首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonality is often the major exogenous effect that must be compensated for or removed to discern trends in water quality. Our objective was to provide a methodological example of trend analysis using water quality data with seasonality. Selected water quality constituents from 1979 to 2004 at three monitoring stations in southern Florida were evaluated for seasonality. The seasonal patterns of flow-weighted and log-transformed concentrations were identified by applying side-by-side boxplots and the Wilcoxon signed-rank test (p < 0.05). Seasonal and annual trends were determined by trend analysis (Seasonal Kendall or Tobit procedure) using the U.S. Geological Survey (USGS) Estimate TREND (ESTREND) program. Major water quality indicators (specific conductivity, turbidity, color, and chloride), except for turbidity at Station C24S49, exhibited significant seasonal patterns. Almost all nutrient species (NO(2)-N, NH(4)-N, total Kjeldahl N, PO(4)-P, and total P) had an identical seasonal pattern of concentrations significantly greater in the wet than in the dry season. Some water quality constituents were observed to exhibit significant annual or seasonal trends. In some cases, the overall annual trend was insignificant while opposing trends were present in different seasons. By evaluating seasonal trends separately from all data, constituents can be assessed providing a more accurate interpretation of water quality trends.  相似文献   

2.
Data are presented on the vegetation dynamics of two impounded marshes along the Indian River Lagoon, in east-central Florida, USA. Vegetation in one of the marshes (IRC 12) was totally eliminated by overflooding and by hypersaline conditions (salinities over 100 ppt) that developed there in 1979 after the culvert connecting the marsh with the lagoon was closed. Over 20% recovery of the herbaceous halophytesSalicornia virginica, S. bigelovii, andBatis maritima was observed at that site after the culvert was reopened in 1982, but total cover in the marsh remains well below the original 75%. No recovery of mangroves was observed at this site. The second site (SLC 24), while remaining isolated from the lagoon during much of the study, did not suffer the complete elimination of vegetation experienced at the first site. At this location, mangroves increased in cover and frequency with a concomitant decrease in herbaceous halophytes. Considerable damage to the vegetation was evident at IRC 12 when the impoundment was closed and flooded for mosquito control in 1986. Although the damage was temporary, its occurrence emphasizes the need of planning and constant monitoring and adjustment of management details as conditions within particular marshes change. Storms and hurricanes may be important in promoting a replacement of black mangroves by red mangroves in closed impoundments because the former cannot tolerate pneumatophore submergence for long periods of time. University of Florida-IFAS Journal Series R-00521.  相似文献   

3.
Eutrophication is a serious water quality problem in estuaries receiving increasing anthropogenic nutrient loads. Managers undertaking nutrient-reduction strategies aimed at controlling estuarine eutrophication are faced with the challenge that upstream freshwater segments often are phosphorus (P)-limited, whereas more saline downstream segments are nitrogen (N)-limited. Management also must consider climatic (hydrologic) variability, which affects nutrient delivery and processing. The interactive effects of selective nutrient input reductions and climatic perturbations were examined in the Neuse River Estuary (NRE), North Carolina, a shallow estuary with more than a 30-year history of accelerated nutrient loading and water quality decline. The NRE also has experienced a recent increase in Atlantic hurricanes and record flooding, which has affected hydrology and nutrient loadings. The authors examined the water quality consequences of selective nutrient (P but not N) reductions in the 1980s, followed by N reductions in the 1990s and an increase in hurricane frequency since the mid-1990s. Selective P reductions decreased upstream phytoplankton blooms, but increased downstream phytoplankton biomass. Storms modified these trends. In particular, upstream annual N and P concentrations have decreased during the elevated hurricane period. Increased flushing and scouring from storms and flooding appear to have enhanced nutrient retention capabilities of the NRE watershed. From a management perspective, one cannot rely on largely unpredictable changes in storm frequency and intensity to negate anthropogenic nutrient enrichment and eutrophication. To control eutrophication along the hydrologically variable freshwater–marine continuum, N and P reductions should be applied adaptively to reflect point-source–dominated drought and non–point-source–dominated flood conditions.  相似文献   

4.
Coastal waters have been significantly influenced by increased inputs of nutrients that have accompanied population growth in adjacent drainage basins. In Tampa Bay, Florida, USA, the population has quadrupled since 1950. By the late 1970s, eutrophic conditions including phytoplankton and macroalgal blooms and seagrass losses were evident. The focus of improving Tampa Bay is centered on obtaining sufficient water quality necessary for restoring seagrass habitat, estimated to have been 16,400 ha in 1950 but reduced to 8800 ha by 1982. To address these problems, targets for nutrient load reductions along with seagrass restoration goals were developed and actions were implemented to reach adopted targets. Empirical regression models were developed to determine relationships between chlorophyll a concentrations and light attenuation adequate for sustainable seagrass growth. Additional empirical relationships between nitrogen loading and chlorophyll a concentrations were developed to determine how Tampa Bay responds to changes in loads. Data show that when nitrogen load reduction and chlorophyll a targets are met, seagrass cover increases. After nitrogen load reductions and maintenance of chlorophyll a at target levels, seagrass acreage has increased 25% since 1982, although more than 5000 ha of seagrass still require recovery. The cooperation of scientists, managers, and decision makers participating in the Tampa Bay Estuary Program’s Nitrogen Management Strategy allows the Tampa Bay estuary to continue to show progress towards reversing many of the problems that once plagued its waters. These results also highlight the importance of a multi-entity watershed management process in maintaining progress towards science-based natural resource goals.  相似文献   

5.
This paper presents a process for estimating pollutant loads from water quality data, to improve catchment-scale modelling in the region for resource management purposes. It describes a program to estimate suspended sediment, total and dissolved nitrogen and phosphorus loads to the Tuross estuary from the Tuross River catchment (1810 km(2)) of coastal southeast Australia. Event-based water quality sampling results obtained during storm events in 2005 are presented. Event 1, during July 2005 was the largest storm event in terms of peak flow for 3.5 years. Other events monitored were also in July, November and December 2005. The early July 2005 event had a flow-weighted mean suspended sediment (SS) concentration during the first 4 days of 63 mg L(-1). Of the events monitored, this was unusual as it was preceded by drought and had the largest SS concentrations (peaking at 180 mg L(-1)) during the rising-stage. In contrast, the November event had a much lower flow-weighted SS mean (28 mg L(-1)), even though peak flow magnitudes were similar. The July and November 2005 events had peak flows of 12,360 and 11,330 ML day(-1). Low-cost rising-stage siphon samplers were used to collect samples during the rapidly rising phase of these events. The use of such samplers and consideration of time-lead/lag flow adjustments, quantified using cross-correlation analysis to account for hysteresis effects, were incorporated into the load estimation techniques. The technique is a potentially useful approach for understanding relationships between water quality concentrations and flow for modelling catchment source strengths and transport processes.  相似文献   

6.
Lake Okeechobee (surface area = 1830 km2, mean depth = 3.5 m), the largest lake in Florida, is eutrophic and has nitrogen and phosphorus loading rates in excess of nearly all established criteria. The lake is not homogeneous regarding trophic conditions, and spatial and temporal variations occur regarding nutrient limitation. Nonetheless, phosphorus loading rate and trophic state data fit reasonably well to various input-output models developed for temperate lakes. Modification of the models by regression analysis to fit data for Florida lakes resulted in improved predictions for most parameters. Analysis of nutrient management alternatives for the lake indicates that a 75% reduction of phosphorus loading from the largest source (the Taylor Creek-Nubbins Slough watershed) would reduce the average chlorophyll a concentration by less than 20%. Complete elimination of inputs from the largest nitrogen source (the Everglades Agricultural Area) would decrease the average nitrogen concentration in the lake by about 20%. Limitations of nutrient inputoutput models regarding analysis of trophic conditions and management alternatives for the lake are discussed.  相似文献   

7.
A map of summer total phosphorus in lakes has been compiled for Minnesota, Wisconsin, and Michigan to clarify regional patterns in attainable lake trophic state. Total phosphorus was used as a measure of lake trophic state because: (1) phosphorus plays a central role in controlling the overall fertility of most lakes, (2) total phosphorus values are available for a great number of lakes, and (3) phosphorus is measured in a consistent manner. The maps were compiled using patterns of total phosphorus data and observed associations between these data and geographic characteristics including physiography, land use, geology, and soils. Regions depicted on the map represent areas of similarity in phosphorus concentrations in lakes, or similarity in the mosaic of values, as compared to adjacent areas. Within each region, differences in total phosphorus can be compared to natural and anthropogenic factors to determine the types of lakes representative of each region, the factors associated with differences in quality, and the realistically attainable phosphorus levels for each type of lake.  相似文献   

8.
In this work, time series neural networks were used to predict the occurrence of toxic cyanobacterial blooms in Crestuma Reservoir, which is an important potable water supply for the Porto region, located in the north of Portugal. These models can potentially be used to provide water treatment plant operators with an early warning for developing cyanobacteria blooms. Physical, chemical, and biological parameters were collected at Crestuma Reservoir from 1999 to 2002. The data set was then divided into three independent time series, each with a fortnightly periodicity. One training series was used to “teach” the neural networks to predict results. Another series was used to verify the results, and to avoid over-fitting of the data. An additional independently collected data series was then used to test the efficacy of the model for predicting the abundance of cyanobacteria. All of the models tested in this study incorporated a prediction time (look-ahead parameter) equal to the sampling interval (two weeks). Various lag periods, from 2 to 52 weeks, were also investigated. The best model produced in this study provided the following correlations between the target and forecast values in the training, verification, and validation series: 1.000 (P = 0.000), 0.802 (P = 0.000), and 0.773 (P = 0.001), respectively. By applying this model to the three-year data set, we were able to predict fluctuations in cyanobacteria abundance in the Crestuma Reservoir, with a high level of precision. By incorporating a lag-period of eight weeks, we were able to detect secondary fluctuations in cyanobacterial abundance over the annual cycle.  相似文献   

9.
This paper investigates index models as a tool to estimate the risk of N and P source strengths and loss at the catchment scale. The index models assist managers in improving the focus of remediation actions that reduce nutrient delivery to waterbodies. N and P source risk factors (e.g. soil nutrient concentrations) and transport risk factors (e.g. distance-to-streams) are used to determine the overall risk of nutrient loss for a case study in the Tuross River catchment of coastal southeast Australia. In the development of the N index model for Tuross, particulate N was considered important based on the observed event water quality data. In contrast to previous N index models, erosion and contributing distance were therefore included in the Tuross River catchment N index. Event-based water quality monitoring, and soil information, or in data-poor catchments conceptual understanding, are essential to represent catchment-scale processes. The techniques have high applicability in other catchments, and are complementary to other modelling techniques such as process-based semi-distributed modelling. Index models generally provide much more detailed spatial resolution than fully- or semi-distributed conceptual modelling approaches. Semi-distributed models can be used to quantify nutrient loads and provide overall direction to set the broad focus of management. Index models can then be used to refine on-the-ground investigations and investment priorities. In this way semi-distributed models can be combined with index models to provide a set of powerful tools to influence management decisions and outcomes.  相似文献   

10.
Emerging approaches to water resources development and management typically highlight equity and productivity as two main objectives. In the context of integrated water resources management within a river basin, managers and stakeholders often need a comparative assessment of different options for water augmentation and/or allocation. Pitting such options against predefined objectives, such as equity and productivity, requires an assessment of the effects that available options will have on these objectives. Available documentation indicates that not only does the interpretation of such objectives vary widely, but also the available methods for assessing equity and productivity run into significant limitations in the availability of adequate data. This limitation has largely kept decision makers from gaining a comprehensive overview of equity and productivity scenarios, whether within or across sectors, that could facilitate better‐informed decisions. To address this methodological gap, this article scrutinizes different notions associated with equity and water productivity, and limitations in prevalent assessment methods with the view to develop and demonstrate pragmatic methodologies for assessing equity and productivity in data‐scarce contexts. The discussion and findings are based on a review of relevant literature and empirical and consultative research work in the Olifants River basin in South Africa. The demonstrated methodologies for assessing equity and productivity, besides being useful in data‐scarce contexts, are insightful for initiating several policy measures and also for exploring the relationship between equity and water productivity.  相似文献   

11.
Based on surveys and chemical analyses, we performed a case study of the surface water and groundwater quality in the Wuwei basin, in order to understand the sources of water pollution and the evolution of water quality in Shiyang river. Concentrations of major chemical elements in the surface water were related to the distance downstream from the source of the river, with surface water in the upstream reaches of good quality, but the river from Wuwei city to the Hongya reservoir was seriously polluted, with a synthetic pollution index of 25. Groundwater quality was generally good in the piedmont with dominant bicarbonate and calcium ions, but salinity was high and nitrate pollution occurs in the northern part of the basin. Mineralization of the groundwater has changed rapidly during the past 20 years. There are 23 wastewater outlets that discharge a total of 22.4 x 10(6)m(3)y(-1) into the river from Wuwei city, which, combined with a reduction of inflow water, were found to be the major causes of water pollution. Development of fisheries in the Hongya reservoir since 2000 has also contributed to the pollution. The consumption of water must be decreased until it reaches the sustainable level permitted by the available resources in the whole basin, and discharge of wastes must also be drastically reduced.  相似文献   

12.
Abstract: Spatial distribution of land use can have a substantial effect on surface and groundwater quality. Our objective was to test for trends in flow components and water quality related to changes in land use in the Alafia and Hillsborough River watersheds in Florida, USA, over the period 1974‐2007. In addition, water quality statistics were evaluated in the perspective of numeric water quality criteria and proposed reclassification of segments of the Alafia River. Trends in 10 water quality parameters and three discharge variables were evaluated using a nonparametric trend detection test. Results of land use analysis indicated substantial urbanization and loss of agricultural land in the study area. Discharge variables did not exhibit significant trends, whereas trends in the majority of water quality concentrations were negative or nonsignificant with total nitrogen and total Kjeldahl nitrogen as exceptions showing positive trends. Changes in nutrient pathways could not be clearly identified. Considering recently promulgated numeric nutrient criteria and standards for dissolved fluoride, much of the Alafia River was found to be out of compliance. While there were land use changes and changes in water quality over the study period, it was difficult to identify a direct cause‐effect relationship. Responses to regulatory efforts, such as the Clean Water Act and improvements in phosphate mining practices, may have had greater impacts on water quality than changes in land use.  相似文献   

13.
The potential impacts driven by climate variability and urbanization in the Boise River Watershed (BRW), located in southwestern Idaho, are evaluated. The outcomes from Global Circulation Models (GCMs) and land use and land cover (LULC) analysis have been incorporated into a hydrological and environmental modeling framework to characterize how climate variability and urbanization can affect the local hydrology and environment at the BRW. The combined impacts of future climate and LULC change are also evaluated relative to the historical baseline conditions. For modeling exercises, Hydrological Simulation Program‐Fortran (HSPF) is used in parallel computing and statistical techniques, including spatial downscaling and bias correlation, are employed to evaluate climate consequences derived from GCMs as well. The implications of climate variability and land use change driven by urbanization are then observed to evaluate how these overall global challenges can affect water quantity and quality conditions at the BRW. The results show the combined impacts of both climate change and urbanization can lead to more seasonal variability of streamflow (from ?27.5% to 12.5%) and water quality, including sediment (from ?36.5% to 49.3%), nitrogen (from ?24% to 124.2%), and phosphorus (from ?13.3% to 21.2%) during summer and early fall over the next several decades.  相似文献   

14.
This paper describes an online water quality monitoring and management system that was developed by combining a chemical oxygen demand sensor with an artificial neural network technology and a virtual instrument technique. The system was used to model the hydrological environment of the Liming River basin in Daqing City, China, in an effort to maintain the water quality in this basin at a level compatible with the status of Daqing City as a scenic resort. Operation of the system during the past 2 years has shown that an optimal allocation of water (including water released from an environmental reservoir to mitigate pollution events) could be achieved for the basin using the information gathered by the system; using mathematic models established for this system, the quantity of water released from the reservoir is adequate to improve the overall water environment. The results demonstrate that the system provides an effective approach to water quality control for environmental protection.  相似文献   

15.
Sediments in the Port Jackson estuary are polluted by a wide range of toxicants and concentrations are among the highest reported for any major harbor in the world. Sediment quality guidelines (SQGs), developed by the National Oceanographic and Atmospheric Administration (NOAA) in the United States are used to estimate possible adverse biological effects of sedimentary contaminants in Port Jackson to benthic animals. The NOAA guidelines indicate that Pb, Zn, DDD, and DDE are the most likely contaminants to cause adverse biological effects in Port Jackson. On an individual chemical basis, the detrimental effects due to these toxicants may occur over extensive areas of the harbor, i.e., about 40%, 30%, 15% and 50%, respectively. The NOAA SQGs can also be used to estimate the probability of sediment toxicity for contaminant mixtures by determining the number of contaminants exceeding an upper guideline value (effects range medium, or ERM), which predicts probable adverse biological effects. The exceedence approach is used in the current study to estimate the probability of sediment toxicity and to prioritize the harbour in terms of possible adverse effects on sediment-dwelling animals. Approximately 1% of the harbor is mantled with sediment containing more than ten contaminants exceeding their respective ERM concentrations and, based on NOAA data, these sediments have an 80% probability of being toxic. Sediment with six to ten contaminants exceeding their respective ERM guidelines extend over approximately 4% of the harbor and have a 57% probability of toxicity. These areas are located in the landward reaches of embayments in the upper and central harbor in proximity to the most industrialised and urbanized part of the catchment. Sediment in a further 17% of the harbor has between one and five exceedences and has a 32% probability of being toxic. The application of SQGs developed by NOAA has not been tested outside North America, and the validity of using them in Port Jackson has yet to be demonstrated. The screening approach adopted here is to use SQGs to identify contaminants of concern and to determine areas of environmental risk. The practical application and management implications of the results of this investigation are discussed.  相似文献   

16.
Nitrogen flows impacted by human activities in the Day-Nhue River Basin in northern Vietnam have been modeled using adapted material flow analysis (MFA). This study introduces a modified uncertainty analysis procedure and its importance in MFA. We generated a probability distribution using a Monte Carlo simulation, calculated the nitrogen budget for each process and then evaluated the plausibility under three different criterion sets. The third criterion, with one standard deviation of the budget value as the confidence interval and 68% as the confidence level, could be applied to effectively identify hidden uncertainties in the MFA system. Sensitivity analysis was conducted for revising parameters, followed by the reassessment of the model structure by revising equations or flow regime, if necessary. The number of processes that passed the plausibility test increased from five to nine after reassessment of model uncertainty with a greater model quality. The application of the uncertainty analysis approach to this case study revealed that the reassessment of equations in the aquaculture process largely changed the results for nitrogen flows to environments. The significant differences were identified as increased nitrogen load to the atmosphere and to soil/groundwater (17% and 41%, respectively), and a 58% decrease in nitrogen load to surface water. Thus, modified uncertainty analysis was considered to be an important screening system for ensuring quality of MFA modeling.  相似文献   

17.
The term “body of groundwater” represents a new administrative tool established by the water framework directive (WFD) in order to manage European groundwaters. Its practical application raises some difficulties due to unclear definitions and the large heterogeneity of European aquifers. In this work, a methodology is proposed to carry out the delineation of bodies of groundwater according to the requirements of the WFD. This methodology faces up to some of the major difficulties that can arise during the delineation, such as the identification of bodies of groundwater in multilayered aquifers, boundaries between superposed groundwater bodies, and delimitation in low permeability materials or in dismembered aquifers. In order to show its practical application, the proposed methodology is applied in a pilot Mediterranean river basin located in southern Spain. Results show that previous knowledge of the hydrogeological conditions is necessary to enable a correct delineation of groundwater bodies. Finally, alternative procedures are proposed for low permeability and small aquifers in order to reduce the number of groundwater bodies identified and simplify their overall management.  相似文献   

18.
Cyanobacterial blooms in Lake Taihu occurred at the end of April 2007 and had crucial impacts on the livelihood of millions of people living there. Excessive nutrients may promote bloom formation. Atmospheric nitrogen (N) and phosphorus (P) deposition appears to play an important role in algal bloom formation. Bulk deposition and rain water samples were collected respectively from May 1 to November 30, 2007, the period of optimal algal growth, to measure the bulk atmospheric deposition rate, wet deposition rate, and dry deposition rate for total nitrogen (TN; i.e., all species of nitrogen), and total phosphorus (TP; i.e., all species of phosphorus), in northern Lake Taihu, China. The trends of the bulk atmospheric deposition rate for TN and the wet deposition rate for TN showed double peaks during the observation period and distinct influence with plum rains and typhoons. Meanwhile, monthly bulk atmospheric deposition rates for TP showed little influence of annual precipitation. However, excessive rain may lead to high atmospheric N and P deposition rates. In bulk deposition samples, the average percentage of total dissolved nitrogen accounting for TN was 91.2% and changed little with time. However, the average percentage of total dissolved phosphorus accounting for TP was 65.6% and changed substantially with time. Annual bulk atmospheric deposition rates of TN and TP during 2007 in Lake Taihu were estimated to be 2,976 and 84 kg km−2 a−1, respectively. The results showed decreases of 34.4% and 78.7%, respectively, compared to 2002–2003. Annual bulk deposition load of TN for Lake Taihu was estimated at 6,958 t a−1 in 2007 including 4,642 t a−1 of wet deposition, lower than the values obtained in 2002–2003. This may be due to measures taken to save energy and emission control regulations in the Yangtze River Delta. Nevertheless, high atmospheric N and P deposition loads helped support cyanobacterial blooms in northern Lake Taihu during summer and autumn, the period of favorable algal growth.  相似文献   

19.
Spatio-temporal variations of biochemical oxygen demand (BOD) and total coliform (TC) in the Han River, Korea, were investigated in terms of concentration-based and mass loading-based approaches. Considering the river water quality criteria regulated by the Ministry of Environment in Korea, the tributaries linked to the mainstream of the Han River were found to be highly contaminated with respect to both BOD and TC and, in fact, most of the tributaries exceeded the maximum water quality criteria. To evaluate the pollution impact of tributaries on the mainstream, the monthly water quality monitoring data for six years (from 1995 to 2000) were collected from the Han River basin, and statistically analyzed using Pearson’s correlation coefficient. The results revealed that mass loading-based approach was superior to the concentration-based approach for effective Han River watershed management. Overall results supported that the mass loading-based approach associated with total maximum daily loads (TMDL) management would be a useful and suitable protocol in watershed management for improving the water quality of the Han River and protecting public health. Therefore, this study supporting TMDL management can be applicable to a wide array of contaminants and watershed settings in Korea.  相似文献   

20.
Since the 1970s, the water fluxes to the sea of the Yellow River have declined significantly. Based on data of precipitation, air temperature, the measured and “natural” river flow, the water diversion and consumption, and the areas of erosion and sediment control measures over the drainage basin, water fluxes to the sea of the Yellow River are studied in relation with the influences of changing climate and human activities. The Yellow River basin can be divided into different water source areas; multiple regression indicates that the variation in precipitation over different water source areas has different effect on water fluxes to the sea. In the period between 1970 and 1997, averaged air temperature over the whole Yellow River increased by about 1.0°C, from 16.5°C to 17.5°C, a factor that is negatively correlated with the water yield of the Yellow River. Water diversion and consumption has sharply increased and resulted in a significant decline in the water fluxes to the sea. Since the 1960s, erosion and sediment control measures have been practiced over the drainage basin. This factor, to a lesser degree, is also responsible for the decrease in water fluxes to the sea. A multiple regression equation has been established to estimate the change in water fluxes to the sea caused by the changes in precipitation, air temperature, water diversion and consumption, erosion, and sediment control measures, indicating that the contribution of water diversion and consumption to the variation in annual water flux to the sea is 41.3%, that of precipitation is 40.8%, that of temperature is 11.4%, and that of erosion and sediment control measures is 6.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号