首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
总结介绍了目前国内外以聚偏氟乙烯(PVDF)材料制备阳离子交换膜的研究动态和最新进展,PVDF阳离子交换膜制备的主要方法为接枝法和共混法,接枝法是在PVDF表面生成自由基增长点,共混制膜法是将PVDF与其它无机纳米颗粒或聚合物共混制得离子交换膜.具体介绍了这两种方法的原理和制备实例.多项研究表明对PVDF材料进行等离子体照射、化学处理、臭氧活化接枝以及与无机纳米颗粒、其它聚合物共混处理等方法可制得性能优异的阳离子交换膜,应用前景广阔.  相似文献   

2.
介绍了几种新型离子交换设备,对其结构、使用特性、应用范围作了描述,特别是对"八五"研制的活动式自动化离子交换设备作了较为详细的阐述。并通过对这些新型设备的分析,指出离子交换设备的发展趋势。   相似文献   

3.
光活性二氧化钛膜的制备与应用   总被引:76,自引:0,他引:76  
自80年代末以来,光活性膜由于诱人的应用前景而成为环境领域的研究热点。本文主要介绍溶胶-凝胶法等制备二氧化钛膜的方法及其并根据基于二氧化钛膜的光催化技术的特点简单讨论了光活性二氧化钛膜的可能应用领域。  相似文献   

4.
在光/电/化学协同催化反应器中,以离子交换膜代替盐桥连通阴、阳两室,以30 mg/L的甲基红溶液为目标降解物,考察了不同连通方式、初始pH和阴极电位对反应的影响. 结果表明:甲基红在阳离子膜型反应器中的表观反应速率常数明显高于盐桥型及阴离子交换膜型反应器,这是由于阳离子交换膜可以及时有效地将阳极室中产生的H+转移至阴极室中参与阴极反应. 甲基红在阳离子膜型反应器中的去除率随溶液初始pH的增高而降低,随阴极电位的增加先增大后减小,最佳反应条件为pH=2.0~3.0,阴极电位(-Ec)=0.6 V.   相似文献   

5.
研究了阴离子交换膜对阴离子型聚丙烯酰胺的吸附规律和影响因素.采用静态吸附的方法,测定了不同温度、不同浓度的阴离子型部分水解聚丙烯酰胺(HPAM)溶液在阴离子交换膜上的吸附量、吸附平衡时间,考察了初始HPAM溶液浓度、pH值以及溶液中其他离子浓度对其在离子交换膜上吸附的影响,目的是阐明阴离子交换膜对HPAM分子的吸附动力学过程、探讨各影响因素对吸附过程的影响.结果表明,阴离子型部分水解聚丙烯酰胺在阴离子交换膜上有明显的吸附作用,但在阳离子交换膜上吸附量几乎为0;阴离子交换膜对聚合物的吸附平衡时间随聚合物溶液初始浓度的增大而延长,且不同浓度、不同温度下的吸附过程动力学特征都能很好地遵循准二级动力学模型;303、308和313 K温度下,阴离子交换膜对聚合物的等温吸附可用Freundlich等温吸附模型很好地拟合,相关系数R2均达到0.99以上,温度越高,吸附量越大;聚合物溶液pH值和离子浓度对吸附效果有显著影响:pH=6时,吸附量达到最大值;吸附量随着离子浓度的增加而增大.  相似文献   

6.
通过静态、动态吸附试验,研究了可用于处理活性炭生产废渣方法的适用性。结果表明,盐酸介质中,锌能被D-354阴离子交换树脂选择吸附;又可以去离子水有效地洗脱。本方法简易可行。操作周期短,所用试剂大多是非消耗性的。  相似文献   

7.
为了缓解油田污水对离子交换膜的污染程度,使电渗析技术更好地用于油田污水处理,从而实现含聚合物采油污水的良性循环,针对含聚采油污水对离子交换膜的污染情况进行了考察.实验考察了相同工况下,淡室溶液电导率下降到0.9mS·cm-1所经历的时间、平均电流和膜面电阻等参数的变化,确定了离子交换膜的污染状况,分别考察了含聚合物采油污水中的固体悬浮物、聚合物和原油对离子交换膜性能的影响.实验结果表明,部分固体悬浮物集聚在阴离子交换膜和阳离子交换膜表面甚至内部从而造成膜污染,但相对于阴膜,悬浮物对阳膜性能的影响更严重;聚合物可聚集在阴膜表面,对于阴膜的透过性有一定的影响;原油在阴膜表面甚至内部形成致密的油膜,对其造成严重污染,但对阳膜的影响较小.利用酸碱液以及非离子表面活性剂(AEO-9)作为清洗剂,并添加少量的助洗剂(如三聚磷酸钠),阴膜过滤能力可以得到有效恢复.  相似文献   

8.
近二十年来发展起来的光催化技术可利用太阳光能对水体中的多种有机污染物进行降解.这符合可持续发展的长远需要,具有诱人的发展前景。光催化技术利用可再生的清洁资源,氧化能力强.适用于广谱有机物,能使难被一般氧化剂氧化、又难生物降解的污染物降解.是当前太阳能利用及水污染控制方面开辟的前沿领域.在治理环境污染方面具有明显的发展优势。本文以溶胶-凝胶法、金属有机化学气相淀积、煅烧沉淀法等多种方法制备光活性二氧化钛膜。  相似文献   

9.
试验分别研究了反渗透膜Duraslick RO2540和RE2540-TE对APT冶炼离子交换废水的处理效果。研究结果表明,在最佳压力条件下,Duraslick RO2540膜对Cl-的截留率为91.4%,产水率为16.9%;RE2540-TE膜对Cl-的截留率为93.4%,产水率为17.2%。在压力为1.7MPa,温度为25℃时,浓缩实验结果表明,产水中Cl-浓度和膜的截留率随着时间变化而逐渐增加,但膜通量逐渐减小,且RE2540-TE膜通量下降幅度较大。清洗后,RE2540-TE膜通量损失达到6%,而Duraslick RO2540膜通量恢复幅度为98%。  相似文献   

10.
11.
聚醚砜是一种性能优异的纳滤膜材料,具有耐热、耐压、耐燃、耐辐射、抗酸、抗氧化、抗溶剂、生物相容性好等优点,应用前景十分广阔。文章重点介绍了相转化法、共混法、荷电法、复合法等聚醚砜纳滤膜制备方法,以及表面涂覆、材料共混等物理改性方法和膜材料本体改性、膜表面接枝改性等化学改性方法,阐述研究现状,并予以评价,同时提出探索新的制膜及改性方法,降低膜成本,提高制膜过程中的环境友好性,是聚醚砜纳滤膜制备及改性的重要发展方向。  相似文献   

12.
介绍了采用独创制膜液三元体系添加剂,以及相应发展的干喷-湿纺制膜工艺条件,研制出具有高透水性能,无大孔缺陷,孔分布狭窄,截留性能优异的聚砜训空纤维超滤膜。膜结构为双排指状孔结构,膜内外表面具有相近的孔分布皮层,可用于内压或外压超滤操作。  相似文献   

13.
新型单室无质子膜微生物燃料电池性能研究   总被引:4,自引:1,他引:4  
采用不锈钢金属丝阳极构建了管状单室无质子交换膜空气阴极微生物燃料电池(MFC),并以葡萄糖为唯一电子供体,研究MFC的性能.在室温下,初始ρ(CODCr)为496 mg/L,外接电阻为1 000 Ω时,该MFC可以连续产电,最高电压达235.11 mV,开路电压为461.00 mV,内电阻约2 820 Ω.实验条件下测得该MFC的最大功率密度为137.1 mW/m2,库仑效率为32.4%.采用该MFC进行了啤酒酿造废水处理对比实验,在进水ρ(CODCr)为15 900 mg/L,停留时间为96 h下,MFC对废水CODCr的去除率达40%~55%,比厌氧生物处理效率高5%~10%.表明MFC技术可以在获得电能的同时,强化有机废水的生物处理过程.  相似文献   

14.
膜萃取处理水溶液中镉、锌离子的工艺   总被引:3,自引:0,他引:3  
以P204+正庚烷为萃取剂,将中空纤维膜萃取技术用于处理水溶液中镉离子、锌离子.研究了两相流速、初始浓度及溶液pH等因素对传质系数和萃取率的影响,计算了膜萃取器的传质单元高度(HTU)w,同时还研究了萃取剂的再生问题.实验结果表明,在低浓度下(<500 mg/L),平衡分配系数较大,传质阻力主要是在水相;在初始浓度较高时(<2000mg/L),由于分配系数较小,三项传质阻力均不可忽略;在初始浓度很高时(>2000mg/L),传质由有机相和膜相阻力控制.实验还表明通过膜器串联可以实现萃取剂的再生.对于稀溶液(<200mg/L),中空纤维膜萃取可以使水溶液中金属离子浓度减小2个数量级,通过计算,中空纤维膜萃取器(HTU)w在15~30cm之间,大大低于传统的萃取塔.  相似文献   

15.
刘百仓  姚雪  周先敏  邬晓超 《环境科学》2011,32(6):1837-1842
以生活污水为底物,碳棒作电极,构建H型瓶式微生物燃料电池(microbial fuel cells,MFCs),研究了阴极电极面积和膜面积对电池产电能力的影响.阳极以厌氧污泥作接种体,两室分隔物使用阳离子交换膜(cation exchange membrane,CEM),阳极不使用中介体,阴极使用无催化剂的普通碳电极....  相似文献   

16.
镍作为合金化元素得到广泛应用,不锈钢占全球镍消费量的大约一半,因价格昂贵,故镍的回收有很大的意义.采用单阴膜电解法对含镍废水中的镍离子进行电沉积回收,研究膜种类、电流密度、温度、电解时间、搅拌速度等因素对镍离子去除效果.实验结果表明:在电流密度为60 A/m2,温度为40℃,pH为3.5,电解时间为5h,搅拌速度为300 r/min的条件下,镍离子去除率可达到85.3%,阴极电流效率为56.8%.  相似文献   

17.
氧化吹脱-离子交换处理2-萘酚生产废水研究   总被引:4,自引:0,他引:4  
详细分析了2-萘酚生产废水特性,采用前置吹脱氧化,离子交换组合工艺处理并讨论了过程影响因素.实验结果表明,废水有较强的酸度和缓冲能力,在常温、流速1BV/h和正常pH条件下,COD去除率大于97%,可以回收98%以上的萘磺酸盐,采用该处理方案可有效处理2-萘酚生产废水,并可做到中间体回收、水回用,具有较高的经济和技术可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号