首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acid volatile sulfide (AVS), simultaneously extracted metals (SEMs), and total concentrations of trace elements (Cu, Cd, Pb, Zn, Ni, Hg, As, and Cr) were studied in sediment cores from Baihua Lake in southwest China. The molar ratios of SEMs to AVS for all samples were lower than 1.0 except for the 25- to 30-cm layer of the sample collected at location YPZ, indicating that the heavy metals were currently not significantly bioavailable as a whole to benthic organisms. Based on the sediment quality guidelines and the potential ecological risk assessment, Hg presented a high ecological risk for the water body.  相似文献   

2.
Environmental Science and Pollution Research - This study investigated the occurrence of selected metals and metalloids (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) in radio-dated sediment cores from a coastal...  相似文献   

3.
New data on trace metal distribution in bottom sediments of Peter the Great Bay (the Sea of Japan) are presented. Much higher concentrations were detected near the most likely anthropogenic sources of trace metal inputs (waste water discharges from Vladivostok and Nakhodka, and the Vladivostok coastal landfill). Sediments in these contaminated areas were up to 700 ppm in Zn, 530 ppm in Pb, 7 ppm in Cd and 3 ppm in Hg. River runoff is of minor importance as a metal source in the investigated areas. The spatial distribution of trace metals outside the areas directly influenced by sewage discharges is regulated by natural processes such as sediment sorting by grain size. Based on radiometric dating of sediment cores, increases in the trace metal content of bottom sediments near Vladivostok begun in approximately 1945.  相似文献   

4.
Sewage effluent from a large ocean outfall south of Sydney, southeastern Australia, is efficiently dispersed on this high energy continental margin. An enrichment of Ag, Cu, Pb and Zn is only detectable in the fine fraction (<62.5 microm) of sediment. Ag, Co, Cu, Ni, Pb and Zn in the bulk sample correlate strongly with the mud content of surficial sediment, making an identification of the anthropogenic trace metal source difficult using total sediment analyses. The concentrations of HCB and DDE in the total sediment are also slightly elevated near the outfall. In the vicinity of the outfall, the estimated sewage component in the fine fraction of sediment, using Ag, Cu and Zn in a conservative, two-endmember physical mixing model, is <5% and is <0.25% of the total sediment. A greater anthropogenic Pb component in the fine fraction (mean: 24.8%) of surficial sediment compared to Ag, Cu and Zn may suggest a source other than sewage to Sydney continental margin sediments.  相似文献   

5.
The concentrations and chemical partitioning of heavy metals in the sediment cores of the Pearl River Estuary were studied. Based on Pearson correlation coefficients and principal component analysis results, Al was selected as the concentration normalizer for Pb, while Fe was used as the normalizing element for Co, Cu, Ni and Zn. In each profile, sections with metal concentrations exceeding the upper 95% prediction interval of the linear regression model were regarded as metal enrichment layers. The heavy metal accumulation mainly occurred at sites in the western shallow water areas and east channel, which reflected the hydraulic conditions and influence from riparian anthropogenic activities. Heavy metals in the enrichment sections were evaluated by a sequential extraction method for possible chemical forms in sediments. Since the residual, Fe/Mn oxides and organic/sulfide fractions were dominant geochemical phases in the enriched sections, the bioavailability of heavy metals in sediments was generally low. The 206Pb/207Pb ratios in the metal-enriched sediment sections also revealed the influence of anthropogenic sources. The spatial distribution of cumulative heavy metals in the sediments suggested that the Zn and Cu mainly originated from point sources, while the Pb probably came from non-point sources in the estuary.  相似文献   

6.
The Lot-Garonne fluvial system is known for its historic heavy metal pollution resulting from mining and smelting activities since the late 19th century. Here, we report 137Cs activities and heavy metal (Cd, Zn, Cu, Pb and V) concentration-depth profiles from sediment cores retrieved in 2001 from three reservoirs in the Lot River. High mean sedimentation rates of 2.4-2.8 cm a(-1) are indicated by 137Cs dating. The reservoir sediments have recorded the heavy metal deposition and thus allow establishing a connection between the temporal evolution of the heavy metal pollution and historical changes in smelting and waste-treatment proceedings. Based on heavy metal concentrations in sediments upstream of the anthropogenic inputs and bottom-sediments of the furthest downstream core (interpreted as old soil or riverbed), concentrations of approximately 17, approximately 82, approximately 0.33 and approximately 28 mg kg(-1) for Cu, Zn, Cd and Pb, respectively, are proposed as natural background values for the Lot fluvial system. The geoaccumulation index (Igeo [Müller, G., 1979. Schwermetalle in den Sedimenten des Rheins-Ver?nderungen seit. Umschav 79, 133-149.]) revealed that the Lot River sediments must be considered as "severely polluted" in Cd and Zn. Moreover, despite remediation efforts undertaken in the former smelting site, the Lot River is still "severely" (Igeo approximately 4) and "moderately to severely" (Igeo>2) impacted by Cd and Zn inputs, respectively.  相似文献   

7.
Total mercury content was evaluated in water and suspended sediment samples of the Moji-Gua?u river and in water and bottom sediment of its 3 marginal lagoons (Catingueiro, Barrinha, and Rio das Pedras), located downstream of the sampling point in the main channel. In all situations, low Hg concentrations were found in suspended and bottom sediments. Aluminum was used as a geochemical tracer to normalize the Hg concentrations in the sediment cores from the Rio das Pedras lagoon (r = 0.92). It was estimated that the Moji-Gua?u river transports up to 19 kg Hg yr(-1), 65% in the dissolved form and 35% adsorbed onto particulate matter. Following an acute toxic stage observed in the years 1970-1980, the basin has been restored to its original conditions mainly by natural recovery and a general reduction in Hg input to the ecosystem.  相似文献   

8.
Sediments of the Patroon Creek watershed (33 km(2)) are known to contain significant concentrations of heavy metals derived from two industrial sites within the watershed. Mercury Refining, Inc (Mereco) has stored and recycled Hg from 1955 to the present day, and National Lead Industries (NLI) manufactured aircraft components containing Cd, Pb, and U from 1958 to 1984. Here we present the first record of heavy metal deposition as preserved in a 3-m long sediment core collected in 1999 from Patroon Reservoir, a small water body (1.3 ha) downstream of the industrial sites. Bulk sediment samples were collected from the core at 0.05-m intervals and analyzed for total Cd, Pb, and U by ICP-MS and total Hg by CVAAS. Total Hg increases from less than 1 mg kg(-1) (dw) below 1.68 m, to a maximum of 6.2 mg kg(-1) at 0.80 m, and then declines to the sediment-water interface. Total Cd, Pb, and U concentrations increase abruptly above 1.68 m to maximum values of 25, 320, and 3600 mg kg(-1) (dw), respectively, and then decline gradually upwards. By correlating metal profiles with industrial history, we conclude that the 1.68 m horizon was deposited no earlier than 1958, the beginning of aircraft component manufacturing at NLI. The average, apparent sedimentation rate within the reservoir has a minimum value of approximately 0.04 m year(-1) for the 41-year period from 1958 to 1999. In the interval 0--1.68 m, average concentrations of Cd, Hg, Pb, and U are 1.69, 1.50, 461, and 13 mg kg(-1), respectively. These levels are comparable with other lake, reservoir and stream sediments that have been moderately to severely impacted by industrial pollution and are above levels expected to be detrimental to aquatic organisms.  相似文献   

9.
Spatial and temporal distribution of methylmercury (MeHg) was determined in surficial sediments collected from a river-reservoir system impacted by Hg-contaminated mine wastes. Despite the fact that total mercury concentrations (HgT) in surface sediments of the Carson River system were in the microg.g(-1) range, levels of MeHg varied from about 2 to 28 ngHg.g(-1) dry weight, representing less than 3% of Hg(T). Concentrations of MeHg were well correlated with both the biotic (r=0.95) and abiotic activity (r=0.85) of the sediment, determined as the ability of each compartment to specifically reduce an alternative electron acceptor. However, the positive relationship between the two measured activities suggests that the abiotic activity may be due to reductant substances produced by micro-organisms. When sediments collected from the Carson River were used in laboratory assays for the determination of potential rates of MeHg production, the addition of inorganic Hg (added as HgCl2) resulted in increased rates of methylation when the spike concentration was lower or equal to 15.3 microg.g(-1) dry weight. This trend was reversed for spike concentration of inorganic Hg above 15.3 microg.g(-1). The reduction of methylation rate was associated with an inhibition of microbial activity. These observations suggest that seasonal inputs into the river of significant amounts of inorganic Hg eroded from mill tailings during winter and spring flooding events could have an inhibiting effect on Hg-methylating micro-organisms. This observation could explain the low [MeHg]/[HgT] ratios previously documented in waters of the Carson River system.  相似文献   

10.
We measured the concentration of several elements (arsenic [As], calcium [Ca], cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], selenium [Se] and zinc [Zn]) in adult and nestling pied flycatchers (Ficedula hypoleuca) and great tits (Parus major) at different distances to a Cu-Ni smelter in 2009. Feces of nestlings generally failed to correspond with internal element concentrations but reflected the pollution exposure, indicating an increased stress by removal of excess metals. The uptake of Cu and Ni were regulated, but As, Cd, Pb and Se accumulated in liver tissue. Pied flycatchers had generally higher element concentrations than great tits. The higher accumulation of As and Pb in pied flycatcher livers was explained by a more efficient absorption, whereas the higher Cd concentration was primarily due to different intake of food items. Age-related differences occurred between the two species, though both Cd and Se accumulated with age.  相似文献   

11.
Major and trace element, PAH, and PCB concentrations were measured in surface sediments and particles from sediment traps collected in the First and Second Basin of the Mar Piccolo (Gulf of Taranto) in two periods (June–July and August–September, 2013). The aim of the study was to evaluate pollution degree, sediment transport and particle redistribution dynamic within the area. Results confirm the higher contamination of sediments from the First Basin observed by previous researches, particularly for Cu, Hg, Pb, total PAHs, and total PCBs. Advective transport from the First to the Second Basin appears to be the leading transfer mechanism of particles and adsorbed contaminants, as evidenced by measured fluxes and statistical analyses of contaminant concentrations in surficial sediments and particles from sediment traps. Long-range selective transports of PAHs and microbial anaerobic degradation processes for PCBs have been also observed. These results are limited to a restricted time window but are consistent with the presence of transport fluxes at the bottom of the water column. This mechanism deserves further investigation and monitoring activities, potentially being the main responsible of pollutant delivering to the less contaminated sectors of the Mar Piccolo.  相似文献   

12.
Li HB  Yu S  Li GL  Deng H 《Chemosphere》2012,88(10):1161-1169
Lead contamination becomes of importance to urban resident health worldwide, especially for child health and growth. Undisturbed lake sediment cores are increasingly employed as a useful tool to backdate environmental contamination history. Five intact sediment cores collected from lakes in five urban parks were dated using (210)Pb and analyzed for total Pb content and isotope ratio to reconstruct the Pb contamination history over the last century in Shanghai, China. Total Pb content in the sediment cores increased by about 2- to 3-fold since 1900s. The profile of Pb flux in each sediment core revealed a remarkable increase of Pb contamination in Shanghai over the past century, especially in the latest three decades when China was experiencing a rapid economic and industrial development. Significant correlations were found between Pb fluxes in sediment cores and Pb emission from coal combustion in Shanghai. Coal combustion emission dominated anthropogenic Pb sources during the past century contributing from 52% to 69% of total Pb in cores, estimated by a three-end member model of Pb isotope ratios. Leaded gasoline emission generally contributed <30% of total Pb, which was banned by 1997 in the Shanghai region. Our results implicate that coal combustion-based energy consumption should be replaced, or at least partially replaced, to reduce health risks of Pb contamination in Shanghai.  相似文献   

13.
Atmospheric lead (Pb) pollution during the last century in central Yunnan province, one of the largest non-ferrous metal production centers in China, was reconstructed using sediment cores collected from Fuxian and Qingshui Lakes. Lead concentrations and isotopic ratios (207Pb/206Pb and 208Pb/206Pb) were measured in sediment cores from both lakes. The operationally defined chemical fractions of Pb in sediment core from Fuxian Lake were determined by the optimized BCR procedure. The chronology of the cores was reconstructed using 210Pb and 137Cs dating methods. Similar three-phase variations in isotopic ratios and enrichment factors of Pb were observed in the sediment cores from both lakes. Before the 1950s, the sediment data showed low 207Pb/206Pb and 208Pb/206Pb ratios and enrichment factors (EFs?=?~1), indicating that the sedimentary Pb was predominantly of lithogenic origin. However, these indices were increased gradually between the 1950s and the mid-1980s, implying an atmospheric Pb deposition. The EFs and isotopic ratios of Pb reached their peak during recent years, indicating aggravating atmospheric Pb pollution. The average anthropogenic Pb fluxes since the mid-1980s were estimated to be 0.032 and 0.053 g m?2 year?1 recorded in Fuxian and Qingshui cores, respectively. The anthropogenic Pb was primarily concentrated in the reducible fraction. Combining the results of Pb isotopic compositions and chemical speciations in the sediment cores and in potential sources, we deduced that recent aggravating atmospheric Pb pollution in central Yunnan province should primarily be attributed to regional emissions from non-ferrous metal production industries.  相似文献   

14.
Wuli River, Cishan River, and Lianshan River are three freshwater rivers flowing through Huludao City, in a region of northeast China strongly affected by industrialization. Contamination assessment has never been conducted in a comprehensive way. For the first time, the contamination of three rivers impacted by different sources in the same city was compared. This work investigated the distribution and sources of Hg, Pb, Cd, Zn and Cu in the surface sediments of Wuli River, Cishan River, and Lianshan River, and assessed heavy metal toxicity risk with the application of two different sets of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM; and threshold effect level/probable effect level, TEL/PEL). Furthermore, this study used a toxic unit approach to compare and gauge the individual and combined metal contamination for Hg, Pb, Cd, Zn and Cu. Results showed that Hg contamination in the sediments of Wuli River originated from previous sediment contamination of the chlor-alkali producing industry, and Pb, Cd, Zn and Cu contamination was mainly derived from atmospheric deposition and unknown small pollution sources. Heavy metal contamination to Cishan River sediments was mainly derived from Huludao Zinc Plant, while atmospheric deposition, sewage wastewater and unknown small pollution were the primary sources for Lianshan River. The potential acute toxicity in sediment of Wuli River may be primarily due to Hg contamination. Hg is the major toxicity contributor, accounting for 53.3-93.2%, 7.9-54.9% to total toxicity in Wuli River and Lianshan River, respectively, followed by Cd. In Cishan River, Cd is the major sediment toxicity contributor, however, accounting for 63.2-66.9% of total toxicity.  相似文献   

15.
In this study Pb isotope signatures were used to identify the provenance of contaminant metals and establish patterns of downstream sediment dispersal within the River Maritsa catchment, which is impacted by the mining of polymetallic ores. A two-fold modelling approach was undertaken to quantify sediment-associated metal delivery to the Maritsa catchment; employing binary mixing models in tributary systems and a composite fingerprinting and mixing model approach in the wider Maritsa catchment. Composite fingerprints were determined using Pb isotopic and multi-element geochemical data to characterize sediments delivered from tributary catchments. Application of a mixing model allowed a quantification of the percentage contribution of tributary catchments to the sediment load of the River Maritsa. Sediment delivery from tributaries directly affected by mining activity contributes 42-63% to the sediment load of the River Maritsa, with best-fit regression relationships indicating that sediments originating from mining-affected tributaries are being dispersed over 200 km downstream.  相似文献   

16.
The rapid economic development in the Pearl River Delta (PRD) region in South China in the last three decades has had a significant impact on the local environment. Estuarine sediment is a major sink for contaminants and nutrients in the surrounding ecosystem. The accumulation of trace metals in sediments may cause serious environmental problems in the aquatic system. Thirty sediment cores were collected in the Pearl River Estuary (PRE) in 2000 for a study on trace metal pollution in this region. Heavy metal concentrations and Pb isotopic compositions in the four 210Pb-dated sediment cores were determined to assess the fluxes in metal deposits over the last one hundred years. The concentrations of Cu, Pb and Zn in the surface sediment layers were generally elevated when compared with the sub-surface layers. There has been a significant increase in inputs of Cu, Pb and Zn in the PRE since the 1970s. The results also showed that different sampling locations in the estuary received slightly different types of inputs. Pb isotopic composition data indicated that the increased Pb in the recent sediments was of anthropogenic origin. The results of trace metal influxes showed that about 30% of total Pb and 15% of total Zn in the sediments in the 1990s were from anthropogenic sources. The combination of trace metal analysis, Pb isotopic composition and 210Pb dating in an estuary can provide vital information on the long-term accumulation of metals in sediments.  相似文献   

17.
This study consisted of a site characterization followed by biomonitoring the zebra mussel, Dreissena polymorpha, at the Times Beach Confined Disposal Facility (CDF), located in Buffalo, New York. Concentrations of selected contaminants, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and metals -arsenic (As), chromium (Cr), barium (Ba), mercury (Hg), cadmium (Cd), lead (Pb), selenium (Se) and silver (Ag)-were at or below detection limits in the water column. Sediment contaminant concentrations, recorded as dry weight, were as high as 549 mg/kg for total PAHs, 9 mg/kg for PCB Aroclor 1248 and 54, 99, 6, 355, 637 and 16 mg/kg for the metals As, Ba, Cd, Cr, Pb and Hg, respectively. To predict contaminant bioavailability, elutriate and whole sediment toxicity tests were performed utilizing the cladoceran, Daphnia magna. Whole sediment tests indicated significant impact. Control survival was 84%, while sediment treatment had survival ranging from 1 to 7%. Mean control reproduction was 86.8 neonates, whereas treatment reproduction ranged from 1.4 to 9.0. Zebra mussels placed both in the water column (Upper) and at the sediment level (Lower) survived the 34-day exposure. Contaminants that significantly accumulated in zebra mussel tissue (wet wt mg/kg) were total PAHs (6.58), fluoranthene (1.23), pyrene (1.08), chrysene (0.98), benzo(a)anthracene (0.60), PCB Aroclor 1248 (1.64), As (0.97), Cr (2.87) and Ba (7.00). Accumulation of these contaminants in zebra mussel tissue represent a potentially realistic hazard to organisms (i.e. fish and birds) that feed on them.  相似文献   

18.
Superficial and cored sediment samples from the Moulay Bousselham lagoon and sub-watershed were analyzed for Al, Fe, Cu, Zn, Pb, Mn, Ni, Cr, As, Hg, and Cd. The temporal and spatial distributions of the main contamination sources of heavy metals were identified and described using chemometric and geographic information system (GIS) methods. Sediments from coastal lagoons near urban and agricultural areas are commonly contaminated with heavy metals, and the concentrations found in surface sediments are significantly higher than those from 50–100 years ago. The concentrations of these elements decrease sharply with depth in the sediment column, and the elements are preferentially enriched in the <2-μm-sized fraction of the sediment. The zones of enhanced risk of heavy metals were detected by means of GIS-based geostatistical modeling. According to sediment pollution indices and statistical analysis, heavy metals (Pb, Cu, Ni, Zn, Cr, and Hg) that pose a risk have become largely enriched in the lagoon sediments during the recent period of agricultural intensification.  相似文献   

19.
Huang SS  Liao QL  Hua M  Wu XM  Bi KS  Yan CY  Chen B  Zhang XY 《Chemosphere》2007,67(11):2148-2155
We investigated concentrations of Hg, Cd, Pb, Zn, Cu, As, Ni, and Cr in samples of soil, cereal, and vegetables from Yangzhong district, China. Compared to subsoils, the sampled topsoils are enriched in Hg, Cd, Cu, Pb, Zn, and As. High levels of Cd and Hg are observed in most agricultural soils. Concentrations of Cr and Ni show little spatial variation, and high Cu, Pb, and Zn contents correspond well to areas of urban development. High As contents are primarily recorded at the two ends of the sampled alluvion. The contents of Cd, Hg, and total organic carbon (TOC) increase gradually to maximum values in the upper parts of soil profiles, while Cr and Ni occur in low concentrations within sampled profiles. As, Pb, Cu, and Zn show patterns of slight enrichment within the surface layer. Compared to data obtained in 1990, Cd and Hg show increased concentrations in 2005; this is attributed to the long-term use of agrochemicals. Cr and Ni contents remained steady over this interval because they are derived from the weathering of parent material and subsequent pedogenesis. The measured As, Cu, Pb, and Zn contents show slight increases over time due to atmospheric deposition of material sourced from urban anthropogenic activity. Low concentrations of heavy metals are recorded in vegetables and cereals because the subalkaline environment of the soil limits their mobility. Although the heavy metal concentrations measured in this study do not pose a serious health risk, they do affect the quality of agricultural products.  相似文献   

20.
Relations between urbanization and particle-associated contaminants in New England were evaluated using a combination of samples from sediment cores, streambed sediments, and suspended stream sediments. Concentrations of PAHs, PCBs, DDT, and seven trace metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) were correlated strongly with urbanization, with the strongest relations to percentage commercial, industrial, and transportation (CIT) land use. Average PAH and metal concentrations in the most urbanized watersheds were approximately 30 and 6 times the reference concentrations, respectively, in remote, undeveloped watersheds. One-quarter to one-half of sampling sites had concentrations of PAHs, Cu, Pb, or Zn above the probable effects concentration, a set of sediment quality guidelines for adverse effects to aquatic biota, and sediments were predicted to be toxic, on average, when CIT land use exceeded about 10%. Trends in metals in cores from urban watersheds were dominantly downward, whereas trends in PAHs in a suburban watershed were upward. A regional atmospheric-fallout gradient was indicated by as much as order-of-magnitude-greater concentrations and accumulation rates of contaminants in cores from an undeveloped reference lake in Boston compared to those from remote reference watersheds. Contaminant accumulation rates in the lakes with urbanization in their watersheds, however, were 1-3 orders of magnitude greater than those of reference lakes, which indicate the dominance of local sources and fluvial transport of contaminants to urban lakes. These analyses demonstrate the magnitude of urban contamination of aquatic systems and air sheds, and suggest that, despite reductions in contaminant emissions in urban settings, streams and lakes will decline in quality as urbanization of their watersheds takes place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号