condition.  相似文献   

2.
Group foraging allows the co-existence of a strategy (producer) that involves searching for food, and its alternative (scrounger) exploiting the food of the producer. The use of producer and scrounger strategies has been modelled as an alternative-option scramble which assumes strong negative frequency-dependence of the scrounger's pay-offs. We tested this assumption in a flock feeding situation by manipulating the proportion of scroungers in flocks of spice finches, Lonchura punctulata. In a first experiment we found that: (1) the food intake of scroungers, and to a lesser extent producers, was negatively affected by an increase in the proportion of scroungers; (2) the food intake of producers and scroungers was equal when the proportion of scroungers was small, suggesting that producers, who exploited 35.4% of their patches by scrounging were opportunistically adjusting their use of the strategies until the pay-offs equalized. In a second experiment we tested whether finches could vary their use of the two strategies in response to changes in foraging conditions brought about by an increase in the cost of producing. As predicted by the game, finches reduced their use of the producer strategy and increased their use of the scrounger strategy when the cost of producing increased. These results suggest that spice finches can alter their allocation to each foraging alternative by experience and that the producer-scrounger game is a realistic model for predicting group foraging decisions. Correspondence to: L.-A. Giraldeau  相似文献   

3.
Social insect colonies can be expected to forage at rates that maximize colony fitness. Foraging at higher rates would increase the rate of worker production, but decrease adult survival. This trade-off has particular significance during the founding stage, when adults lost are not replaced. Prior work has shown that independent-founding wasps rear the first workers rapidly by foraging at high rates. Foraging rates decrease after those individuals pupate, presumably reducing the risk of foundress death. In the swarm-founding wasps, colony-founding units have many workers, making colony death by forager attrition less likely. Do swarm-founding wasps show similar shifts in foraging rates during the founding stage? We measured foraging rates of the swarm-founding wasp, Polybia occidentalis at four stages of colony development. At each stage, foraging rates correlated with the number of larvae present, which, in the founding stages, correlated with the number of cells in the new nest. Thus, foraging rates appear to be demand-driven, with the level of demand in the founding stage set by the size of nest that is constructed. During the founding stage, foraging rates per larva were high initially, suggesting that colonies minimize the development times of larvae early in the founding stage. Later in the stage, foraging rates decreased, which would reduce worker mortality until new workers eclose. This pattern is similar to that shown for independent-founding wasps and likely results from conflicting pressures to maximize colony growth and minimize the risk of colony death by forager attrition.  相似文献   

4.
Comparative data from ten families of lizards suggest that correlated evolution has occurred between the ability to identify prey chemicals and several aspects of lingual function and morphology, abundance of vomeronasal chemoreceptor cells, and foraging behavior. Ability to discriminate prey chemicals from control substances was measured experimentally and correlated with other variables by Felsenstein's method. This ability increased with evolutionary increases in degree of lingual protrusion during tongue-flicking, which may reflect the tongue's ability to reach substrates to be sampled. It increased with deepened lingual forking and greater lingual elongation, which may be important for scent-trailing and sampling ability, respectively. Discriminatory ability also increased with abundance of vomerolfactory chemoreceptors, which presumably reflects some aspects of analytical capacities of the vomeronasal system. Prey chemical discrimination increased with degree of active foraging. Natural selection for improved vomerolfactory sampling and analysis of prey chemicals by active, but not ambush, foragers appears to account for the observed relationships. In active foragers that use vomerolfaction to locate prey, natural selection favors increased abilities to lingually sample chemicals from environmental substrates, analyze the samples for prey chemicals, and respond appropriately if prey chemicals or possible prey chemicals are detected. Such selection can account for the observed relationships among the sampling device and its movements, the sense, the discriminations, and variations in foraging ecology. Received: 13 February 1997 / Accepted after revision: 12 June 1997  相似文献   

5.
In old, spruce-dominated forests of central Finland, Eurasian treecreepers Certhia familiaris divide their territories spatially during the breeding season. Females forage primarily on the upper parts of the tree trunks, while males use the lower parts of the tree trunks. In this study we removed males from eight territories in the early nestling period to see if the mate's absence would change the foraging patterns of the resident female. Widowed females foraged at lower heights, thus behaving more like paired males. These females also spent less time on each tree and on each foraging bout than did paired females. We conclude that male removal facilitated the change in a female's foraging niche and foraging time at the trees. Females may re-optimize their foraging site selection owing to the absence of dominant males and a consequent need to increase their parental care. Behavioral plasticity may be the mechanism of niche partitioning between the sexes in this species. Received: 28 June 1996 / Accepted after revision: 27 March 1997  相似文献   

6.
Behavior in eusocial insects likely reflects a long history of selection imposed by parasites and pathogens because the conditions of group living often favor the transmission of infection among nestmates. Yet, relatively few studies have quantified the effects of parasites on both the level of individual colony members and of colony success, making it difficult to assess the relative importance of different parasites to the behavioral ecology of their social insect hosts. Colonies of Polybia occidentalis, a Neotropical social wasp, are commonly infected by gregarines (Phylum Apicomplexa; Order Eugregarinida) during the wet season in Guanacaste, Costa Rica. To determine the effect of gregarine infection on individual workers in P. occidentalis, we measured foraging rates of marked wasps from colonies comprising both infected and uninfected individuals. To assess the effect of gregarines on colony success, we measured productivity and adult mortality rates in colonies with different levels of infection prevalence (proportion of adults infected). Foraging rates in marked individuals were negatively correlated with the intensity of gregarine infection. Infected colonies with high gregarine prevalence constructed nests with fewer brood cells per capita, produced less brood biomass per capita, and, surprisingly, experienced lower adult mortality rates than did uninfected or lightly infected colonies. These data strongly suggest that gregarine infection lowers foraging rates, thus reducing risk to foragers and, consequently, reducing adult mortality rates, while at the same time lowering per-capita input of materials and colony productivity. In infected colonies, queen populations were infected with a lower prevalence than were workers. Intra-colony infection prevalence decreased dramatically in the P. occidentalis population during the wet season.An erratum to this article can be found at  相似文献   

7.
In polygynous and sexually dimorphic mammals, parents may be expected to bias their investment towards sons because variation in reproductive success is usually higher among males than among females. Moreover, male reproductive success often depends on adult body size, which, in turn, may depend on the level of parental investment. We therefore predicted that in the grey seal (Halichoerus grypus), a polygynous and sexually dimorphic phocid seal, females should invest more in individual sons than in individual daughters. We found that male pups were born heavier than female pups, but that the growth rates and suckling behaviour were similar for the two sexes. The growth rates and the birth weights were not correlated for the pups of either sex. Mothers did not behave differentially towards offspring of the two sexes, except that mothers of male pups spent more time in visual contact with their pups. Male and female pups had similar activity levels and begged at similar rates. We argue that reports of equal expenditure on the two sexes can be accepted as evidence of equal investment, provided that three assumptions are fulfilled. First, parental care must be costly to the parent. Second, energy expenditure must be the most important component of parental investment. Third, there must be no negative correlation between maternal body condition and the ratio of sons to daughters produced. We argue that these assumptions are met in our study, and that our results provide evidence of equal maternal investment in the sexes in grey seals.  相似文献   

8.
Foragers show adaptive responses to changes within their environment, and such behavioural plasticity can be a significant driving force in speciation. We investigated how lactating Antarctic fur seals, Arctocephalus gazella, adapt their foraging within two contrasting ecosystems. Location and diving data were collected concurrently, between December 2003 and February 2004, from 43 seals at Bird Island, where krill, Euphausia superba, are the main prey, and 39 at Heard Island, where mostly fish are consumed. Seals at Heard Island were shorter and lighter than those at Bird Island and they spent longer at sea, dived more frequently and spent more time in the bottom phase of dives. Generalized additive mixed effects models showed that diving behaviours differed between the islands. Both populations exploited diel vertically migrating prey species but, on average, Heard Island seals dived deeper and exceeded their estimated aerobic dive limits. We propose that the recovery of the Heard Island population may be limited by the relative inaccessibility and scarcity of food, whereas at Bird Island, the presence of abundant krill resources helps sustain extremely high numbers of seals, even with increased intra- and inter-specific competition. Both populations of fur seals appear to be constrained by their physiological limits, in terms of their optimal diving behaviour. However, there does appear to be some flexibility in strategy at the level of trip with animals adjusting their time at sea and foraging effort, in order to maximize the rate of delivery of energy to their pups.  相似文献   

9.
When searching for flying insects, Molossops temminckii uses unusual echolocation calls characterized by upward modulation of frequency vs time (UFM). Call frequency increases asymptotically in the relatively long (∼8 ms) pulses from a starting frequency of ∼40 kHz to a long narrowband tail at ∼50 kHz. When approaching a prey, the bat progressively increases the duration of calls and intersperses in the sequence broadband downwardly frequency-modulated signals with a terminal frequency of about 53 kHz, which totally replaces the UFM signals at the end of the approach phase. The sequence progresses to a capture buzz resembling those from other molossid and vespertilionid bats. The M. temminckii wing morphology is characterized by an average aspect ratio and a high wing loading, suggesting that it is more maneuverable than the typical Molossidae but less than typical Vespertilionidae. M. temminckii regularly forages near clutter, where it needs to pay attention to the background and might face forward and backward masking of signals. We hypothesize that the UFM echolocation signals of M. temminckii represent an adaptation to foraging near background clutter in a not very maneuverable bat needing a broad attention window. The broadband component of the signal might serve for the perception of the background and the narrowband tail for detection and perhaps classification of prey. Bats may solve the signal masking problems by separating emission and echoes in the frequency domain. The echolocation behavior of M. temminckii may shed light on the evolution of the narrowband frequency analysis echolocation systems adopted by some bats foraging within clutter.  相似文献   

10.
Parastizopus armaticeps is a nocturnal subsocial detritivorous desert tenebrionid that produces very few offspring per brood. The two environmental factors that constrain reproduction, rapid sand desiccation rate and food scarcity, are countered by biparental effort. Males dig and extend breeding burrows, maintaining their moisture level; females forage on the surface at night for high-quality detritus, the larval food. This was shown to be a scarce and unpredictable resource for which there is high competition. When food was supplemented in a field experiment, offspring number and survivorship doubled and burrow failure due to desiccation dropped from approximately half, the typical failure rate for unsupplemented burrows, to zero. Food supplementation did not, however, increase larval foodstore size and there was no difference in the size of the offspring produced. Supplemented females reallocated their time, foraging less and digging more with the male. This change in maternal behaviour patterns resulted in deeper burrows which remained moist longer, thus extending the larval production period. Female foraging efficiency, particularly food retrieval speed, determined how much time females could allocate to digging, consequently increasing the reproductive success of the pair. Burrow depth and sand moisture level at the burrow base were the major correlates of reproductive success, but the scarcity and unpredictability of high-quality food on the surface and the competition for this resource influenced the number of offspring indirectly through their effect on female behaviour. Received: 29 November 1996 / Accepted after revision: 7 December 1997  相似文献   

11.
It is well known that the risk of predation affects prey decision making. However, few studies have been concerned with the cues used by prey to assess this risk. Prey animals may use indirect environmental cues to assess predation hazard since direct evaluation may be dangerous. I studied the assessment of predation risk, manipulated via environmental illumination level, and the trade-off between foraging and predation hazard avoidance in the nocturnal rodentPhyllotis darwini (Rodentia: Cricetidae). In experimental arenas I simulated dark and full moon nights (which in nature correlate with low and high predation risk, respectively) and measured the immediate responses of animals to flyovers of a raptor model. Second, varying illumination only, I evaluated patch use, food consumption, central place foraging, and nocturnal variation of body weight. During flyover experiments, animals showed significantly more evasive reactions under full moon illumination than in moonless conditions. In the patch use experiments, rodents significantly increased their giving-up density and decreased their total food consumption under moonlight. On dark nights, rodents normally fed in the food patch, but when illumination was high they became central place foragers in large proportion. Moreover, the body weight of individuals decreased proportionately more during bright nights. These results strongly suggest thatP. darwini uses the level of environmental illumination as a cue to the risk of being preyed upon and may sacrifice part of its energy return to avoid risky situations.  相似文献   

12.
In social insects, the decision to exploit a food source is made both at the individual (e.g., a worker collecting a food item) and colony level (e.g., several workers communicating the existence of a food patch). In group recruitment, the recruiter lays a temporary chemical trail while returning from the food source to the nest and returns to the food guiding a small group of nestmates. We studied how food characteristics influence the decision-making process of workers changing from individual retrieving to group recruitment in the gypsy ant Aphaenogaster senilis. We offered field colonies three types of prey: crickets (cooperatively transportable), shrimps (non-transportable), and different quantities of sesame seeds (individually transportable). Colonies used group recruitment to collect crickets and shrimps, as well as seeds when they were available in large piles, while small seed piles rarely led to recruitment. Foragers were able to “measure” food characteristics (quality, quantity, transportability), deciding whether or not to recruit, accordingly. Social integration of individual information about food emerged as a colony decision to initiate or to continue recruitment when the food patch was rich. In addition, group recruitment allowed a fast colony response over a wide thermal range (up to 45°C ground temperature). Therefore, by combining both advantages of social foraging (group recruitment) and thermal tolerance, A. senilis accurately exploited different types of food sources which procured an advantage against mass-recruiting and behaviorally dominant species such as Tapinoma nigerrimum and Lasius niger.  相似文献   

13.
Central place foragers are constrained in their foraging distribution by the necessity to return to their nest site at regular intervals. In many petrels that feed on patchily distributed prey from the sea surface over large foraging areas, alternating long and short foraging trips are used to balance the demands of the chick with the requirements of maintaining adult body condition. When the local conditions are favourable for prey density and quality, adults should be able to reduce the number of long foraging trips. We studied the flexibility in foraging trip lengths of a small pelagic petrel, the thin-billed prion Pachyptila belcheri, over three breeding seasons with increasingly favourable, cold-water conditions. During a warm-water influx in February 2006, chicks were fed less frequently and adults carried out foraging trips of up to 8 days. When conditions became more favourable with colder water temperatures in 2007 and 2008, thin-billed prions decreased trip lengths, more often attended their chick every day, and long foraging trips of six to eight days were not registered during 2008. Chick growth rates mirrored this, as chicks grew poorly during 2006, intermediate during 2007 and best during 2008. Thin-billed prions preyed mainly on squid during incubation and mainly on amphipods and euphausiids during chick-rearing. In the poorest season only, the diet was substantially supplemented with very small copepods. Together, the present results indicate that during warm-water conditions, thin-billed prions had difficulties in finding sufficient squid, amphipods or euphausiids and were forced to switch to lower trophic level prey, which they had to search for over large ocean areas.  相似文献   

14.
Many group-living species produce frequent vocalisations when foraging, but the function of these food-associated calls is often difficult to divine. I investigated the kek call of the cooperatively breeding green woodhoopoe (Phoeniculus purpureus), a species in which individuals have preferred foraging techniques dependent on their bill size. Individuals called at a greater rate (1) in foraging compared to non-foraging situations, and (2) in groups containing potential foraging competitors (i.e. individuals that foraged using the same preferred techniques). I therefore asked whether the kek call is used to recruit conspecific foragers or whether it acts as a vocal signal of foraging niche and mediates foraging competition. Foragers that were vocalising were no more likely to be approached than those that were silent, and individuals gained no foraging advantage from the close proximity of another group member. Thus, keks are unlikely to be used to recruit conspecifics. Instead, they appear to regulate spacing between potential foraging competitors. Although an individual forager was equally likely to be closely approached by all other group members, it increased its calling rate only in response to potential foraging competitors. This increase in calling rate resulted in the approaching individual moving away, thus maintaining some separation between individuals that forage in the same way. Maintenance of such spacing is important because the success rate of an individual decreased when a foraging competitor was close by.Communicated by M. Leonard  相似文献   

15.
The regulation of protein collection through pollen foraging plays an important role in pollination and in the life of bee colonies that adjust their foraging to natural variation in pollen protein quality and temporal availability. Bumble bees occupy a wide range of habitats from the Nearctic to the Tropics in which they play an important role as pollinators. However, little is known about how a bumble bee colony regulates pollen collection. We manipulated protein quality and colony pollen stores in lab-reared colonies of the native North American bumble bee, Bombus impatiens. We debut evidence that bumble bee colony foraging levels and pollen storage behavior are tuned to the protein quality (range tested: 17–30% protein by dry mass) of pollen collected by foragers and to the amount of stored pollen inside the colony. Pollen foraging levels (number of bees exiting the nest) significantly increased by 55%, and the frequency with which foragers stored pollen in pots significantly increased by 233% for pollen with higher compared to lower protein quality. The number of foragers exiting the nest significantly decreased (by 28%) when we added one pollen load equivalent each 5 min to already high intranidal pollen stores. In addition, pollen odor pumped into the nest is sufficient to increase the number of exiting foragers by 27%. Foragers directly inspected pollen pots at a constant rate over 24 h, presumably to assess pollen levels. Thus, pollen stores can act as an information center regulating colony-level foraging according to pollen protein quality and colony need. An erratum to this article can be found at  相似文献   

16.
In the Serengeti National Park, Tanzania, large fluctuations of prey abundance alters the frequency at which spotted hyena (Crocuta crocuta) cubs are nursed and thus the total level of maternal input available to them. Maternal input is high when mothers feed on high densities of locally available migratory herbivores and low when mothers travel up to 70 km to forage. Using data from 19 cub cohorts on the incidence of siblicide (from monitoring the survival of 609 cubs in twin litters) and cub growth rates (from 195 cubs in twin litters) as a measure of maternal input, we demonstrate that the incidence of siblicide increased as average cohort growth rate declined. In total, there were 37 siblicides in 384 litters (9% of litters). When both cubs were alive, total maternal input in siblicidal litters was significantly lower than in non-siblicidal litters and the mean share of the dominant sib of 64.6% was significantly higher than the mean of 52.1% for dominant sibs of non-siblicidal litters. After siblicide, growth rates of siblicide victors substantially increased, demonstrating that mothers did not reduce maternal input after litter reduction. As a result, siblicide victors achieved a long-term growth rate similar to that of singletons and thus significantly increased their expected survival. We conclude that in spotted hyenas, high maternal input in lactation has favoured the evolution of facultative siblicide in populations inhabiting areas with low or fluctuating food resources.  相似文献   

17.
Determining the scale of larval dispersal and population connectivity in demersal fishes is a major challenge in marine ecology. Historically, considerations of larval dispersal have ignored the possible contributions of larval behaviour, but we show here that even young, small larvae have swimming, orientation and vertical positioning capabilities that can strongly influence dispersal outcomes. Using young (11–15 days), relatively poorly developed (8–10 mm), larvae of the pomacentrid damselfish, Amblyglyphidodon curacao (identified using mitochondrial DNA), we studied behaviour relevant to dispersal in the laboratory and sea on windward and leeward sides of Lizard Island, Great Barrier Reef. Behaviour varied little with size over the narrow size range examined. Critical speed was 27.5 ± 1.0 cm s−1 (30.9 BL s−1), and in situ speed was 13.6 ± 0.6 cm s−1. Fastest individuals were 44.6 and 25.0 cm s−1, for critical and in situ speeds, respectively. In situ speed was about 50% of critical speed and equalled mean current speed. Unfed larvae swam 172 ± 29 h at 8–10 cm s−1 (52.0 ± 8.6 km), and lost 25% wet weight over that time. Vertical distribution differed between locations: modal depth was 2.5–5.0 and 10.0–12.5 m at leeward and windward sites, respectively. Over 80% of 71 larvae observed in situ had directional swimming trajectories. Larvae avoided NW bearings, with an overall mean SE swimming direction, regardless of the direction to nearest settlement habitat. Larvae made smaller changes between sequential bearings of swimming direction when swimming SE than in other directions, making it more likely they would continue to swim SE. When swimming NW, 62% of turns were left (more than in other directions), which would quickly result in swimming direction changing away from NW. This demonstrates the larvae knew the direction in which they were swimming and provides insight into how they achieved SE swimming direction. Although the cues used for orientation are unclear, some possibilities seemingly can be eliminated. Thus, A. curacao larvae near Lizard Island, on average swam into the average current at a speed equivalent to it, could do this for many hours, and chose different depths in different locations. These behaviours will strongly influence dispersal, and are similar to behaviour of other settlement-stage pomacentrid larvae that are older and larger.  相似文献   

18.
Predation risk has been shown to alter various behaviours in prey. Risk alters activity, habitat use and foraging, and weight decrease might be a consequence of that. In mammals, studies on physiological measures affected by risk of predation, other than weight, are rare. We studied in two separate laboratory experiments foraging, hoarding behaviour and expression of stress measured non-invasively from the faeces in the bank vole (Clethrionomys glareolus), a common boreal rodent. Voles were exposed to predation risk using odours of the least weasels (Mustela nivalis nivalis). Distilled water served as control. In the first experiment, we found that foraging effort, measured as sunflower seeds taken from seed trays filled with sand, was significantly lower in trays scented with weasel odour. Both immediate consumption of seeds and hoarding were affected negatively by the weasel odour. Females hoarded significantly more than males in autumn. In the second experiment, the negative effect of weasel odour on foraging was consistent over a 3-day experiment, but the strongest effect was observed in the first night. Foraging increased over the time of the experiment, which might reflect either energetic compensation during a longer period of risk, predicted in the predation risk allocation hypothesis, or habituation to the odour-simulated risk. Despite decreased foraging under predation risk, stress measured as corticosteroid metabolite concentration in vole faeces was not affected by the weasel odour treatment. In conclusion, we were able to verify predation-risk-mediated changes in the foraging effort of bank voles but no physiological stress response was measured non-invasively, probably due to great individual variation in secretion of stress hormones.  相似文献   

19.
We investigated the possibility that male harassment of lactating females differed in relation to time of birth in the grey seal, Halichoerus grypus, on Sable Island, Nova Scotia. This was done by comparing the frequency of male disturbances, maternal performance and pup growth for females that either gave birth during the peak of the pupping season or after the peak. Of the females, 58% gave birth in a 7-day period near the beginning of the pupping period, when the operational sex ratio was 2–4 females per male. Late in the pupping period the operational sex ratio reversed to about 1 female for every 2 males. The relative frequency of disturbances by males was significantly greater for late-pupping mothers than for peak-pupping ones (1.9 vs. 1.4 encounters/h). Females that gave birth late also were disturbed by males 3 times more often than females that gave birth during the peak (3.4 vs. 1.1 % of observation time). Late-pupping mothers spent 22% less time suckling (4.0 vs. 5.1 % of observation time), had 30% slower growing pups (1.7 vs. 2.4 kg/d), and weaned pups that were 16% lighter (45.6 vs. 54.0 kg). The effect of birth time on pup mass gain and weaning mass was not attributable to factors such as maternal mass, pup birth mass or pup sex. We conclude that the reduced maternal performance is likely the result of the increased male harassment. As reduced weaning mass can lead to reduced juvenile survival, male harassment may have contributed to the enhanced reproductive synchrony in this species.  相似文献   

20.
The evolution of life history characters, including parental care behaviors, depends on costs and benefits. When offspring can influence parental behaviors, parent-offspring conflict over parental care can occur, but only if these parental behaviors are costly. Mother burrower bugs (Sehirus cinctus) exhibit extended and complex care of offspring. Mothers guard eggs until hatching and then attend and provision offspring for approximately 2 weeks after hatching. Using four experimental treatments, we attempted to identify the costs associated with specific components of these behaviors. Under laboratory conditions, egg guarding increases inter-clutch interval, but provisioning does not appear to be very costly. We discuss additional ecological factors that may be important in mediating provisioning costs under natural conditions. Through analysis of individual maternal performance, we find no evidence for trade-offs between successive clutches. These data suggest that variation in overall condition may obscure variation in allocation strategies.Communicated by F. Trillmich  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号