共查询到20条相似文献,搜索用时 78 毫秒
1.
采用大流量采样器,于2002年春季(3月)对南京市城区PM10、PM2.5(大气中粒径dp≤10或2.5mm的颗粒物)进行了研究测定,并对其水溶性组分及Ph值进行分析.结果表明,南京市大气颗粒物春季污染严重,PM10超标率达83%.PM2.5全部超标,超标倍数为1.8~4.9.PM2.5的酸性明显强于PM10. PM2.5中水溶性组分占总量的24.4%,其中,阴离子约为8.0%,水溶性金属元素+NH4+约为8.9%,TOC约为7.5%.这些水溶性组分对干、湿沉降的酸度影响较大,且主要以细颗粒的形态存在,其在大气中滞留时间较长,对人类的影响深远,应引起足够重视. 相似文献
2.
重庆市大气颗粒物污染特征及影响因素分析 总被引:1,自引:1,他引:1
利用重庆市17个大气自动站实时发布的数据,对PM_(2.5)与PM_(10)污染特征、变化规律与气象因子的相关性进行了分析。结果表明:2013年PM_(2.5)和PM_(10)的年均值分别为70,106μg/m3,均超过国家Ⅱ级标准。月均值、季均值变化明显,总体均呈两头高中间低的"U"型分布。2013年PM_(2.5)占PM_(10)的比例较大,均值为65.8%,PM_(2.5)和PM_(10)的Pearson相关系数为0.974,在0.01的置信水平上(双侧)显著相关。PM_(2.5)、PM_(10)的浓度与气温、大气压极显著相关;PM_(2.5)、PM_(10)的浓度与降雨量、日照时数(时)显著相关。 相似文献
3.
利用天津市大气边界层观测站2009年能见度、相对湿度、风速逐时观测资料和2009年3月9~21日期间颗粒物的膜采样数据,分析天津市大气能见度与颗粒物污染的关系.结果表明,颗粒物质量浓度与能见度变化总体呈负相关,小粒径颗粒对能见度的影响作用明显,随着能见度的降低,小粒径颗粒与大粒径颗粒浓度的比值明显增加.能见度与颗粒物中总碳质量浓度变化呈负相关. SO42-,NO3-,OC和EC对大气消光贡献平均值分别为28.7%,6.1%,27.6%和19.2%.表明观测期间颗粒物中SO42-,OC对能见度的影响明显. 相似文献
4.
为了解福州市大气颗粒物污染状况,利用中国环境监测总站发布的实时大气环境监测资料,结合气象资料和HYSPLIT4轨迹模式,分析了2015年福州市大气颗粒物污染特征和典型污染过程.结果表明:2015年福州市ρ(PM10)、ρ(PM2.5)年均值分别为55.8和29.2μg/m3,均低于GB 3095-2012《环境空气质量标准》二级标准限值.颗粒物浓度季节性变化特征明显,表现为冬春季高、夏秋季低的变化特征. ρ(PM2.5)/ρ(PM10)为52%,普遍低于我国东部其他大中城市;日际变化明显,受混合层高度日变化和机动车排放的影响,呈双峰形态. ρ(PM2.5)/ρ(PM10)日变化趋势与ρ(PM10)日变化特征相反,即ρ(PM10)高时ρ(PM2.5)所占比例低,ρ(PM10)低时ρ(PM2.5)所占比例高,表明早晚高峰机动车排放所造成的颗粒物污染以粗颗粒物贡献为主.福州市颗粒物污染天气成因主要有"积累型"和"输送型"污染. 2015年1月5-6日发生的污染过程,是在一次静稳、高湿天气形势下,本地排放的污染物在不利于扩散的气象条件下聚集、二次转化,导致颗粒物浓度升高、能见度降低. 2015年1月17-19日的污染过程主要是北方污染物随冷空气输送南下,导致本地颗粒物浓度迅速升高、能见度迅速降低.研究显示,福州市PM10和PM2.5优良率较高,颗粒物污染主要发生于冬季,污染成因包括局地累积和区域输送. 相似文献
5.
为了解西安市高新区采暖期大气颗粒物(包括PM1 0和PM2.5)污染状况,于2013年1月1日到2013年3月15日在高新区进行了为期74 d的连续自动采样。结果表明:采样期间高新区PM1 0的小时浓度范围28~1744μg/m3,平均浓度为332μg/m3;PM2.5的小时浓度范围13~946μg/m3,平均浓度为207μg/m3。PM2.5占PM1 0的平均比例为63.8%。颗粒物浓度日变化呈现弱双峰特征,分别在凌晨2:00和上午7:00~8:00左右达到浓度最高值,但是上午的峰值并不明显。颗粒物在15:00~1 6:00之间浓度达到最低值,由于受采暖影响,18:00之后颗粒物浓度明显上升。 相似文献
6.
本次研究以南通市大气颗粒物组成和污染特征为研究对象,利用南通市大气超级站监测数据,分析了2020年南通市PM2.5和PM10浓度水平,时间变化特征和组分特征.结果表明,2020年南通市PM2.5和PM10年均质量浓度分别为34μg/m3和56μg/m3,具有明显的冬高夏低的特征,PM2.5/PM10呈现为冬季>夏季>春季≈秋季.PM2.5中含碳组分和水溶性阴阳离子高低顺序为:NO3->OC>SO2-4>NH4+>EC>Cl->K+>Na+>Ca2+>Mg2+.冬季OC、NH4+、SO2-4和NO3-浓度值显著高于其他三个季节,PM2.5中NO3-、OC、SO2-4和NH4+的占比分别为27.7%、15.4%、15.0%和14.2%.NO3-/SO2-4比值为1.9,表明受移动源影响较大;OC和EC浓度均为冬季最高,夏季最低,四季OC/EC介于3.2~4.6,表明南通全年均受二次有机碳(SOC)的影响,且主要受柴油、汽油车的尾气排放和燃煤排放影响. 相似文献
7.
采集2015年12月-2016年2月采暖期石家庄市文教区、交通密集区、居民区和商业交通混合区大气细颗粒物样品,依据HJ 646-2013《环境空气和废气气相和颗粒物中多环芳烃的测定气相色谱-质谱法》分析石家庄市大气细颗粒物中PAHs污染水平及分布特征、气象参数与PAHs相关性,并解析PAHs污染来源.结果表明:石家庄市冬季采暖期大气细颗粒物PM10、PM2.5和PM1.0中ρ(PAHs)的日均值分别为397.66、349.09和272.35 ng/m3,分别是采暖期前(11月1-15日)的6.16、4.62和4.82倍,并且呈交通密集区>居民区>文教区>商业交通混合区的空间分布特点.相对湿度与细颗粒物PM10、PM2.5和PM1.0中ρ(PAHs)均呈显著正相关,R2分别为0.30、0.37和0.33,而风速与三者呈显著负相关,R2分别为-0.39、-0.53和-0.26;PM1.0中具有显著相关的PAHs单体数量多于PM10和PM2.5.根据PAHs环数分布特征及特征化合物比值判断,石家庄市冬季采暖期PAHs污染为燃煤与机动车尾气复合型污染特征,同时餐饮油烟也有一定的贡献. 相似文献
8.
随着城市化和工业化进程的加快,空气颗粒物污染成为城市最为严峻的环境问题之一.依据植被的横向结构、竖向结构及植被类型3个因子对宝鸡市公园绿地进行划分,并选取11种不同植被结构的绿地,在分析地点、时间、风速、温度、相对湿度、绿地面积等环境因子对绿地内空气中ρ(PM2.5)和ρ(PM10)"本底效应"影响的基础上,探究不同植被结构绿地对空气颗粒物质量浓度削减作用的差异.结果表明:①在不同监测地点和监测时段内,ρ(PM2.5)和ρ(PM10)有极显著差异,植物养护管理程度较高的城市公园绿地对空气颗粒物质量浓度削减作用较为明显,一天中空气颗粒物质量浓度呈现出早晚高、中午低的变化趋势;②风速、温度、相对湿度对ρ(PM2.5)和ρ(PM10)有极显著影响,在晴朗、无风或微风天气条件下,ρ(PM2.5)和ρ(PM10)随风速的增大、温度的减小、相对湿度的增大而增大,且ρ(PM10)变化范围大于ρ(PM2.5);③1 hm2以下绿地面积的变化对ρ(PM2.5)和ρ(PM10)无显著影响;④不同植被结构绿地内ρ(PM2.5)无显著差异,但ρ(PM10)有极显著差异,其中开敞式以灌木为主的绿地中ρ(PM10)最低,多层闭合式阔叶林中ρ(PM10)最高,其余9种植被结构绿地削减作用居中且相近.研究显示,不同植被结构的城市公园绿地对ρ(PM2.5)和ρ(PM10)的削减作用存在一定的差异且受多种环境因素的共同制约,可为优化城市绿地植被结构进而有效改善空气质量提供依据. 相似文献
9.
10.
为探讨2013年南昌市大气颗粒物的污染特征及分布状况,收集南昌市9个大气监测站点实时发布的PM10和PM2.5数据,分析了ρ(PM10)、ρ(PM2.5)和ρ(PM2.5)/ρ(PM10)的变化规律及其与气态污染物的相关性,并结合污染严重的秋季时段,采用PCA-MLR(主成分分析-多元线性回归)模型对大气PM2.5中化学组分来源进行解析.结果表明:①ρ(PM10)和ρ(PM2.5)的年均值分别为(115.4±39.1)(69.1±26.8)μg/m3,均超过GB 3095-2012《环境空气质量标准》二级标准限值,ρ(PM10)和ρ(PM2.5)的最高值分别出现在石化、省外办监测站点,最低值出现在林科所监测站点.ρ(PM10)和ρ(PM2.5)季节性变化特征明显,呈冬季>春、秋两季>夏季的趋势,全年ρ(PM10)超标天数占比为25.48%,ρ(PM2.5)超标天数占比为36.71%,各季度ρ(PM2.5)超标天数占比均高于ρ(PM10).②受人为活动和边界层高度的影响,ρ(PM2.5)和ρ(PM10)日变化呈双峰双谷形态,一个波峰出现在08:00-10:00,另一个波峰出现在20:00-22:00,并且晚间小时峰值高于早间,最低值出现在15:00.③ρ(PM2.5)/ρ(PM10)年均值为60.3%,在冬季最高达65.1%,相关性分析发现ρ(PM10)与ρ(PM2.5)存在较显著的线性关系,表明二者具有同源性.④ρ(PM10)、ρ(PM2.5)均与ρ(SO2)、ρ(NO2)、ρ(CO)呈显著正相关,并且冬季相关性高于夏、秋两季;而ρ(PM10)、ρ(PM2.5)均与ρ(O3)全年呈显著负相关,并且夏、秋两季相关性高于冬季,说明气态污染物的二次转化对ρ(PM2.5)和ρ(PM10)有较大影响.⑤南昌市秋季PM2.5的最大污染源为道路扬尘/机动车尾气混合污染源,其次分别为施工扬尘源、燃煤源、冶炼尘/生物质燃烧混合污染源,各污染源对PM2.5的贡献率分别为40.9%、35.8%、12.4%、10.9%.研究显示,南昌市PM2.5的污染程度较PM10严重,PM2.5已成为南昌市大气颗粒物污染的主要组分,PM2.5主要来源为城市扬尘和机动车尾气. 相似文献
11.
邯郸市大气颗粒物污染特征的监测研究 总被引:5,自引:1,他引:5
使用振荡天平颗粒物在线监测仪连续监测了邯郸市PM10和PM2.5浓度,分析了2012年7月31日—12月2日4个月内PM10、PM2.5的浓度水平、时变规律和PM2.5/PM10的变化情况.结果表明,监测时段内PM10和PM2.5的日均浓度平均值分别为208.4 μg·m-3和99.1 μg·m-3,是国家二级标准的1.4倍和1.3倍;浓度超标的天数占总观测天数的61.6%和60.0%,其污染程度与北京、天津相当,属污染较严重的地区.PM2.5/PM10在19.3%~89.8%之间周期性波动,平均值为49.4%,接近北方城市的平均水平.PM10和PM2.5的浓度变化具有很好的正相关性;日均值在4个月中呈现明显的周期性变化和月际波动,10、11月的PM10和PM2.5浓度变化剧烈且大大高于8、9月份.PM10和PM2.5浓度一天中小时均值的变化呈同步的双峰型分布,最高值出现在9:00和20:00左右,最低值出现在15:00~17:00之间.本研究系统分析了夏秋季节邯郸市大气颗粒物污染状况,以期为当地颗粒物污染的控制提供科学依据. 相似文献
12.
年10月8日—12月7日,在北京城区对ρ(BC)(BC为黑碳)、ρ(PM2.5)、大气能见度和气象要素进行连续观测,利用该资料分析雾和霾对大气能见度下降的影响. 结果表明:观测期间大气能见度为0.6~26.7 km,其中40%以上的时间大气能见度不足5 km,ρ(PM2.5)和ρ(BC)小时平均值最高分别达416.0和17.87 μg/m3. 大气能见度小于5 km且持续时间超过24 h的过程出现5次,过程1~5持续的时间分别为84、79、70、35和66 h. 过程1和2主要由霾导致,大气RH(相对湿度)小,持续时间长;过程3和5则均由雾引起,大气能见度平均值分别仅为1.70和1.99 km. 尽管过程4持续时间最短,但是由于存在低层逆温的大气层结,并且地面风速<1 m/s,导致颗粒物在水平和垂直方向的扩散均受到抑制,加之大气平均RH达到90.8%,形成雾霾复合影响,造成颗粒物污染程度超过其余4个过程,ρ(PM2.5)和ρ(BC)平均值分别达到192.1和10.15 μg/m3. 相似文献
13.
2013年冬季海口市一次气溶胶粒子污染事件特征及成因解析 总被引:1,自引:2,他引:1
海口市在2013年12月份发生了一次气溶胶粒子污染事件.本文利用相关资料对此进行诊断,发现海口市PM2.5在12月9日超过了国家环境空气质量二级标准限值,在11日达到该污染时段的最高值(日平均为87.96μg·m-3),同时与能见度有一定的负向关系.分析表明,前期(7—9日上午),污染物主要以本地排放为主,而后期(9日中午到11日)与珠江三角洲地区的输送作用有密切关系,后向轨迹分析也表明后期海口市大气污染物可能来自珠三角地区.分析发现,气象背景场为这次气溶胶污染事件提供了有利的气象条件,500 h Pa高度场冷空气活动偏北,925 h Pa高度场的暖中心控制,形势稳定,逆温层的存在使得大气近地层更加稳定,低层风速偏小不利于近地面附近的污染物向外输送,水平风垂直切变偏弱有利于污染物在近地层堆积,其变化趋势与PM2.5浓度有一定的相关性. 相似文献
14.
2011年春季辽宁一次沙尘天气过程及其对不同粒径颗粒物和空气质量的影响 总被引:6,自引:2,他引:6
利用2011年5月11—12日辽宁沙尘天气过程的相关资料,分析了沙尘天气对不同粒径颗粒物及空气质量的影响及此次沙尘过程的天气成因.结果表明:沙尘天气发生前后可吸入颗粒物PM10、PM2.5和PM1的浓度变化很大,沈阳、鞍山、本溪和丹东4城市PM10、PM2.5的小时浓度最大值都增大了1.5~20倍;粗粒子PM(2.5~10)的数量浓度分别增加了30~41倍,质量浓度分别增加了27~30倍;细粒子PM(1~2.5)的质量浓度分别增加了30~35倍,数量浓度分别增加了15~30倍;微粒子的数量浓度和质量浓度各城市表现不同,沈阳微粒子的数量浓度和质量浓度最大值增大了3倍和5倍,而鞍山PM1的数量浓度和质量浓度分别减少了50%和10%.受蒙古气旋的影响内蒙古地区产生大风降温天气,大风将内蒙古地区的沙尘带到高空并随西风带向东移动进入辽宁,由于辽宁地区风速比较小,造成了辽宁大部分地区的浮尘天气,并对辽宁各地空气质量造成了严重影响,除丹东外辽宁其他13个城市空气质量都达到了轻微污染到重度污染的级别,铁岭、阜新、沈阳和抚顺的污染指数分别超过了300,达到了重度污染的级别. 相似文献
15.
2013年1月邯郸市严重霾天气的污染特征分析 总被引:1,自引:3,他引:1
利用河北工程大学大气环境监测站点的PM10、PM2.5、SO2和NOx在线监测数据,并结合能见度、湿度数据,对邯郸市2012年12月1日到2013年1月31日的大气污染状况进行分析,特别是2013年1月持续发生的霾天气,以探讨严重霾污染的过程特征.结果表明,2013年1月,SO2与NOx的平均浓度分别为225.3 μg·m-3和217.8 μg·m-3,PM10和PM2.5的平均浓度分别为328.5 μg·m-3和229.4 μg·m-3,均超过新颁布的环境空气质量标准,是2012年12月平均浓度的1.4~3.5倍.重污染过程分析结果显示,污染峰值附近几天内PM10、PM2.5的时均浓度变化无明显规律.累积阶段的PM2.5/PM10在0.42~0.52之间,峰值前后上升并超过0.70,扩散阶段PM2.5/PM10降到0.70以下,且呈波动式变化.当PM2.5/PM10小于0.40时,能见度基本位于2~18 km之间;当PM2.5/PM10在0.40~0.60之间时,能见度在0.7~8 km之间;当PM2.5/PM10大于0.60时,能见度分布于2 km以下. 相似文献
16.
上海市大气散射消光特征及其与颗粒物化学组成关系研究 总被引:2,自引:2,他引:2
为研究上海市大气颗粒物散射系数分布特征以及颗粒物化学组分贡献率,2009年用浊度仪对散射系数进行观测,同时采集PM2.5,分析其主要化学成分浓度.观测发现,秋、冬季散射系数较高,夏季最小.散射系数日变化有早、晚两个峰,午间出现低谷.散射系数与温度、风速有显著负相关性.多元回归得到OC、NO-3、NH+4是影响消光系数的主要化学成分.依据IMPROVE估算公式,将OC分为吸湿性和非吸湿性部分,并加入海盐影响,使估算bext值更接近监测值.OC、EC和硫酸铵盐为估算消光系数主要贡献成分. 相似文献
17.
交通与气象因子对不同粒径大气颗粒物的影响机制研究 总被引:6,自引:3,他引:6
为了研究北京市气象因子与车流量、车速等交通因子对PM2.5、PM10浓度水平的影响,在市区三环主路及居民区选取了28个采样点,采集滞尘量,PM2.5、PM10浓度、车速、车流量、温度、湿度、风速等数据.通过3个月的滞尘质量分析,得出交通源对空气质量的影响是显著的,其中三环主道路两侧采样点和远离交通源对照点滞尘均值分别为0.284 g和0.016 g.再由道路口与居民区对比实验(局部实验)得出,居民区采样点测得的PM2.5和PM10浓度均低于道路口颗粒物浓度,差值均值分别为101 074 n·(cf)-1和15 386 n·(cf)-1,同时PM2.5白天浓度一般低于夜间.最后结合最佳子集预测模型分析得出,PM2.5和PM10受到湿度和温度的影响最大,车速、车流量、风速次之,其中车速、车流量、低风速对颗粒物PM2.5的影响比对PM10的影响更为显著. 相似文献
18.
邯郸市大气复合污染特征的监测研究 总被引:6,自引:2,他引:6
利用邯郸市4个大气环境监测站点的PM2.5、PM10、O3等在线连续观测数据,对2013年全年的PM2.5、PM10、O3的浓度水平、变化规律和PM2.5/PM10的变化情况进行了分析,并从地形、气象、污染物排放及冬、夏季逐时PM2.5、O3和各类气体污染物浓度之间的关系等方面进行了研究.结果表明:12013年PM2.5、PM10的年均浓度分别为139和238μg·m-3,分别是国家二级标准的4.0倍和3.4倍.PM2.5、PM10日均浓度超过标准的天数均在280 d左右,全年3/4以上天数均超标.其颗粒物污染程度甚至超过北京、天津、长三角和珠三角等超大城市或城市群,属于严重超载的红色预警地区.整个采暖期PM2.5、PM10平均浓度分别为209和322.1μg·m-3,为非采暖期平均浓度的2倍和1.6倍;同时,采暖期PM2.5/PM10平均值为63%,高出非采暖期10%,采暖期细颗粒物污染问题特征明显.22013年O3日最大8小时平均浓度的最大值为238μg·m-3,是国家二级标准的1.5倍,超标天数为53 d,超标率为14.5%;最大时均浓度为288μg·m-3,是国家二级标准的1.4倍,超标小时数为148h,占全年有效数据的1.7%;与北方城市相比,其污染程度超过北京、天津等,略低于洛阳污染水平.3邯郸市大气复合污染的形成,除了区域大气环流与特殊地形叠加影响外,还主要归因于相对较高的人为源大气污染物排放,因此,要想走出复合污染的困局,减排是硬道理,解决灰霾污染需开展颗粒物、NOx、SO2等污染物的协同控制. 相似文献
19.
为研究渭南市区2014?—?2016年的冬春季雾霾天气的特点,选取覆盖渭南市区的4个监测站点,分析渭南市区PM_(10)和PM_(2.5)污染时间分布特征;同时选取日平均气温、相对湿度、风等气象因素,用线性回归分析法分析各个气象因素同大气中PM_(10)和PM_(2.5)的相互关系。研究发现:三年来冬季PM_(10)和PM_(2.5)的日变化的峰值主要出现在12月—?次年1月;春季PM_(10)和PM_(2.5)的逐日变化的峰值主要出现在3月;日内的周期变化趋势呈多次波动。渭南市区冬春PM_(10)和PM_(2.5)的质量浓度与风速、气温呈负相关,与相对湿度呈正相关,为雾霾的形成创造了条件,在冬季温度较高的情况下以及相对湿度较大的情况下应加强防范。在冬季12月—?次年1月和春季3月应注意雾霾的防范和治理,燃煤企业要安装脱硫脱硝装置,居民日常生活中尽量减少生物燃料的燃烧,同时政府应根据污染物排放量征税,用制度保护环境。 相似文献
20.
为研究郑州冬、春季重度污染期间细颗粒物的组分特征、污染来源、气象影响因素及外来传输影响,基于本地超级站污染监测数据及相关气象要素监测数据对重污染时段进行分析,并对本地污染成因进行探讨.结果表明,2019年1—3月郑州共有426 h达到重度及以上污染水平,首要污染物均为PM2.5.重污染时段碳组分(OC+EC)共占PM2.5的14.6%,OC与EC存在显著相关性,1、2、3月的r值分别为0.72、0.89和0.91,且二者比值多介于2~4之间,表明机动车和燃煤排放是碳组分的主要来源;水溶性离子浓度排序为NO3->NH4+>SO42->Cl->K+>Ca2+>Mg2+>Na+,SNA(SO42-、NO3... 相似文献