首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
于2009年11月26日至12月20日在南京北郊进行24 h大气PM10分粒径连续采样,用离子色谱法研究PM10中水溶性阳离子和元素的组分特征,并对其来源进行分析。结果表明,大气PM10中主要阳离子为Ca2+,其在粗细粒子中占阳离子总量均约为50%,且白天大于夜晚,局地污染物扬尘与气象条件等因素导致Ca离子较高。PM10中各种阳离子和元素的粒径分布均呈双模态分布,主要分布于细粒子中,且均为白天大于夜晚。利用因子分析法进行源解析,南京北郊PM10的主要成分来自于金属冶炼、建筑扬尘等,这类排放源对PM10中阳离子及元素的贡献率为46.81%;南京北郊PM2.1的主要成分来自于金属冶炼、二次有色金属制造以及燃油尘,金属制造类排放源对PM2.1的贡献率为46.81%。  相似文献   

2.
南京城区与郊区秋季大气PM_(10)中水溶性离子的特征研究   总被引:12,自引:7,他引:5  
对南京市城区与郊区秋季PM10中水溶性离子的浓度水平,变化规律及其相关性进行分析。结果表明:水溶性离子是南京市PM10的重要组成部分,占PM10总量的26.8%~49.5%;NO3-、SO24-为南京PM10中离子的主要成分同时SO24-与PM10的相关性高,在郊区与城区相关系数分别为0.97与0.98;土壤源对Mg2+的贡献多于海洋气溶胶。郊区与城区非海盐Mg2+和Ca2+的比值分别为0.0308~0.0557与0.0314~0.0558,与中国北方沙漠地区相异,说明观测期间南京大气PM10主要受局地源影响;南京城、郊NO3-/SO24-均值分别为0.74和0.80,说明南京市城郊PM10中NO3-与SO24-更多地来自于机动车尾气排放。  相似文献   

3.
广州市灰霾期大气PM_(10)中水溶性离子特征   总被引:1,自引:0,他引:1  
采集广州市大气PM10样品并分别对冬夏两季灰霾和非灰霾期PM10中水溶性离子进行分析。实验表明,广州市灰霾期PM10中水溶性离子的质量浓度要高出非灰霾期4~15倍,其中NO3-浓度升幅最大。非灰霾期主要水溶性无机离子的浓度顺序为SO42->NH4+>NO3-,灰霾期为SO42->NO3->NH4+,严重灰霾期则为NO3->SO42->NH4+。非灰霾期SO42-/NO3-质量浓度比为1.78~3.57,灰霾期为1.04~1.20,而在严重灰霾期则<1,说明灰霾利于NO3-的二次转化生成。实验还表明,灰霾期PM10较非灰霾天气偏酸性,灰霾期SO2和NOx的高转化率导致SO42-和NO3-的大幅增加是加重灰霾期PM10污染的主要原因。  相似文献   

4.
于2014年7月在石家庄市区对大气环境PM_(10)进行样品采集,并对PM_(10)浓度和水溶性离子的污染特征进行了分析。结果表明:采样期间PM_(10)质量浓度为(145.2±58.7)μg/m3,重污染天气主要是由于气象条件和地理位置共同造成的。水溶性离子是PM_(10)中含量较高的组分,其中SO2-4、NO-3和NH+4之和占总水溶性离子质量浓度的80.7%,Ca2+和Mg2+相关系数高达0.88,表明两者来源一致,Na+和Cl-浓度受人为活动的影响较大,K+主要来自生物质燃烧。PM_(10)中硫氧化率和氮氧化率分别为0.37和0.28,表明大气中存在SO2和NO2二次转化过程。  相似文献   

5.
为了分析南京北郊水溶性离子污染特征及其消光贡献,于2017年3月15日~4月15日、7月和10月开展了PM2.5观测实验,分析了南京春夏秋3个季节的PM2.5及其组分浓度特征、水溶性离子及其前体物转化特征以及水溶性离子的光学特性.结果表明,采样期间PM2.5的质量浓度为(93.8±40.3)μg/m3,其中54.2%为水溶性离子,其总质量浓度为(50.9±25.6)μg/m3,而二次水溶性离子(SNA)占水溶性离子的76.8%.各水溶性离子组分分布为:NO3- > SO42- > NH4+ > Ca2+ > Cl- > NO2- > K+ > F- > Mg2+ > Na+.在季节变化上,PM2.5和主要水溶性离子均为春季高,夏季低,但夏季NO3-42-.硫转化率(SOR)和氮转化率(NOR)在采样期的均值分别为0.38、0.22,这说明南京有较强的二次转化过程.采样期间,平均[NO3-]/[SO42-]的值为1,这说明水溶性离子主要来源于移动源的排放.通过IMPROVE公式计算的大气消光系数低于实际值,但能够较为准确的反映出南京消光系数的趋势.各组分消光贡献从大到小分别为(NH42SO4(38.9%)、NH4NO3(36.7%)、POM(13.6%)、EC(9.3%)、NO2(1.5%).其中SNA的消光贡献占70%以上,春季的SNA消光贡献最大,而夏季的最小.  相似文献   

6.
2014年7月和12月分别对沈阳市大气污染物PM_(10)(可吸入颗粒物)进行采样分析,采样期内PM_(10)浓度全部超过国家一级标准,最大值超出国家二级标准3.3倍。用离子色谱法分析了PM_(10)中的水溶性无机阴离子,结果表明:4种阴离子浓度之和的变化总趋势为7月12月;各离子浓度的关系为SO_4~(2-)NO_3~-Cl~-F~-,4种离子浓度均为冬季高于夏季;对PM_(10)及4种阴离子进行相关性分析,得出NO_3~-、SO_4~(2-)浓度与PM_(10)浓度呈显著正相关,是PM_(10)的重要组分,并通过NO_3~-与SO_4~(2-)的质量比得出沈阳市大气污染物中水溶性组分主要来自于固定排放源。  相似文献   

7.
选取梅州市典型污染日(2015年7月8日至29日)进行实际测量,在梅州市环境监控中心站楼顶每天连续采集PM_(10)和PM_(2.5)样品,利用离子色谱仪分析样品中Na+、NH4+、K+、Mg~(2+)、Ca~(2+)、Cl~-、NO_2~-、NO_3~-、SO_4~(2-)离子的质量浓度,结果表明,PM_(10)日均质量浓度为(54±19)μg/m~3,PM_(2.5)日均质量浓度为(35±14)μg/m~3。PM10和PM2.5中水溶性无机离子平均浓度分别为(19.7±4.4)μg/m~3、(10.8±5.0)μg/m3,分别占PM_(10)和PM_(2.5)质量的(42±20)%和(31±9.7)%。其中S0_4~(2-)、NO_3~-、NH_4~+是梅州市PM_(10)和PM_(2.5)中最主要的水溶性无机离子。采样期间SO42-浓度较高的可能原因是煤炭在梅州市的能源结构中占有较高比例。S0_4~(2-)、NO_3~-主要以(NH_4)_2SO_4的形式存在气溶胶体系中。  相似文献   

8.
为研究我国旅游城市海南省三亚市大气颗粒物浓度水平及其化学成分,于2012年6月~2014年5月,使用惯性撞击式分级采样器采集大气颗粒物样品,并利用离子色谱法分析了其中的水溶性无机离子浓度及粒径分布.结果表明,PM_(2.1)和PM_(2.1~9)中总水溶性无机离子浓度平均值分别为(8.91±7.27)μg·m~(-3)和(11.34±9.37)μg·m~(-3).PM_(2.1)中SO_4~(2-)和NH_4~+占总水溶性无机离子的质量分数比较高,二者总和达到72.2%;PM_(2.1~9)中Cl-、Ca~(2+)和Na+占比较高,三者总和为67.6%.PM_(2.1)中总水溶性无机离子浓度在冬季最高,春秋季节次之,夏季浓度最低,分别为(14.58±8.88)、(9.33±7.72)、(8.72±4.42)和(3.82±1.59)μg·m~(-3);PM_(2.1~9)中总水溶性无机离子浓度夏季最高(17.14±16.00)μg·m~(-3),冬季次之(10.59±3.80)μg·m~(-3),春季和秋季变化差异不大,分别为(9.41±3.63)μg·m~(-3)和(8.21±3.24)μg·m~(-3).SO_4~(2-)和NH_4~+呈细粒径段为主的双模态分布,春季、夏季和秋季细粒径段峰值出现在0.43~0.65μm粒径段,而冬季则出现在0.65~1.1μm粒径段,细粒径段峰值出现由凝结模态向液滴模态转移的现象;NO~(-3)、Na+、Cl-、Ca~(2+)和Mg~(2+)呈粗粒径单峰分布,峰值出现在4.7~9μm粒径段;K+为双模态分布,细、粗粒径段峰值分别出现在0.43~0.65μm和4.7~5.8μm.三亚作为我国少数PM2.5年均值达标城市,水溶性无机离子来源主要为二次源、海盐和土壤尘及降尘.  相似文献   

9.
阜康大气气溶胶中水溶性无机离子粒径分布特征研究   总被引:1,自引:1,他引:1  
为了解阜康大气气溶胶中水溶性无机离子的浓度水平、来源以及粒径分布,本研究于2011年2月~2012年2月利用8级惯性撞击式分级采样器采集了阜康大气气溶胶样品,使用离子色谱测定了其中水溶性无机离子含量.分析比较了非采暖期和采暖期主要离子的变化趋势、浓度水平、构成、来源以及粒径分布,在此基础上选取特殊采样日分析了重污染、秸秆燃烧以及春耕期的离子组成以及粒径分布的差异.结果表明,阜康细粒子、粗粒子中总水溶性无机离子(TWSI)在非采暖期和采暖期的浓度分别为11.17、12.68μg·m-3和35.98、22.22μg·m-3;非采暖期的SO2-4主要来自盐碱土扬尘,NO-3和NH+4主要来自农田土壤扬尘,而采暖期的SO2-4、NO-3和NH+4主要来自煤炭等化石燃料燃烧.8种离子在非采暖期和采暖期均呈现双峰分布,相对于非采暖期,采暖期的SO2-4、NO-3和NH+4在细粒径段的峰值发生了粒径增长,SO2-4和NH+4在粗粒径段的峰值出现在3.3~4.7μm处.重污染期间二次污染严重,离子主要分布在1.1~2.1μm处;秸秆燃烧期受生物质燃烧影响大,离子主要分布在<0.65μm粒径段;春耕期土壤扬尘较多,离子主要分布在>3.3μm粒径段.  相似文献   

10.
为确定PM2.5中水溶性无机阴离子的含量,本文采用戴安ICS900离子色谱仪对F-、Cl-、NO-2、NO-3、SO2-4进行测量,实验表明,这种测量方法操作简单、测量结果准确度高、测量速度快,能同时测定多种水溶性无机阴离子。  相似文献   

11.
PM_(10)和PM_(2.5)是近年来乌鲁木齐市空气质量的首要污染物,其成分复杂,来源不清。采用扫描电镜和离子色谱研究了乌鲁木齐市2015年采暖期和非采暖期大气颗粒物PM_(10)和PM_(2.5)的显微形貌,元素组成及其水溶性离子特征,并采用主成分分析法(PCA)对其来源进行解析。结果表明:PM_(10)和PM_(2.5)的颗粒形态各异,以球状、团絮状形状居多。主要物质有硅铝酸盐颗粒、铁氧化物颗粒,硫酸/碳酸盐晶体,碳质气溶胶以及不明物质等。采暖期和非采暖期主要的无机水溶性离子分别是SO_4~(2-)、NH_4~+、NO_3~-、Cl~-和SO_4~(2-)、NH_4~+、NO_3~-、Ca~(2+)。推测乌鲁木齐市颗粒物污染主要来源于固定污染源。  相似文献   

12.
利用在线高分辨率仪器对2013年和2014年北京市SO2-4、NO-3和NH+4(SNA)浓度进行连续观测。结果表明:NO-3浓度在夜间较高,下午较低;SO2-4浓度在后半夜至早晨较低,从上午至前半夜整体呈上升趋势;NH+4浓度日变化曲线相对平缓,在整个白天时段较低,夜间时段较高。硫氧化率(SOR)夏季最高,冬季最低;氮氧化率(NOR)季节变化相对较小。2014年整体ρ(NO-3)/ρ(SO2-4)比值明显高于2013年,表明北京市的排放源中以机动车为代表的移动源的贡献明显增大。  相似文献   

13.
2013年1月,南京经历了一次重大持续性灰霾污染过程。利用在线气体及气溶胶监测系统和扫描电迁移率颗粒物粒径谱仪,通过研究颗粒物质量浓度,主要水溶性无机离子浓度,不同时段颗粒物的数谱分布及其日变化分布,二次气溶胶及黑碳与能见度的相关性等多个方面,较为全面地分析了重霾时期大气细颗粒物的污染特征。  相似文献   

14.
于2012年5月11日至5月15日同时对成都中心城区及其大气环境监测对照点都江堰灵岩寺大气PM2.5进行采集,并分析其中的化学组分。研究结果表明:成都市中心城区PM2.5的总体质量浓度大于灵岩寺,且各化学组分的质量浓度也均大于灵岩寺。两站点PM2.5中OC/EC均大于2,有2次有机碳的存在;中心城区WSOC和TN日均浓度大于灵岩寺,同时发现中心城区TN日变化趋势与灵岩寺一致,WSOC变化不明显;水溶性二次离子(SO2-4、NO-3和NH+4)浓度相对较高,中心城区SO2-4/NO-3值比灵岩寺小,说明成都市机动车尾气是主要排放源。  相似文献   

15.
以上海市5条隧道为研究对象,采用车载移动监测的方式监测记录各条隧道沿程颗粒物(PM_(2.5)和PM_(10))的质量浓度,结合隧道自身特点,探究隧道内部颗粒物分布规律和成因。结果表明:隧道内颗粒物质量浓度分布主要与隧道自身的通风方式、结构特点和通过的车辆及其形成的活塞风有关。通过平行比较5条隧道的通风效果,发现翔殷路隧道通风效果较好,人民路隧道北线污染较为严重。  相似文献   

16.
1980年3月,我们在北京北部山区,用光学粒子计数器观测了“干净”地区近地层大气气溶胶浓度与尺度谱分布。发现“有霾”大气气溶胶的浓度及其尺度谱分布的变化特征具有特殊性。计算表明,三参数谱模式的拟合效果较好。  相似文献   

17.
采用连续自动监测方法于2013年9月至2014年4月对处于四川盆地内的中等城市绵阳市主城区富乐山、市人大、三水厂、高新区4个点进行空气质量监测。监测结果表明:空间分布上PM10和PM2.5污染程度城西工业区最高,市中心其次,森林公园最低。季节变化PM10和PM2.5污染程度为:春季<秋季<冬季。1天内PM10和PM2.5小时均值呈双峰分布。PM10和PM2.5一元线性回归方程为:y=0.7273x-2.9869,回归分析相关性系数为0.94。ρ(PM2.5)/ρ(PM10)平均值为0.7,变化范围为0.27~0.93。  相似文献   

18.
张金萍  赵文君  狄楠 《环境工程》2017,35(2):141-146
为了解住宅室内环境中PM_(10)的污染水平并分析其影响因素且评估源排放强度,采用TSI AM-510型智能防爆粉尘仪对北京市4所住宅室内外的PM_(10)进行现场监测评价。结果显示:在室外PM_(10)浓度较低时,室内污染源会造成室内空气品质下降;室内PM_(10)受吸烟、烹饪、通风、室外交通及室外PM_(10)等影响;室内污染严重时I/O比较大;室内外PM_(10)污染呈线性规律的2个住宅室内PM_(10)的源排放均强度约为6.627,7.290 mg/h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号