首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Abstract

In this paper, the deterioration of catalysts in small, four-stroke, spark-ignition engines is described. The laboratory testing performed followed a proven test method that mimics the lifetime of a small air-cooled utility engine operating under normal field conditions. The engines used were single-cylinder, 6.5-hp, side-valve engines. These engines have a nominal 125-hr lifetime. The effectiveness of the catalysts was determined by testing exhaust emissions before and after the catalyst to determine the catalyst’s efficiency. This was done several times during the lifetime of the engines to determine the deterioration in the performance of the catalysts at lowering pollutant emissions. Additional testing was performed on the catalysts to determine wear patterns, contamination, and recoverable activity. The results indicate that considerable catalyst deterioration is occurring over the lifetime of the engine. The results reveal that soot buildup, poisons, and active surface loss appear to be the contributing factors to the deterioration. These results were determined after analyzing the exhaust emissions data, scanning electron microscope results analysis, and the impact of regeneration attempts. An ANOVA statistical analysis was performed, and it was determined that the emissions are also impacted, to some degree, by time and the engine itself.  相似文献   

2.
The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines’ regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90 to >99%) lower than pre-2007-technology engine emissions, and also substantially (46 to >99%) lower than the 2007-technology engine emissions characterized in the previous study.

Implications:?Heavy-duty on-highway diesel engines equipped with DOC/DPF/SCR/AMOX and fueled with ultra-low-sulfur diesel fuel produced lower emissions than the stringent 2010 emission standards established by the U.S. Environmental Protection Agency. They also resulted in significant reductions in a wide range of unregulated toxic emission compounds relative to older technology engines. The increased use of newer technology (2010+) diesel engines in the on-highway sector and the adaptation of such technology by other sectors such as nonroad, displacing older, higher emissions engines, will have a positive impact on ambient levels of PM, NOx, and volatile organic compounds, in addition to many other toxic compounds.  相似文献   

3.
As part of the Advanced Collaborative Emissions Study (ACES), regulated and unregulated exhaust emissions from four different 2007 model year U.S. Environmental Protection Agency (EPA)-compliant heavy-duty highway diesel engines were measured on an engine dynamometer. The engines were equipped with exhaust high-efficiency catalyzed diesel particle filters (C-DPFs) that are actively regenerated or cleaned using the engine control module. Regulated emissions of carbon monoxide, nonmethane hydrocarbons, and particulate matter (PM) were on average 97, 89, and 86% lower than the 2007 EPA standard, respectively, and oxides of nitrogen (NOx) were on average 9% lower. Unregulated exhaust emissions of nitrogen dioxide (NO2) emissions were on, average 1.3 and 2.8 times higher than the NO, emissions reported in previous work using 1998- and 2004-technology engines, respectively. However, compared with other work performed on 1994- to 2004-technology engines, average emission reductions in the range of 71-99% were observed for a very comprehensive list of unregulated engine exhaust pollutants and air toxic contaminants that included metals and other elements, elemental carbon (EC), inorganic ions, and gas- and particle-phase volatile and semi-volatile organic carbon (OC) compounds. The low PM mass emitted from the 2007 technology ACES engines was composed mainly of sulfate (53%) and OC (30%), with a small fraction of EC (13%) and metals and other elements (4%). The fraction of EC is expected to remain small, regardless of engine operation, because of the presence of the high-efficiency C-DPF in the exhaust. This is different from typical PM composition of pre-2007 engines with EC in the range of 10-90%, depending on engine operation. Most of the particles emitted from the 2007 engines were mainly volatile nuclei mode in the sub-30-nm size range. An increase in volatile nanoparticles was observed during C-DPF active regeneration, during which the observed particle number was similar to that observed in emissions of pre-2007 engines. However, on average, when combining engine operation with and without active regeneration events, particle number emissions with the 2007 engines were 90% lower than the particle number emitted from a 2004-technology engine tested in an earlier program.  相似文献   

4.
The expected use of catalytic converters on automobiles to meet the legislated automotive emission standards makes desirable a laboratory method that permits realistic testing of these catalysts. Such a method should be versatile enough to simulate a wide range of conditions which are applicable for catalysts designed to oxidize hydrocarbons and carbon monoxide, or to reduce nitric oxide, as the case may be. For this purpose, we have modified a pulse-flame combustor, based on a design by Meguerian. The output of this simulator very closely resembles engine exhaust with respect to composition, space velocity, and contaminants. The durability of a monolithic or pelleted catalyst can be evaluated by long term exposure to the simulated exhaust and by periodic measurement of the catalyst activity as a function of temperature. The apparatus and the range of conditions that can be achieved are described in detail. Poisoning of a Pt catalyst by fuels containing low concentrations of lead was studied with this exhaust simulator and compared with results obtained in engine dynamometer tests; a satisfactory correlation of catalyst deterioration was established.  相似文献   

5.
For the past several years, EPA has been measuring particulate emissions from a variety of heavy-duty diesel engines through contracts with Southwest Research Institute. Particulate emissions samples have been collected using an exhaust splitter to divert a fraction of the engine exhaust into a standard dilution tunnel. A small fraction of the diluted exhaust from the tunnel is pulled through a filter from which particulate mass and, in some cases, organic content of the particulate is determined. This paper discusses the sampling system and gives particulate emission factors that have been computed from truck and bus fuel consumption data as well as average truck and bus speed data from New York and Los Angeles (freeway and nonfreeway usage). Average particulate emission test results (steady state tests) for 2-stroke engines were 4.74 g/kg fuel and for 4-stroke engines were 2.64 g/kg fuel. Using average particulate emissions results, a particulate emission factor range of 0.8 to 1.3 g/km was computed. Nationwide diesel particulate emissions were calculated to be 88,000 metric tons per year.  相似文献   

6.
Cars with catalysts show a significant increase in exhaust emissions at engine start. These extra emissions are expressed as the difference, over a particular driving cycle, between emissions generated when the vehicle is started and when the engine or the catalyst are stably warm. Experimental data, suitable for the assessment of cold start emissions, are usually available for completely cooled engines. Most results originate from tests at ambient temperature of 20–30 °C and with an engine stop time of at least 12 h. On the other hand, data including shorter stop times are very rare.The present work investigates the influence of exhaust emissions with shorter stop times, i.e. 0.5, 1, 2 and 4 h. The main goal consists in the comparison of emissions exhausted by recent car models (Euro-4) against emissions assessed in the framework of a similar campaign 10 years ago (FAV1/Euro-1 vehicles).A short survey of the current extra emission estimation methods is presented in this paper. It is shown that some methods are not suited for providing correct estimations in all cases. We discuss the fact that different estimation methods can show either similar or completely different results depending on the evolution behaviour of the hot emissions.Due to new technologies, e.g. the catalyst and improved engine control algorithms, emissions have been considerably reduced over the last 10 years. In this study it is determined how the relative extra emissions, i.e. extra emissions relative to the extra emissions for the standard stop time of 12 h, expressed as a function of stop time have changed. We may claim with caution that for medium stop times of 0.5–4 h the average relative extra emissions of Euro-4 vehicles are well below the average of the relative extra emissions of Euro-1 vehicles.  相似文献   

7.
The objective of this study was to characterize exhaust emissions from a series of handheld, 2-stroke small engines. A total of 23 new and used engines from model years 1981–2003 were studied; these engines spanned three phases of emission control (pre-control, phase-1, phase-2). Measured emissions included carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), hydrocarbons (HC), fine particulate matter (PM2.5), and sulfur dioxide (SO2). Emissions reductions in CO (78%) and HC (52%) were significant between pre-control and phase-2 engines. These reductions can be attributed to improvements in engine design, reduced scavenging losses, and implementation of catalytic exhaust control. Total hydrocarbon emissions were strongly correlated with fuel consumption rates, indicating varying degrees of scavenging losses during the intake/exhaust stroke. The use of a reformulated gasoline containing 10% ethanol resulted in a 15% decrease in HC and a 29% decrease in CO emissions, on average. Increasing oil content of 2-stroke engine fuels results in a substantial increase of PM2.5 emissions as well as smaller increases in HC and CO emissions. Results from this study enhance existing emission inventories and appear to validate predicted improvements to ambient air quality through implementation of new phase-2 handheld emission standards.  相似文献   

8.
A fuel-based assessment of off-road diesel engine emissions   总被引:1,自引:0,他引:1  
The use of diesel engines in off-road applications is a significant source of nitrogen oxides (NOx) and particulate matter (PM10). Such off-road applications include railroad locomotives, marine vessels, and equipment used for agriculture, construction, logging, and mining. Emissions from these sources are only beginning to be controlled. Due to the large number of these engines and their wide range of applications, total activity and emissions from these sources are uncertain. A method for estimating the emissions from off-road diesel engines based on the quantity of diesel fuel consumed is presented. Emission factors are normalized by fuel consumption, and total activity is estimated by the total fuel consumed. Total exhaust emissions from off-road diesel equipment (excluding locomotives and marine vessels) in the United States during 1996 have been estimated to be 1.2 x 10(9) kg NOx and 1.2 x 10(8) kg PM10. Emissions estimates published by the U.S. Environmental Protection Agency are 2.3 times higher for both NOx and exhaust PM10 emissions than estimates based directly on fuel consumption. These emissions estimates disagree mainly due to differences in activity estimates, rather than to differences in the emission factors. All current emission inventories for off-road engines are uncertain because of the limited in-use emissions testing that has been performed on these engines. Regional- and state-level breakdowns in diesel fuel consumption by off-road mobile sources are also presented. Taken together with on-road measurements of diesel engine emissions, results of this study suggest that in 1996, off-road diesel equipment (including agriculture, construction, logging, and mining equipment, but not locomotives or marine vessels) was responsible for 10% of mobile source NOx emissions nationally, whereas on-road diesel vehicles contributed 33%.  相似文献   

9.
In-use emissions from vehicles using heavy-duty diesel engines can be significantly higher than the levels obtained during engine certification. These higher levels may be caused by a combination of degradation of engine components, poor engine maintenance, degradation or failure of emissions after-treatment devices, and engine and emissions system tampering. A direct comparison of in-use vehicle emissions with engine certification levels, however, is not possible without removing an engine from the vehicle in order to perform engine dynamometer emissions testing. The goal of this research was to develop a chassis test procedure that mimics the engine performance, and as such the expected emissions levels, from the engine certification emissions test prescribed in the U.S. Code of Federal Regulations. Emissions measurements were taken from two engines during testing on an engine dynamometer using the transient heavy-duty Federal Test Procedure (FTP). Additionally, each engine was installed in an appropriate vehicle, and emissions measurements were taken using a chassis dynamometer while employing a vehicle driving schedule intended to match closely the instantaneous torque and speed schedule of the engine FTP. Engine and chassis testing was performed with the engines in stock (unmodified) condition as well as in several modes to simulate either tampered or poorly maintained conditions. The use of a chassis test as a predictive tool for determining whether an engine in a vehicle would pass the engine certification test has proven to be worthwhile. Analysis of the data shows that identification of chassis-mounted engines with NOx emissions above certification levels is possible by employing engine-specific correction factors. In the case of PM emissions, significant data scatter allowed only the identification of gross PM emitters. Engine tampering and poor maintenance can raise PM and NOx emissions, and these increases can be correctly identified by a chassis test. Analysis of chassis and engine CO and HC emissions did not reveal a strong enough correlation to warrant the use of the chassis test for emissions screening of these two pollutants.  相似文献   

10.
The body of information presented in this paper is directed towards engineers in the field of environmental sciences involved in measuring and/or evaluating the emissions from a variety of diesel engines or vehicles. This paper summarizes recent data obtained by EPA on identification and quantification of different emissions (i.e. characterization) from a variety of diesel engines.

Extensive work has been done comparing emissions from some light duty diesel and gasoline passenger cars. The work on the diesel vehicles was expanded to include tests with five different diesel fuels to determine how fuel composition affects emissions. This work showed that use of a poorer quality fuel frequently made emissions worse. The investigation of fuel composition continued with a project in which specific fuel parameters were systematically varied to determine their effect on emissions. EPA is presently testing a variety of fuels derived from coal and oil shale to determine their effects on emissions.

EPA has also tested a heavy duty Volvo diesel bus engine designed to run on methanol and diesel fuel, each injected through its own injection system. The use of the dual fuel resulted in a reduction in particulates and NO x but an increase in HC and CO compared to a baseline Volvo diesel engine running on pure diesel fuel.

Finally, some Ames bioassay tests have been performed on samples from the diesel passenger cars operated on various fuels and blends. An increase in Ames test response (mutagenicity) was seen when the higher aromatic blend was used and also when a commercial cetane improver was used. Samples from the Volvo diesel bus engine fueled with methanol and diesel fuel showed that use of a catalyst increased the Ames response.  相似文献   

11.
ABSTRACT

The use of diesel engines in off-road applications is a significant source of nitrogen oxides (NOx) and particulate matter (PM10). Such off-road applications include railroad locomotives, marine vessels, and equipment used for agriculture, construction, logging, and mining. Emissions from these sources are only beginning to be controlled. Due to the large number of these engines and their wide range of applications, total activity and emissions from these sources are uncertain. A method for estimating the emissions from off-road diesel engines based on the quantity of diesel fuel consumed is presented. Emission factors are normalized by fuel consumption, and total activity is estimated by the total fuel consumed.

Total exhaust emissions from off-road diesel equipment (excluding locomotives and marine vessels) in the United States during 1996 have been estimated to be 1.2 × 109 kg NOx and 1.2 x 108 kg PM10. Emissions estimates published by the U.S. Environmental Protection Agency are 2.3 times higher for both NOx and exhaust PM10 emissions than estimates based directly on fuel consumption. These emissions estimates disagree mainly due to differences in activity estimates, rather than to differences in the emission factors. All current emission inventories for off-road engines are uncertain because of the limited in-use emissions testing that has been performed on these engines. Regional- and state-level breakdowns in diesel fuel consumption by off-road mobile sources are also presented. Taken together with on-road measurements of diesel engine emissions, results of this study suggest that in 1996, off-road diesel equipment (including  相似文献   

12.
Small utility engines represent an important contribution to the emissions inventory and have been subjected to increasingly stringent regulations in recent years. For this project, a Tanaka two-stroke engine was tested in its original condition and with a modified fuel/oil injection system. The modified fuel/oil injection system applied to the Tanaka two-stroke engine resulted in significant emissions reductions of approximately 52% for carbon monoxide (CO), 70% for total hydrocarbons (THC), 70% for particulate matter (PM), and 67% for the regulated THC + nitrogen oxides metric. This technology met the California Air Resources Board's 2000 model-year regulations for all pollutants, with the exception of slightly higher PM emissions. Two additional two-stroke engines were tested under a new condition and after at least 100 hr of use to examine the effects of deterioration on in-use, two-stroke engines. For one engine, CO and PM emissions more than tripled after 162 hr of operation in the field, with smaller increases also observed for THC (20%). For the second engine, significant repairs were required throughout the 100 operating hours, which counteracted the effects of the emissions deterioration and resulted in lower CO and THC emissions.  相似文献   

13.
ABSTRACT

In-use emissions from vehicles using heavy-duty diesel engines can be significantly higher than the levels obtained during engine certification. These higher levels may be caused by a combination of degradation of engine components, poor engine maintenance, degradation or failure of emissions after-treatment devices, and engine and emissions system tampering. A direct comparison of in-use vehicle emissions with engine certification levels, however, is not possible without removing an engine from the vehicle in order to perform engine dynamometer emissions testing. The goal of this research was to develop a chassis test procedure that mimics the engine performance, and as such the expected emissions levels, from the engine certification emissions test prescribed in the U.S. Code of Federal Regulations. Emissions measurements were taken from two engines during testing on an engine dynamometer using the transient heavy-duty Federal Test Procedure (FTP). Additionally, each engine was installed in an appropriate vehicle, and emissions measurements were taken using a chassis dynamometer while employing a vehicle driving schedule  相似文献   

14.
Societal and governmental pressures to reduce diesel exhaust emissions are reflected in the existing and projected future heavy-duty certification standards of these emissions. Various factors affect the amount of emissions produced by a heterogeneous charge diesel engine in any given situation, but these are poorly quantified in the existing literature. The parameters that most heavily affect the emissions from compression ignition engine-powered vehicles include vehicle class and weight, driving cycle, vehicle vocation, fuel type, engine exhaust aftertreatment, vehicle age, and the terrain traveled. In addition, engine control effects (such as injection timing strategies) on measured emissions can be significant. Knowing the effect of each aspect of engine and vehicle operation on the emissions from diesel engines is useful in determining methods for reducing these emissions and in assessing the need for improvement in inventory models. The effects of each of these aspects have been quantified in this paper to provide an estimate of the impact each one has on the emissions of diesel engines.  相似文献   

15.
Abstract

Societal and governmental pressures to reduce diesel exhaust emissions are reflected in the existing and projected future heavy-duty certification standards of these emissions. Various factors affect the amount of emissions produced by a heterogeneous charge diesel engine in any given situation, but these are poorly quantified in the existing literature. The parameters that most heavily affect the emissions from compression ignition engine-powered vehicles include vehicle class and weight, driving cycle, vehicle vocation, fuel type, engine exhaust aftertreatment, vehicle age, and the terrain traveled. In addition, engine control effects (such as injection timing strategies) on measured emissions can be significant. Knowing the effect of each aspect of engine and vehicle operation on the emissions from diesel engines is useful in determining methods for reducing these emissions and in assessing the need for improvement in inventory models. The effects of each of these aspects have been quantified in this paper to provide an estimate of the impact each one has on the emissions of diesel engines.  相似文献   

16.
Abstract

In Taiwan, a continuous increase in the number of motorcycles has made exhaust pollution one of the major emission sources of air pollutants. The regular testing program carried out by the Republic of China Environmental Protection Agency was designed to reduce air pollutant emissions by enhancing maintenance and repair. During the execution period, abundant testing results were accumulated to discuss pollutant emissions from motorcycles. Exhaust testing data of motorcycles in Taipei City from 1996 to 2005 were chosen as the basic data to survey changes in motorcycle exhaust. Effects of motorcycle age and mileage on exhaust pollution were studied. The introduction of advanced emission standards enhances the elimination of high-emitting motorcycles. The testing data indicate that the testing rate rose from approximately 50 to 70% and the failure rate changed from approximately 15 to 10%. The operation cycles of two-stroke motorcycles make them high-emitting vehicles. Concentrations of carbon monoxide and hydrocarbons are higher in two-stroke motorcycle exhaust than that in four-stroke motorcycles. In contrast, the concentration of carbon dioxide produced from complete oxidation processes is lower in exhaust from two-stroke motorcycles. Therefore, failure rates of two-stroke motorcycles are higher than those of four-stroke motorcycles and were also observed to deactivate more easily. On the basis of analytical results of testing data, we found that failure rates show a gradually increasing trend for motorcycles older than 3 yr or used for mileages greater than 10,000 km, and failure rates are highly correlated to the age/mileage of motorcycles. We reason that the accumulation of age or mileage means accumulating usage time of engines and emission control systems. Concentrations of pollutant emissions would increase because of engine wear and emission control system deactivation. After discussing changes of failure rates and pollutant emissions, some suggestions are proposed to improve the testing rate and effectiveness of regular testing.  相似文献   

17.
Aircraft emissions contribute to the increased atmospheric burden of particulate matter (PM) that plays an important role in air quality, human health, visibility, contrail formation and climate change. Sampling and measurement of modern aircraft emissions at the engine exhaust plane (EEP) for engine and fuel certification remains challenging, as no agency-certified method is available. In this paper we summarize the results of three recent field studies devoted to investigate the consistency and applicability of “extractive” and “optical remote-sensing” (ORS) technologies in the sampling and measurement of gaseous and PM emitted by a number of military aircraft engines. Three classes of military engines were investigated; these include T56, TF33, and T700 & T701C types of engines, which consume 70–80% of the military aviation fuel each year. JP-8 and Fischer–Tropsch (FT)-derived paraffinic fuels were used to study the effect of fuels. It was found that non-volatile particles in the engine emissions were in the 20 nm range for the low power condition of new helicopter engines to 80 nm for the high power condition of legacy engines. Elemental analysis indicated little metals were present on particles, while most of the materials on the exhaust particles were carbon and sulfate based. Alkanes, carbon monoxide, carbon dioxide, nitrogen oxides, sulfur dioxide, formaldehyde, ethylene, acetylene and propylene were detected. The last five species were most noticeable only under low engine power. The emission indices calculated based on the ORS data deviate significantly from those based on the extractive data. Nevertheless, the ORS techniques were useful in the sense that it provided non-intrusive real-time detection of species in the exhaust plume, which warrants further development. The results obtained in this program help validate sampling methodology and measurement techniques used for non-volatile PM aircraft emissions as described in the SAE AIR6037 (2009).  相似文献   

18.
In the present work, the effect of engine operating conditions on its exhaust emissions and on catalytic converter operation is studied. A 4-cylinder OPEL 1.6 l internal combustion engine equipped with a hydraulic brake dynamometer was used in all the experiments. For exhaust emissions treatment a typical three-way catalyst was used. The highest hydrocarbon and carbon monoxide engine-out emissions were observed at engine power 2–4 HP. These emissions were decreased as the engine power was increased up to 20 HP. Among the various compounds detected in exhaust emissions, the following ones were monitored at engine and catalyst outlet: methane, hexane, ethylene, acetaldehyde, acetone, benzene, toluene and acetic acid. The concentration of each compound in the catalytic converter effluent was in the range 45–132, 5–12, 10–125, 15–22, 3–7, 3–12, 2–9, 0–6 ppm, respectively. After the required temperature for catalyst operation had been achieved, carbon monoxide tailpipe emissions were dramatically decreased and the observed hydrocarbon conversions were also high. Methane was the most resistant compound to oxidation while ethylene was the most degradable compound over the catalyst. The order from the easiest to the most resistant to oxidation compound was: Alkene>Aromatic>Aldehyde>Ketone>Alkane.  相似文献   

19.
Partially speciated hydrocarbon (HC) emissions data from several small utility engines, as measured by a Fourier Transform Infrared analyzer, are presented. The engines considered have nominal horsepower ratings between 3.7 and 9.3 kW. Both side-valve and overhead-valve engines are studied, and four different fuels are used in the engines. The results indicate that the small HCs present in the exhaust tend to be in the form of either methane or unsaturated HCs. Other small alkanes, such as ethane and propane, are present in only relatively small concentrations. In terms of ozone formation potential, the HCs in the form of methane will lead to little ozone, but the distribution of the C2 and C3 species is not ideal from an ozone reduction stand-point. It is also found that the presence of oxygen in the fuels appears to lead to somewhat more complete combustion, although the effects are not large. Finally, the overhead-valve engines appear to have lower HC emissions than side-valve engines, which is primarily due to higher operating A/F ratios and the engine geometry.  相似文献   

20.
In the present work, the effect of ethanol addition to gasoline on regulated and unregulated emissions is studied. A 4-cylinder OPEL 1.6 L internal combustion engine equipped with a hydraulic brake dynamometer was used in all the experiments. For exhaust emissions treatment a typical three-way catalyst was used. Among the various compounds detected in exhaust emissions, the following ones were monitored at engine and catalyst outlet: methane, hexane, ethylene, acetaldehyde, acetone, benzene, 1,3-butadiene, toluene, acetic acid and ethanol. Addition of ethanol in the fuel up to 10% w/w had as a result an increase in the Reid vapour pressure of the fuel, which indicates indirectly increased evaporative emissions, while carbon monoxide tailpipe emissions were decreased. For ethanol-containing fuels, acetaldehyde emissions were appreciably increased (up to 100%), especially for fuel containing 3% w/w ethanol. In contrast, aromatics emissions were decreased by ethanol addition to gasoline. Methane and ethanol were the most resistant compounds to oxidation while ethylene was the most degradable compound over the catalyst. Ethylene, methane and acetaldehyde were the main compounds present at engine exhaust while methane, acetaldehyde and ethanol were the main compounds in tailpipe emissions for ethanol fuels after the catalyst operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号