首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen additions (NH4NO3) at rates of three- and ten-fold ambient atmospheric deposition (8.5 kg ha(-1) year(-1)) were realised in an acid- and base-poor northern hardwood forest of Québec, Canada. Soil solution chemistry, foliar chemistry, crown dieback and basal area growth of sugar maple (Acer saccharum Marsh.) were measured. Except for a transitory increase of NO3 and NH4 concentrations, there was no persistent increase in their level in soil solution 3 years after N treatments, with the exception of one plot out of three, that received the highest N addition, beginning to show persistent and high NO3 concentrations after 2 years of N additions. Three years of N additions have significantly increased the N DRIS index of sugar maple but not N foliar concentration. Potassium, Ca and Mn foliar concentrations, as well as P and Ca DRIS indices, decreased in treated plots after 3 years. No treatment effect was observed for basal area growth and dieback rate. One unexpected result was the significant decrease in foliar Ca even in the treated plots that received low N rates, despite the absence of significant NO3-induced leaching of Ca. The mechanism responsible for the decrease in foliar Ca is not known. Our results, however, clearly demonstrate that increased N deposition at sites with low base saturation may affect Ca nutrition even when clear signs of N saturation are not observed.  相似文献   

2.
Foliar chemistry was examined in mature sugar maple (Acer saccharum Marsh), red maple (Acer rubrum L.), American beech (Fagus grandifolia Ehrh.), and red spruce (Picea rubens Sarg.) in response to chronic, watershed-level additions of ammonium sulfate [(NH4)2SO4]. Following four years of treatment, N concentrations were significantly higher in foliage from the treated watershed for all four species, with increases ranging from 6% in American beech to 33% in sugar maple. Sugar maple foliage from the treated watershed had significantly lower Ca concentrations (18%). Concentrations of K were significantly lower in beech (13%) and red spruce (9%) from the treated watershed. Foliar Mg was not different between watersheds. Aluminum concentrations were significantly higher in the foliage from the treated watershed for beech (18%), red maple (33%), and sugar maple (65%), but no differences in Al concentration occurred in current year red spruce foliage. Red spruce foliage resampled following a fifth year of treatment contained higher concentrations of N and Al and lower concentrations of Ca and Mg in the treated watershed. Despite these differences in red spruce foliar chemistry, wood production and density did not appear to be affected by the treatment.Differences in the foliar chemistry between the treated and untreated watershed may reflect the temporal and spatial integration of changes taking place in the soil of the treated watershed. Increased N is likely directly due to the N contained in the (NH4)2SO4 treatment. Labile Ca and other cations in the treated watershed would be expected to initially increase and then decrease in response to the treatment, with these changes beginning at the top of the forest floor. Thus, lower cation concentrations in foliage from the treated watershed may reflect the fact that cations in the uppermost portions of the soil were rapidly depleted, even though deeper soil layers were experiencing increased Ca release due to cation exchange effect of the acidification. The generally higher Al in foliage from the treated watershed is likely due to the mobilization of inorganic Al in the soil as has been reported previously for the treated watershed. Collectively these results suggest that the long-term deposition of acidifying substances containing N and S not only influence the cycling of N within these systems, but may also alter the cycling of other important nutrients and Al.  相似文献   

3.
The projected increase in atmospheric N deposition and air/soil temperature will likely affect soil nutrient dynamics in boreal ecosystems. The potential effects of these changes on soil ion fluxes were studied in a mature balsam fir stand (Abies balsamea [L.] Mill) in Quebec, Canada that was subjected to 3 years of experimentally increased soil temperature (+4 °C) and increased inorganic N concentration in artificial precipitation (three times the current N concentrations using NH4NO3). Soil element fluxes (NO3, NH4, PO4, K, Ca, Mg, SO4, Al, and Fe) in the organic and upper mineral horizons were monitored using buried ion-exchange membranes (PRS? probes). While N additions did not affect soil element fluxes, 3 years of soil warming increased the cumulative fluxes of K, Mg, and SO4 in the forest floor by 43, 44, and 79 %, respectively, and Mg, SO4, and Al in the mineral horizon by 29, 66, and 23 %, respectively. We attribute these changes to increased rates of soil organic matter decomposition. Significant interactions of the heating treatment with time were observed for most elements although no clear seasonal patterns emerged. The increase in soil K and Mg in heated plots resulted in a significant but small K increase in balsam fir foliage while no change was observed for Mg. A 6–15 % decrease in foliar Ca content with soil warming could be related to the increase in soil-available Al in heated plots, as Al can interfere with the root uptake of Ca.  相似文献   

4.
At the Bear Brook Watershed in Maine (BBWM), the forest tree composition was characterized and the effects of the chronic ammonium sulfate ((NH4)2SO4) treatment on basal area growth, foliar chemistry, and gas exchange were investigated on forest species. The BBWM is a paired watershed forest ecosystem study with one watershed, West Bear (WB), treated since 1989 with 26.6 kg N ha???1 year???1 and 30 kg S ha???1 year???1applied bimonthly as (NH4)2SO4, while the other watershed, East Bear (EB), serves as a reference. Tree species richness, density, and mortality were found to be similar between watersheds. Basal area increment was estimated from red spruce and sugar maple, showing that, for the first 7 years of treatment, it was significantly higher for sugar maple growing in WB compared to EB, but no differences were observed for red spruce between watersheds. However, the initial higher sugar maple basal area growth in WB subsequently decreased after 8 years of treatment. Foliar chemical analysis performed in trees, saplings, and ground flora showed higher N concentrations in the treated WB compared to the reference EB. But, foliar cation concentrations, especially Ca and Mg, were significantly lower for most of the species growing in WB compared with those growing in EB. For sugar maple, foliar N was higher on WB, but there were no differences in foliar Ca and Mg concentrations between treated and reference watersheds. In addition, only sugar maple trees in the treated WB showed significantly higher photosynthetic rates compared to reference EB trees.  相似文献   

5.
Soil acidification, caused by elevated anthropogenic deposition, has led to concerns over nutrient imbalances in Ontario's sugar maple (Acer saccharum Marsh.) forests. In this study, soil chemistry, foliar chemistry, crown condition, and tree growth were measured at 36 sugar maple stands that included acidic (pH?相似文献   

6.
This study performed on randomly selected seven sample plots in leguminous black locust (Robinia pceudoacacia L.) plantations and five sample plots in umbrella pine (Pinus pinea L.) plantations on coal mine soil/spoils. Soil samples were taken from eight different soil depths (0–1, 1–3, 3–5, 5–10, 10–20, 20–30, 30–40, and 40–50 cm) into the soil profile. On soil samples, bulk density, fine soil fraction (Ø < 2 mm), sand, silt and clay rates, soil acidity (pH), organic carbon (Corg), and total nitrogen (Nt) contents were investigated. Also, some forest floor properties (unit mass, organic matter, and total nitrogen) were determined, and results were compared statistically between umbrella pine and black locust. As a result, 17 years after plantations, total forest floor accumulation determined as 6,107 kg ha???1 under black locust compared to 13,700 kg ha???1 under umbrella pine. The more rapid transformation of leguminous black locust forest floor creates organic carbon that migrates further into the mineral profile, and rapid accumulation of C and N in the soil profile was registered. Slower transformation processes of forest floor under umbrella pine result in lower soil N ratio and greater quantity of forest floor. Higher soil pH under leguminous black locust was determined significantly than umbrella pine. In conclusion, the composition of symbiotic nitrogen fixation of black locust appears to be a possible factor favoring carbon and nitrogen accumulation and, consequently, soil development. Clearly, both tree species have favorable impacts on initial soil formation. The umbrella pine generates the more forest floor layer; in contrast, black locust forest floor incorporates into the soil more rapidly and significantly increases soil nitrogen in upper soil layers.  相似文献   

7.
Nitrogen (N) deposition has doubled the natural N inputs received by ecosystems through biological N fixation and is currently a global problem that is affecting the Mediterranean regions. We evaluated the existing relationships between increased atmospheric N deposition and biogeochemical indicators related to soil chemical factors and cryptogam species across semiarid central, southern, and eastern Spain. The cryptogam species studied were the biocrust-forming species Pleurochaete squarrosa (moss) and Cladonia foliacea (lichen). Sampling sites were chosen in Quercus coccifera (kermes oak) shrublands and Pinus halepensis (Aleppo pine) forests to cover a range of inorganic N deposition representative of the levels found in the Iberian Peninsula (between 4.4 and 8.1 kg N ha?1 year?1). We extended the ambient N deposition gradient by including experimental plots to which N had been added for 3 years at rates of 10, 20, and 50 kg N ha?1 year?1. Overall, N deposition (extant plus simulated) increased soil inorganic N availability and caused soil acidification. Nitrogen deposition increased phosphomonoesterase (PME) enzyme activity and PME/nitrate reductase (NR) ratio in both species, whereas the NR activity was reduced only in the moss. Responses of PME and NR activities were attributed to an induced N to phosphorus imbalance and to N saturation, respectively. When only considering the ambient N deposition, soil organic C and N contents were positively related to N deposition, a response driven by pine forests. The PME/NR ratios of the moss were better predictors of N deposition rates than PME or NR activities alone in shrublands, whereas no correlation between N deposition and the lichen physiology was observed. We conclude that integrative physiological measurements, such as PME/NR ratios, measured on sensitive species such as P. squarrosa, can provide useful data for national-scale biomonitoring programs, whereas soil acidification and soil C and N storage could be useful as additional corroborating ecosystem indicators of chronic N pollution.  相似文献   

8.
Atmospheric deposition of the major elements was estimated from throughfall and bulk deposition measurements on 13 plots of the Swiss Long-Term Forest Ecosystem Research (LWF) between 1995 and 2001. Independent estimates of the wet and dry deposition of nitrogen (N) and sulfur (S) on these same plots were gained from combined simplified models. The highest deposition fluxes were measured at Novaggio (Southern Switzerland), exposed to heavy air pollution originating from the Po Plain, with throughfall fluxes averaging 29 kg ha–1 a–1 for N and 15 kg ha–1 a–1 for S. Low deposition fluxes were measured on the plots above 1800 m, with throughfall fluxes lower than 4.5 kg ha–1 a–1 for N and lower than 3 kg ha–1 a–1 for S. The wet deposition of N and S derived from bulk deposition was close to the modeled wet deposition, but the dry deposition derived from throughfall was significantly lower than the modeled dry deposition for both compounds. However, both the throughfall method and the model yielded total deposition estimates of N which exceeded the critical loads calculated on the basis of long-term mass balance considerations. These estimates were within or above the range of empirical critical loads except above 1800 m.  相似文献   

9.
To assess whether nitrogen (N) content and δ15N ratios in nitrophytic lichen species (Xanthoria parietina (L.) Th. Fr. (1860) and Physcia spp. (Schreb.) Michaux (1803)) reflect the quantity and quality of atmospheric N loads, 348 lichen samples from 174 sampling grid cells were investigated in the western part of Germany. The analysed lichen N content ranged between 0.98 and 4.28 % and δ15N ratios between ?15.2 and ?1.3?‰. Based on the N concentrations and the δ15N ratios of lichens, different landscape categories and coupled N deposition rates could be inferred for different regions of Germany. By analysing environmental variables like altitude, ammonia emission density, livestock unit and different defined deposition types, a direct relationship was found between lichen chemistry and N compounds produced from agricultural activity. The results support the development of a monitoring method which could be used nationally or even internationally to support current N deposition measurements, by providing reliable information on the quantity and quality of N deposition in high N environments.  相似文献   

10.
Controls on N Retention and Exports in a Forested Watershed   总被引:4,自引:0,他引:4  
We conducted a 15N-tracer study in a fertilized, forested catchment at the Bear Brook Watersheds in Maine (BBWM), USA, in order to characterize N cycling processes, identify sinks for ammonium-N additions, and determine the contribution of the experimental ammonium additions to nitrate exports from the treated catchment. Distributions of 15N in plant tissues, soils, precipitation and streamwater collected before adding tracers showed that nitrate-N (the dominant form of inorganic N deposition at the site) inputs under ambient conditions were depleted in 15N relative to plants and that soil was enriched in 15N relative to plants. The 15N content of streamwater nitrate was within the range of 15N contents in natural plant tissues, suggesting that nitrate deposited from the atmosphere is reduced and assimilated into soil and plant N pools before being leached as nitrate from the catchment. Variations in 15N natural abundances also suggested that most N uptake by trees is from the forest floor and that nitrification occurs in soils at this catchment under ambient conditions. Changes in 15N contents of plant tissues, soils and streamwater after adding a 15N tracer to the ammonium sulfate fertilizer applied to the treated catchment showed that soils were the dominant sink for the labeled ammonium. Surface soils (Oca horizon plus any underlying mineral soil to 5cm depth) assimilated 19 to 31 percent of the 42 kg ha-1 of 15N-labelled ammonium-N during the tracer study. Aboveground biomass assimilated 8 to 17 percent of the labeled ammonium-N additions. Of the three forest types on the catchment, the soil:biomass assimilation ratio of labeled-N was highest in the spruce forest, intermediate in the beech-dominated hardwood forest and lowest in the mixed hardwood-spruce forest. Although ammonium sulfate additions led to increases in streamwater nitrate, only 2 of the 13 kg ha-1 of nitrate-N exported from the catchment during the 2 years of tracer additions was derived from the 42 kg ha-1 of labeled ammonium-N additions.  相似文献   

11.
Tropospheric O3 has been implicated in the declining health of forest ecosystems in Europe and North America and has been shown to have negative consequences on human health. We have measured tropospheric ozone (O3) in the lower canopy through the use of passive monitors located in five woodlots along a 150 km urban–rural transect, originating in the large urban complex of Toronto, Canada. We also sampled foliage from 10 mature sugar maple trees in each woodlot and measured the concentration of a number of phenolic compounds and macronutrients. O3 concentrations were highest in the two rural woodlots, located approximately 150 km downwind of Toronto, when compared to the woodlots found within the Greater Toronto Area. Foliar concentrations of three flavonoids, avicularin, isoquercitrin, and quercitrin, were significantly greater and nitrogen concentrations significantly lower at these same rural woodlots, suggesting some physiological disruption is occurring in those sites where exposure to tropospheric O3 is greater. We suggest that foliar phenolics of sugar maple may be a biochemical indicator of tropospheric ozone exposure.  相似文献   

12.
The paired watershed experiment at the Bear Brook Watershed in Maine (BBWM) provided an opportunity to study changes in forest soil O horizon properties as a result of experimental, chronic N additions. The West Bear brook watershed received elevated N and S inputs since November 1989 as bimonthly applications of (NH4)2SO4. Forest floor samples (O horizon) were collected in July of 1992 from three dominant stand and five soil types at BBWM. The (NH4)2SO4 amendments in the treated watershed (West Bear) stimulated potential net nitrification, but significant increases were found only in hardwood O horizons after three years of treatment. Hardwood stand forest floor soil materials had the lowest C:N ratios (mean=23), compared with mixedwood (mean=27) and softwood stands (mean=33). NH4-N accounted for over 95% of the inorganic N in the forest floor. The lack of a strong relationship between soil type and potential net N mineralization at BBWM, coupled with conflicting results in the literature, suggested that stand characteristics were more important than conventional soil nomenclature based on pedogenetic features, or 2.5 years of treatments, in defining differences in soil N dynamics and responses to increased N inputs.  相似文献   

13.
The nitrogen (N) deposition fluxes were investigated in eight typical forest ecosystems along the North–South Transect of Eastern China (NSTEC; based on the ChinaFLUX network) by ion-exchange resin (IER) columns from May 2008 to April 2009. Our results demonstrated that the method of IER columns was both labor cost saving and reliable for measuring dissolved inorganic nitrogen (DIN) deposition at the remote forest stations. The deposition of DIN in the throughfall ranged from 1.3 to 29.5 kg N ha?1 a?1, increasing from north to south along NSTEC. The relatively high average ratio of ammonium to nitrate in deposition (1.83) indicated that the N deposition along the NSTEC in China mostly originated in farming and animal husbandry rather than in industry and vehicle activities. For seasonal variability, the DIN deposition showed a single peak in the growing season in the northern part of NSTEC, while, in the southern part, it exhibited double-peaks in the early spring and the mid-summer, respectively. On the annual scale, the DIN deposition variations of the eight sites could be mainly explained by precipitation and the distances from forest stations to provincial capital cities.  相似文献   

14.
Red pine (Pinus resinosa Ait.) is rare (< 15 000 mature trees) in Newfoundland and is known from only 22 locations in the central region. Red pine occupies 3 major site types in Newfoundland: 1) red pine on medium-textured sands (RP1), 2) red pine on coarse-textured glaciofluvial deposits (RP2), and 3) red pine on Folisols over bedrock (RP3). The succession of red pine site types after cutting is from red pine to Kalmia-black spruce (Picea mariana (Mill.) B.S.P.) for RP1, and to Cladonia-Kalmia-black spruce for types RP2 and RP3. Succession after fire is usually to the pre-fire type, but this depends on the severity of the fire.Although occupying a relatively poor site, red pine at 60–70 years reaches heights in excess of 18 m, dbh in excess of 40 cm, and individual tree volumes greater than 1 m3 were recorded in 75 stemanalyzed fire-killed trees. Black spruce on that same site produces less than one-third that volume in 60 years. Merchantable volume of 140–280 m3 ha-1 were recorded i.e., Canada Land Inventory (CLI) forest capability class 5 and class 4 ratings. This raises the CLI rating two capability classes if red pine were occupying these poor quality sites over black spruce. In terms of nutrition, even the best growing red pine are nitrogen (N) deficient as shown by foliar analysis. All natural stands have foliar N concentrations below 1.3% which is the critically low level shown in the literature. Immediately after fire, foliar concentrations reach this level but are usually about 1% or less. Most other nutrients are low but are within the generally reported adequate levels in testing for P, K, Ca and Mg.Fire influences soil nutrient availability as pH increases in the RP1 type. Burning temperature also affects soil pH and the understory vegetation. The RP2 type loses more N in hotter burns on this site type and more N is tied up in these ortstein hardpan soils. The pattern of regeneration following wildfire is related to slope, density, age and species mixture of the stand as well as the thickness and composition of the duff layer.  相似文献   

15.
Air pollution, bulk precipitation, throughfall, soil condition, foliar nutrients, as well as forest health and growth were studied in 2006–2009 in a long-term ecological research (LTER) network in the Bucegi Mountains, Romania. Ozone (O3) was high indicating a potential for phytotoxicity. Ammonia (NH3) concentrations rose to levels that could contribute to deposition of nutritional nitrogen (N) and could affect biodiversity changes. Higher that 50% contribution of acidic rain (pH?<?5.5) contributed to increased acidity of forest soils. Foliar N concentrations for Norway spruce (Picea abies), Silver fir (Abies alba), Scots pine (Pinus sylvestris), and European beech (Fagus sylvatica) were normal, phosphorus (P) was high, while those of potassium (K), magnesium (Mg), and especially of manganese (Mn) were significantly below the typical European or Carpathian region levels. The observed nutritional imbalance could have negative effects on forest trees. Health of forests was moderately affected, with damaged trees (crown defoliation >25%) higher than 30%. The observed crown damage was accompanied by the annual volume losses for the entire research forest area up to 25.4%. High diversity and evenness specific to the stand type’s structures and local climate conditions were observed within the herbaceous layer, indicating that biodiversity of the vascular plant communities was not compromised.  相似文献   

16.
Atmospheric dry deposition is an important nitrogen (N) input to farmland ecosystems. The main nitrogen compounds in the atmosphere include gaseous N (NH3, NO2, HNO3) and aerosol N (NH4 +/NO3 ?). With the knowledge of increasing agricultural effects by dry deposition of nitrogen, researchers have paid great attention to this topic. Based on the big-leaf resistance dry deposition model, dry N deposition velocities (V d) in a typical red soil agro-ecosystem, Yingtan, Jiangxi, Southeastern China, were estimated with the data from an Auto-Meteorological Experiment Station during 2004–2007. The results show that hourly deposition velocities (V dh) were in the range of 0.17–0.34, 0.05–0.24, 0.57–1.27, and 0.05–0.41 cm/s for NH3, NO2, HNO3, and aerosol N, respectively, and the V dh were much higher in daytime than in nighttime and had a peak value around noon. Monthly dry deposition velocities (V dm) were in the range of 0.14–0.36, 0.06–0.18, and 0.07–0.25 cm/s for NH3, NO2, and aerosol N, respectively. Their minimum values appeared from June to August, while their maximum values occurred from February to March each year. The maximum value for HNO3 deposition velocities appeared in July each year, and V dm(HNO3) ranged from 0.58 to 1.31 cm/s during the 4 years. As for seasonal deposition velocities (V ds), V ds(NH3), V ds(NO2), and V ds(aerosol N) in winter or spring were significantly higher than those in summer or autumn, while V ds(HNO3) in summer were higher than that in winter. In addition, there is no significant difference among all the annual means for deposition velocities (V da). The average values for NH3, NO2, HNO3, and aerosol N deposition velocities in the 4 years were 0.26, 0.12, 0.81, and 0.16 cm/s, respectively. The model is convenient and feasible to estimate dry deposition velocity of atmospheric nitrogen in the typical red soil agro-ecosystem.  相似文献   

17.
18.
Acidic deposition leads to the acidification of waters and accelerated leaching and depletion of soil base cations. The Bear Brook Watershed in Maine has used whole-watershed chemical manipulations to study the effects of elevated N and S on forest ecosystem function on a decadal time scale. The objectives of this study were to define the chemical and physical characteristics of soils in both the reference and treated watersheds after 17 years of treatment and assess evidence of change in soil chemistry by comparing soil studies in 1998 and 2006. Results from 1998 confirmed depletion of soil base cation pools and decreased pH due to elevated N and S within the treated watershed. However, between 1998 and 2006, during a period of declining SO $_{4}^{\,\,2-}$ deposition and continued whole-watershed experimental acidification on the treated watershed, there was little evidence of continued soil exchangeable base cation concentration depletion or recovery. The addition of a pulse of litterfall and accelerating mineralization from a severe ice storm in 1998 may have had significant effects on forest floor nutrient pools and cycling between 1998 and 2006. Our findings suggest that mineralization of additional litter inputs from the ice storm may have obscured temporal trends in soil chemistry. The physical data presented also demonstrate the importance of coarse fragments in the architecture of these soils. This study underscores the importance of long-term, quantitative soil monitoring in determining the trajectories of change in forest soils and ecosystem processes over time.  相似文献   

19.
Recent biological inventory data shows severe declines in freshwater mussel abundance and biodiversity in the Conasauga River Basin in Northwest Georgia, USA. Based on assessments of habitat conditions, mussel populations should be sustainable. We conducted a study of sediment and water quality to evaluate the impact of anthropogenic contamination on mussel populations. Permeable membrane devices (PMD), polar organic chemical integrative samplers (POCIS™), conventional water and sediment quality analyses, and stable nitrogen isotope ratio analyses (δ15N) of snails and sediments were used to assess sediment and water quality at target sites throughout the basin. Ambient concentrations of organic contaminants in water were well below any aquatic life criteria; concentrations of some nutrients were detected above aquatic life criteria levels. Most mussel species in the river are endangered or threatened; therefore, snails were collected for δ15N analyses. Mean δ15N values for snails collected at forested upper watershed sites (national forest areas) were significantly lower than δ15N values from snails in agricultural areas. δ15N values for raw cow manure and manure-treated soil were similar to δ15N values for snails collected in agricultural areas. Dissolved nitrate from water samples had elevated δ15N values similar to the upper range of δ15N values for snails in agricultural areas. Data, particularly stable nitrogen isotope data, indicates that a land use change from national forest land to agriculture alters nitrogen sources to the basin and snails. Implications of nutrient release on freshwater molluscan reproduction, growth, and survival are discussed.  相似文献   

20.
The objective of this study was to examine the effects of vegetation change from a native broadleaf forest to a coniferous plantation on selected soil properties, including soil texture, pH, organic matter, total nitrogen (N), total phosphorus (P), exchangeable cations (Ca2+, K+, Na+), and cation exchange capacity (CEC). Results showed that the amount of clay particles, Ca2+, and K+ values significantly increased, whereas Na+, total N, and organic matter and soil pH values decreased on the treatment plot after vegetation change. Soil acidity also increased and soil textural group changed from moderately fine-textured soils (clay loam) to medium-textured soils (loam) under both control and treatment plots. Organic matter, total N, and Na+ values increased, whereas Ca2+ concentration decreased through time on the control plot. Soil pH, total P, K+, and CEC did not show significant changes through time on the control plot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号