首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
The microbiological quality in dental unit waterlines (DUWLs) is considered to be important because patients and dental staff with suppressed immune systems are regularly exposed to water and aerosols generated from dental units (DUs). Opportunistic pathogens like Pseudomonas, Legionella, Candida, and Aspergillus can be present in DUWLs, while during consultations, bioaerosols can be dispersed in the air, thus resulting in effects on microbiological quality of indoor air. This present study represents microbiological air and water quality in dental offices (DOs) and also concerns the relationship between the quality of DO air and dental unit water. This study aimed to assess both the microbial quality of dental unit water and the indoor air in 20 DOs and to survey the effect on the quality of the indoor air with the existing microorganisms in dental unit water. Fourteen out of 20 (70 %) DUWLs were found to be contaminated with a high number of aerobic mesophilic heterotrophic bacteria. In terms of bacterial air contamination levels, in 90 % of DOs, a medium level (<500 colony-forming units (CFU)/m3) of contamination was determined, while in terms of microfungal air contamination, in all DOs, a low level (<100 CFU/m3) of contamination was determined. Potential infection or allergen agents, such as Pseudomonas, Micrococcus, Staphylococcus, Alternaria, Cladosporium, Penicillium, Aspergillus, and Paecilomyces were isolated from water and air samples. This study’s determination of contamination sources and evaluation of microbial load in DOs could contribute to the development of quality control methods in the future.  相似文献   

2.
Pathogenic and/or opportunistic fungal species are major causes of nosocomial infections, especially in controlled environments where immunocompromised patients are hospitalized. Indoor fungal contamination in hospital air is associated with a wide range of adverse health effects. Regular determination of fungal spore counts in controlled hospital environments may help reduce the risk of fungal infections. Because infants have inchoate immune systems, they are given immunocompromised patient status. The aim of the present study was to evaluate culturable airborne fungi in the air of hospital newborn units in the Thrace, Marmara, Aegean, and Central Anatolia regions of Turkey. A total of 108 air samples were collected seasonally from newborn units in July 2012, October 2012, January 2013, and April 2013 by using an air sampler and dichloran 18% glycerol agar (DG18) as isolation media. We obtained 2593 fungal colonies comprising 370 fungal isolates representing 109 species of 28 genera, which were identified through multi-loci gene sequencing. Penicillium, Aspergillus, Cladosporium, Talaromyces, and Alternaria were the most abundant genera identified (35.14, 25.40, 17.57, 2.70, and 6.22% of the total, respectively).  相似文献   

3.
To study the distribution of Aspergillus spp. in outdoor and indoor air of asthmatic patients’ houses, as well as a review on the health effects of exposure to indoor Aspergillus. Open plates containing malt extract agar media were used to isolate fungi from the indoor (n?=?360) and outdoor (n?=?180) air of 90 asthmatic patients’ houses living in Sari City, Iran. Plates were incubated at room temperature for 7–14 days. Cultured Aspergillus spp. were identified by standard mycological techniques. All culture plates grew fungi, a testament to the ubiquitous nature of fungal exposure. Cladosporium spp. (29.2%), Aspergillus spp. (19.0%), and Penicillium spp. (18.3%) were most common inside the houses while Cladosporium spp. (44.5%), Aspergillus spp. (12.4%), and Alternaria spp. (11.1%) were most common outside the houses. Aspergillus flavus (30.1%) and A. fumigatus (23.1%) are the most commonly isolated species in indoor air. Aspergillus flavus (44.5%) and A. fumigatus (42.6%) were the most prevalent Aspergillus spp. outside. The most colony numbers of Aspergillus were isolated from kitchens (30.4%) and the least from bedrooms (21.1%). Aspergillus flavus was the most prevalent specie in all sampled rooms except in the kitchen where A. fumigatus was the most common. Aspergillus flavus is the most prevalent species among the Aspergillus spp. in the indoor and outdoor of a warm climate area. In these areas, A. flavus can be a major source of allergen in the air. Therefore, minimizing indoor fungal exposure could play an important role in reducing allergic symptoms in susceptible persons.  相似文献   

4.
One hundred unpackaged rice samples, each weighing 500 g, were randomly collected at retail stores and open markets in the largest rice growing area (Thrace) in Turkey and analysed for mould counts, predominant mould genera, moisture content and mycotoxin levels. Mould counts ranged from 1.0 × 101 to 1.5 × 104 cfu/g in 70 of 100 samples, and the correlation between moisture content and mould count was significant (p????0.05). Aspergillus spp. and Penicillium spp., potential mycotoxin producers, were the dominant moulds. In one area from which samples were collected, the mycotoxin content of rice was found to be positively correlated with moisture content; samples with higher moisture also contained higher numbers of moulds. The levels of total aflatoxins, aflatoxin B1 and ochratoxin A were higher than the maximum tolerable limits (4, 2 and 3 ??g/kg, according to the EC Regulation and the Turkish Food Codex) for 32, 14 and 30 of 100 rice samples, respectively. This is the first comprehensive report of ochratoxin A levels in rice grown in Thrace, Turkey.  相似文献   

5.
This study was performed between January 2004 and December 2004 in 13 stations in the Pediatric Unit of Edirne Government Hospital in order to determine the outdoor and indoor airborne microfungal and bacterial contents. The results of air samplings revealed that 1,376 microfungal and 2,429 bacterial colonies in total were isolated. The isolated microfungal specimens were identified and 65 species from 16 genera were determined. Among these, the most frequent genus was Cladosporium with 462 colonies (33.58%) followed by Alternaria with 310 (22.53%) and Penicillium with 280 (20.35%) colonies. The isolated bacterial samples were grouped based on their Gram-staining properties. The most frequent ones were Gram (+) cocci with 1,527 colonies (62.87%) followed by Gram (+) bacilli with 828 colonies (34.09%) and Gram (−) bacilli with 74 colonies (3.05%). Staphylococcus, Bacillus, Corynebacterium, and Microccus appeared to be the common genera isolated for all months. Statistical analyses were performed in order to see if there existed a relationship between meteorological conditions and the microfungal and bacterial species and their concentrations.  相似文献   

6.
This paper presents information about airborne mesophilic bacteria in the indoor and outdoor air of child day-care centers (CDCCs) in the city of Edirne, Turkey. Air samples were collected using the Petri plate gravitational settling method from the indoor and outdoor air of CDCCs. Counts of airborne bacteria were measured as colony forming units (CFU) collected by gravity onto Brain Heart Infusion Agar plates (with 5% sheep blood). Samples were taken monthly over a period of 12 months between January and December 2004. A total of 3,120 bacteria colonies were counted on 192 Petri plates. Four groups of culturable bacteria were identified: Gram-positive cocci, Gram-positive bacilli, endospore-forming Gram-positive bacilli, and Gram-negative bacteria. Airborne Gram-positive bacteria were the most abundant at more than 95% of the measured population. While Gram-positive cocci were more common in indoor environments, Gram-positive bacilli were more dominant in outdoor air. Bacteria commonly isolated from CDCCs were identified at a genus level. Staphylococcus (39.16%), Bacillus (18.46%), Corynebacterium (16.25%), and Micrococcus (7.21%) were dominant among the genera identified in the present study. The dominant genera identified in the day-care centers were Staphylococcus, Micrococcus, and Corynebacterium for indoor air and Bacillus, Corynebacterium, and Staphylococcus for outdoor air. Staphylococcus, Streptococcus, Bacillus, and Corynebacterium genera were found in samples from every month. Bacterial colony counts were compared by sampling location (indoors and outdoors), seasons, and meteorological factors. We found negative correlations between the monthly total outdoor bacterial counts and the sampling day’s average relative humidity and average rainfall, and the monthly average rainfall. Fluctuations in bacterial counts in different seasons were observed.  相似文献   

7.
Increasing evidences show that inhalation of indoor bioaerosols has caused numerous adverse health effects and diseases. However, the bioaerosol size distribution, composition, and concentration level, representing different inhalation risks, could vary with different living environments. The six-stage Andersen sampler is designed to simulate the sampling of different human lung regions. Here, the sampler was used in investigating the bioaerosol exposure in six different environments (student dorm, hospital, laboratory, hotel room, dining hall, and outdoor environment) in Beijing. During the sampling, the Andersen sampler was operated for 30 min for each sample, and three independent experiments were performed for each of the environments. The air samples collected onto each of the six stages of the sampler were incubated on agar plates directly at 26 °C, and the colony forming units (CFU) were manually counted and statistically corrected. In addition, the developed CFUs were washed off the agar plates and subjected to polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Results revealed that for most environments investigated, the culturable bacterial aerosol concentrations were higher than those of culturable fungal aerosols. The culturable bacterial and fungal aerosol fractions, concentration, size distribution, and diversity were shown to vary significantly with the sampling environments. PCR-DGGE analysis indicated that different environments had different culturable bacterial aerosol compositions as revealed by distinct gel band patterns. For most environments tested, larger (>3 μm) culturable bacterial aerosols with a skewed size distribution were shown to prevail, accounting for more than 60 %, while for culturable fungal aerosols with a normal size distribution, those 2.1–4.7 μm dominated, accounting for 20–40 %. Alternaria, Cladosporium, Chaetomium, and Aspergillus were found abundant in most environments studied here. Viable microbial load per unit of particulate matter was also shown to vary significantly with the sampling environments. The results from this study suggested that different environments even with similar levels of total microbial cuturable aerosol concentrations could present different inhalation risks due to different bioaerosol particle size distribution and composition. This work fills literature gaps regarding bioaerosol size and composition-based exposure risks in different human dwellings in contrast to a vast body of total bioaerosol levels.  相似文献   

8.
The aims of the present study were to determine the levels of bioaerosols including airborne culturable bacteria (total suspended bacteria, Gram-positive bacteria, Staphylococcus, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and Gram-negative bacteria), fungi, endotoxin, and viruses (influenza A, influenza B, respiratory syncytial virus types A/B, parainfluenza virus types 1/2/3, metapnemovirus, and adenovirus) and their seasonal variations in indoor air of residential apartments. Of the total suspended bacteria cultured in an indoor environment, Staphylococcus was dominant and occupied 49.0 to 61.3 % of indoor air. Among Staphylococcus, S. aureus were detected in 100 % of households' indoor air ranging from 4 to 140 CFU/m3, and 66 % of households were positive for MRSA ranging from 2 to 80 CFU/m3. Staphylococcus and S. aureus concentrations correlated with indoor temperature (adjusted β: 0.4440 and 0.403, p?<?0.0001). Among respiratory viruses, adenovirus was detected in 14 (14 %) samples and influenza A virus was detected in 3 (3 %) samples regarding the indoor air of apartments. Adenovirus concentrations were generally higher in winter (mean concentration was 2,106 copies/m3) than in spring (mean concentration was 173 copies/m3), with concentrations ranging between 12 and 560 copies/m3. Also, a strong negative correlation between adenovirus concentrations and relative humidity in indoor air was observed (r?=??0.808, p?<?0.01). Furthermore, temperature also negatively correlated with adenovirus concentrations (r?=??0.559, p?<?0.05).  相似文献   

9.
We assessed the incidence of faecal-indicator bacteria in Tyume River over a 12-month period between August 2010 and July 2011. Total coliforms, faecal coliforms and enterococci were determined by the membrane filtration method. Total coliforms were detected in counts ranging from 2.1?×?102 to 3.4?×?104?CFU/100 ml. Faecal coliform counts ranged from 1?×?102 to 1.6?×?104?CFU/100 ml while enterococci counts were in the range of 3.3?×?101 to 5.1?×?103?CFU/100 ml. Indicator bacteria counts increased from upstream to downstream sampling sites. Counts of indicator bacteria at all sites were significantly affected by seasonal changes. The bacteriological qualities of the river water were poor, exceeding the guideline of 200 CFU/100 ml and 33 CFU/100 ml for faecal coliforms and enterococci, respectively, for recreational water. Faecal coliform counts also exceeded the 1,000 CFU/100 ml guideline for water used in fresh produce irrigation. Microbial source tracking results showed that faecal pollution was predominantly of human origin during spring at all sampling sites. During other seasons, human faecal pollution was largely confined to midstream and downstream sampling sites. Generally, the presence of faecal-indicator bacteria in the river water samples suggests faecal pollution of this freshwater resource, raising the possibility of the presence of pathogenic microorganisms in the water and a threat to public health.  相似文献   

10.
In this study, the effect of relative humidity, temperature, and wind on airborne fungal allergens in the 11 different districts of Manisa City was investigated from January 2004 to December 2005. The aim of this study was to conduct a survey to get to know the relation between wind, temperature, and relative humidity and population of allergenic fungal spores in the atmosphere. A total of 792 samples were observed by using the Merck MAS100 air sampler and 12,988 fungal colonies were counted. Fourteen fungal genera could be determined; Cladosporium that was generally found as the predominant genus followed by Penicillium, Aspergillus, and Alternaria. During the entire study, seasonal variation was found to be related to atmospheric conditions especially. The optimal conditions of meteorological factors for the fungi growth resulted in the increased number of mycoflora, qualitatively and quantitatively.  相似文献   

11.
Epidemiological studies showed increased prevalence of respiratory symptoms and adverse changes in pulmonary function parameters in poultry workers, corroborating the increased exposure to risk factors, such as fungal load and their metabolites. This study aimed to determine the occupational exposure threat due to fungal contamination caused by the toxigenic isolates belonging to the complex of the species of Aspergillus flavus and also isolates from Aspergillus fumigatus species complex. The study was carried out in seven Portuguese poultries, using cultural and molecular methodologies. For conventional/cultural methods, air, surfaces, and litter samples were collected by impaction method using the Millipore Air Sampler. For the molecular analysis, air samples were collected by impinger method using the Coriolis μ air sampler. After DNA extraction, samples were analyzed by real-time PCR using specific primers and probes for toxigenic strains of the Aspergillus flavus complex and for detection of isolates from Aspergillus fumigatus complex. Through conventional methods, and among the Aspergillus genus, different prevalences were detected regarding the presence of Aspergillus flavus and Aspergillus fumigatus species complexes, namely: 74.5 versus 1.0 % in the air samples, 24.0 versus 16.0 % in the surfaces, 0 versus 32.6 % in new litter, and 9.9 versus 15.9 % in used litter. Through molecular biology, we were able to detect the presence of aflatoxigenic strains in pavilions in which Aspergillus flavus did not grow in culture. Aspergillus fumigatus was only found in one indoor air sample by conventional methods. Using molecular methodologies, however, Aspergillus fumigatus complex was detected in seven indoor samples from three different poultry units. The characterization of fungal contamination caused by Aspergillus flavus and Aspergillus fumigatus raises the concern of occupational threat not only due to the detected fungal load but also because of the toxigenic potential of these species.  相似文献   

12.
Soil samples were collected from agricultural fields and gardens in North 24 Parganas, West Bengal, and fungi species were isolated from them. Thirty-one fungal species were isolated with 19 found in agricultural soil and 28 in garden soil. Twenty-eight out of 31 were identified using cultural and microscopic characters, and three were unidentified. The diversity of isolated fungi was calculated by Simpson’s diversity index. The garden soil possessed more fungal colonies (750) than agricultural soil (477). In agricultural soil, the dominant fungi were Aspergillus niger, Rhizopus oryzae, and Penicillium expansum, and the dominant fungi of garden soil were A. niger and Fusarium moniliforme. Simpson’s diversity index indicated that garden soil had more fungal diversity (0.939) than agricultural soil (0.896). The entomopathogenic capacity of the isolated fungi was tested against the brinjal shoot and fruit borer (Leucinodes orbonalis Guen) which is the major insect pest of brinjal. The isolated fungi were screened against larva of L. orbonalis for their entomopathogenic potential. Beauveria bassiana, A. niger, and P. expansum showed appreciable antagonism to L. orbonalis, and their lethal doses with 50 % mortality (LD50s) were 4.0?×?107, 9.06?×?107, and 1.50?×?108 spore/mL, respectively, and their times taken to reach 50 % mortality (LT50s) were 9.77, 10.56, and 10.60 days, respectively. This work suggests the restriction of chemical pesticide application in agricultural fields to increase fungal diversity. The entomopathogenic efficacy of B. bassiana could be used in agricultural fields to increase fugal diversity and protect the brinjal crop.  相似文献   

13.
This study was designed to evaluate the measuring range and lowest limit of detection of Bacillus endospores in the ambient room air when the Sartorius MD8 sampler, and two different culture methods for bacterial enumeration were used. Different concentrations of bioaerosol were generated inside the test chamber filled with either the high-efficiency particulate air (HEPA)-filtered air or with the ambient room air. The detection of endospores in the HEPA-filtered air was achievable: (1) when they were aerosolized at a concentration above 7.56?×?103 CFU/m3 and analyzed with spread plate method, and (2) when they were aerosolized at a concentration above 4.00?×?102 CFU/m3 and analyzed with pour plate method. The detection of endospores in the ambient room air was possible: (1) when they were aerosolized at a concentration above 9.1?×?103 CFU/m3 and analyzed with spread plate method, and (2) when they were aerosolized at a concentration above 5.6?×?102 CFU/m3 and analyzed with pour plate method. The microorganisms present in the ambient room air interfere with precise quantification of Bacillus endospores when their concentration is relatively low. The results of this study may be helpful in critical assessment of the results obtained from monitoring the air for bacterial endospores.  相似文献   

14.
This study assessed if the use of sterol demethylase inhibitor fungicides in vineyard production can induce resistance to azoles in Aspergillus strains and if it can induce selection of resistant species. We also tried to identify the Aspergillus species most prevalent in the vineyards. Two vineyards from northern Portugal were selected from “Vinhos Verdes and “Douro” regions. The vineyards were divided into plots that were treated or not with penconazole (PEN). In each vineyard, air, soil, and plant samples were collected at three different times. The strains of Aspergillus spp. were isolated and identified by morphological and molecular techniques. We identified 46 Aspergillus section Nigri, eight Aspergillus fumigatus, seven Aspergillus lentulus, four Aspergillus wentii, two Aspergillus flavus, two Aspergillus terreus, one Aspergillus calidoustus, one Aspergillus westerdijkiae, one Aspergillus tamarii, and one Eurotium amstelodami. Aspergillus strains were evaluated for their susceptibility to medical azoles used in human therapy (itraconazole, posaconazole, and voriconazole) and to agricultural azoles (PEN) used in the prevention and treatment of plant diseases. The isolates showed moderate susceptibility to voriconazole. We did not observe any decrease of susceptibility to the medical azoles tested throughout the testing period in any of the treated plots, although some of the resistant species were isolated from there.  相似文献   

15.
The soils at a factory for manufacturing pentachlorophenol were heavily contaminated by polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). In order to verify the contributions of dry and wet deposition of PCDD/Fs from the ambient air, the concentration of PCDD/Fs in ambient air and soil were measured, the partition of particle- and gas-phases of atmospheric PCDD/Fs was calculated, and the annual fluxes of total dry and wet PCDD/F depositions were modeled. Average atmospheric PCDD/F concentration was 1.24 ng Nm???3 (or 0.0397 ng I-TEQ Nm???3). Moreover, over 92.8% of total PCDD/Fs were in the particle phase, and the dominant species were high chlorinated congeners. The total PCDD/F fluxes of dry and wet deposition were 119.5 ng m???2 year???1 (1.34 ng I-TEQ m???2 year???1) and 82.0 ng m???2 year???1 (1.07 ng I-TEQ m???2 year???1), respectively. By scenario simulation, the total fluxes of dry and wet PCDD/F depositions were 87.1 and 68.6 ng I-TEQ, respectively. However, the estimated PCDD/F contents in the contaminated soil were 839.9 ?? g I-TEQ. Hence, the contributions of total depositions of atmospheric PCDD/F were only 0.02%. The results indicated that the major sources of PCDD/F for the contaminated soil could be attributed to the pentachlorophenol manufacturing process.  相似文献   

16.
A survey to assess the occurrence of airborne fungal spores in three different industries, dairies, carpentries and greenhouses, was carried out. The results revealed considerable fungal pollution in the environments of the industries sampled. Noteworthy was the occurrence of fungal genera frequently implicated in allergic and non-allergic diseases, or well known for the production of mycotoxins in foods or characterized by a marked degradative activity on different substrata. Penicillium, Candida, Mucor and Geotrichum were the most common genera identified in the dairies; Penicillium, Cladosporium, yeasts, Trichoderma and Rhizopus occurred more frequently in the carpentries; Cladosporium, Alternaria, Penicillium and Stemphilium were prevailing in the greenhouse.The results of our survey support the idea that, due to their high incidence and variety, fungal spores may represent a potential health hazard in working environments, where their concentration can be affected by many operations and handling.  相似文献   

17.
Urban household kitchen environment was assessed for safety by determining their levels of indicator bacteria, hygienic habits and risk of cross-contamination. Household kitchens (60) were selected in Warri Town, Nigeria, by the multi-stage sampling technique. Contact surfaces, water and indoor kitchen air were analysed for aerobic plate counts, total and faecal coliforms using Nutrient and McConkey media by swab/rinse method, membrane filtration and sedimentation methods, respectively. Hygienic habits and risk of cross-contamination were assessed with structured questionnaire which included socio-demographic variables. On the basis of median counts, the prevalence of high counts (log cfu/cm2/m3/100 mL) of aerobic plate counts (>3.0), total coliforms (>1.0) and faecal coliforms (>0) on contact surfaces and air was high (58.0–92.0%), but low in water (30.0–40.0%). Pots, plates and cutleries were the contact surfaces with low counts. Prevalence of poor hygienic habits and high risk of cross-contamination was 38.6 and 67.5%, respectively. Education, occupation and kitchen type were associated with cross-contamination risk (P = 0.002–0.022), while only education was associated with hygienic habits (P = 0.03). Cross-contamination risk was related (P = 0.01–0.05) to aerobic plate counts (OR 2.30; CL 1.30–3.17), total coliforms (OR 5.63; CL 2.76–8.25) and faecal coliforms (OR 4.24; CL 2.87–6.24), while hygienic habit was not. It can be concluded that urban household kitchens in the Nigerian setting are vulnerable to pathogens likely to cause food-borne infections.  相似文献   

18.
The study is the first documentation of seasonal variations in species composition, abundance and diversity of tintinnid (Ciliata: Protozoa), in relation to water quality parameters along the stretch of the Hooghly (Ganges) River Estuary (HRE), eastern coastal part of India. A total of 26 species (22 agglomerated and 4 non-agglomerated) belonging to 8 genera has been identified from 8 study sites where Tintinnopsis (17 species) represented the most dominant genera, contributing up to 65 % of total tintinnid community followed by Tintinnidium (2 species), Leprotintinnus (2 species) and Dadayiella, Favella, Metacylis, Eutintinnus and Helicostomella (each with solitary species). The maximum (1,666 ind.?l?1) and minimum (62 ind.?l?1) abundance of tintinnids was recorded during post-monsoon and monsoon, respectively. A distinct seasonal dynamics in terms of biomass (0.005–2.465 μg C l?1) and daily production rate (0.04–3.13 μg C l?1 day?1) was also noticed, accounting highest value during pre-monsoon. Chlorophyll a and nitrate were found to be potential causative factors for the seasonal variations of tintinnids as revealed by a stepwise multiple regression model. The result of ANOVA showed a significant variation between species abundance and months (F?=?2.36, P?≤?0.05). k-dominance curves were plotted to determine the comparison of tintinnid dominance between the investigated stations. Based on a principal component analysis (PCA), three main groups were delineated with tintinnid ciliates and environmental parameters. The changes in lorica morphology in terms of temperature and salinity, recorded for three dominant species, provided information on the ecological characteristics of the species assemblage in this estuarine system.  相似文献   

19.
A modified LC-MS method for the analysis of mepiquat residue in wheat, potato, and soil was developed and validated. A hydrophilic interaction liquid chromatographic column has been successfully used to retain and separate the mepiquat. Mepiquat residue dynamics and final residues in supervised field trials at Good Agricultural Practice (GAP) conditions in wheat, potato, and soil were studied. The limits of quantification for mepiquat in all samples were all 0.007 mg kg?1, which were lower than their maximum residue limits. At fortification levels of 0.04, 0.2, and 2 mg kg?1 in all samples, recoveries ranged from 77.5 to 116.4 % with relative standard deviations of 0.4–7.9 % (n?=?5). The dissipation half-lives (T 1/2) of mepiquat in soil (wheat), wheat plants, soil (potato), and potato plants were 4.5–6.3, 3.0–5.6, 2.2–4.6, and 2.4–3.2 days, respectively. The final residues of mepiquat were below 0.153 mg kg?1 in soil (wheat), 0.052–1.900 mg kg?1 in wheat, below 0.072 mg kg?1 in soil (potato), and below 1.173 mg kg?1 in potato at harvest time. Moreover, pesticide risk assessment for all the detected residues was conducted. A maximum 0.0012 % of acceptable daily intake (150 mg kg?1) for national estimated daily intake indicated low dietary risk of these products.  相似文献   

20.
Soil respiration rates were measured monthly (from April 2007 to March 2008) under four adjacent coniferous plantation sites [Oriental spruce (Picea orientalis L.), Austrian pine (Pinus nigra Arnold), Turkish fir (Abies bornmulleriana L.), and Scots pine (Pinus sylvestris L.)] and adjacent natural Sessile oak forest (Quercus petraea L.) in Belgrad Forest—Istanbul/Turkey. Also, soil moisture, soil temperature, and fine root biomass were determined to identify the underlying environmental variables among sites which are most likely causing differences in soil respiration. Mean annual soil moisture was determined to be between 6.3 % and 8.1 %, and mean annual temperature ranged from 13.0°C to 14.2°C under all species. Mean annual fine root biomass changed between 368.09 g/m2 and 883.71 g/m2 indicating significant differences among species. Except May 2007, monthly soil respiration rates show significantly difference among species. However, focusing on tree species, differences of mean annual respiration rates did not differ significantly. Mean annual soil respiration ranged from 0.56 to 1.09 g?C/m2/day. The highest rates of soil respiration reached on autumn months and the lowest rates were determined on summer season. Soil temperature, soil moisture, and fine root biomass explain mean annual soil respiration rates at the highest under Austrian pine (R 2?=?0.562) and the lowest (R 2?=?0.223) under Turkish fir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号