首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modeling biodiversity dynamics in countryside landscapes   总被引:1,自引:0,他引:1  
Pereira HM  Daily GC 《Ecology》2006,87(8):1877-1885
The future of biodiversity hinges to a great extent on the conservation value of countryside, the growing fraction of Earth's surface heavily influenced by human activities. How many species, and which species, can persist in such landscapes (and analogous seascapes) are open questions. Here we explore two complementary theoretical frameworks to address these questions: species-area relationships and demographic models. We use the terrestrial mammal fauna of Central America to illustrate the application of both frameworks. We begin by proposing a multi-habitat species-area relationship, the countryside species-area relationship, to forecast species extinction rates. To apply it, we classify the mammal fauna by affinity to native and human-dominated habitats. We show how considering the conservation value of countryside habitats changes estimates derived from the classic species-area approach We also examine how the z value of the species-area relationship affects extinction estimates. Next, we present a framework for assessing the relative vulnerability of species to extinction in the countryside, based on the Skellam model of population dynamics. This model predicts the minimum area of contiguous native habitat required for persistence of a species, which we use as an indicator of vulnerability to habitat change. To apply the model, we use our habitat affinity classification of mammals and we estimate life-history parameters by species and habitat type. The resulting ranking of vulnerabilities is significantly correlated with the World Conservation Union (IUCN) Red List assessment.  相似文献   

2.
Smallholder agriculture is the main driver of deforestation in the western Amazon, where terrestrial biodiversity reaches its global maximum. Understanding the biodiversity value of the resulting mosaics of cultivated and secondary forest is therefore crucial for conservation planning. However, Amazonian communities are organized across multiple forest types that support distinct species assemblages, and little is known about smallholder impacts across the range of forest types that are essential for sustaining biodiversity. We addressed this issue with a large-scale field inventory of birds (point counts) and trees (transects) in primary forest and smallholder agriculture in northern Peru across 3 forest types that are key for Amazonian biodiversity. For birds smallholder agriculture supported species richness comparable to primary forest within each forest type, but biotic homogenization across forest types resulted in substantial losses of biodiversity overall. These overall losses are invisible to studies that focus solely on upland (terra firma) forest. For trees biodiversity losses in upland forests dominated the signal across all habitats combined and homogenization across habitats did not exacerbate biodiversity loss. Proximity to forest strongly predicted the persistence of forest-associated bird and tree species in the smallholder mosaic, and because intact forest is ubiquitous in our study area, our results probably represent a best-case scenario for biodiversity in Amazonian agriculture. Land-use planning inside and outside protected areas should recognize that tropical smallholder agriculture has pervasive biodiversity impacts that are not apparent in typical studies that cover a single forest type. The full range of forest types must be surveyed to accurately assess biodiversity losses, and primary forests must be protected to prevent landscape-scale biodiversity loss.  相似文献   

3.
The native vascular plant flora of the Republic of Singapore has suffered the extinction of 594 out of a total 2277 species. These represent local, not global, species extinctions. Coastal habitats, including mangroves, have lost 39% of their species, while inland forests have last 29%. Epiphytic species (62% loss) appear particularly prone to extinction, which is reflected in a similar disposition exhibited by the Orchidaceae. Deforestation and disturbance have been the main cause of plant species extinction in Singapore. The rich mangrove epiphyte flora has been totally exterminated, and a number of tree species are reduced to populations of a few mature individuals. Many more species continue to survive than the species-area relationship would predict given the 99.8% loss of primary forest. This is interpreted as a result of the failure of equilibrium to be achieved yet in the remnant forest fragments, even after more than a century of isolation. Singapore's secondary forests appear to accrete plant diversity very slowly, even if contiguous with primary forest areas. We conclude that remnant fragments of primary tropical forest, even of very small size, can play a major role in the conservation of tropical biodiversity. The patterns of extinction observed in Singapore indicate that coastal and estuarine sites are in greatest demand for development and therefore must be given high priority for conservation despite their somewhat lower biodiversity. Epiphyte and orchid diversity appear to be very good indicators of the degree of disturbance suffered by a habitat in the humid tropics.  相似文献   

4.
Analysis of the biological traits (e.g., feeding mode and size) that control how organisms interact with their environment has been used to identify environmental drivers of, or impacts on, species and to explain the importance of biodiversity loss. Biological trait analysis (BTA) could also be used within risk-assessment frameworks or in conservation planning if one understands the groups of traits that predict the sensitivity of habitats or communities to specific human activities. Deriving sensitivities from BTA should extend sensitivity predictions to a variety of habitats, especially those in which it would be difficult to conduct experiments (e.g., due to depth or risk to human life) and to scales beyond the norm of most experiments. We used data on epibenthos, collected via video along transects at 27 sites in a relatively pristine region of the seafloor, to determine scales of natural spatial variability of derived sensitivities and the degree to which predictions of sensitivity differed among 3 stressors (extraction of species, sedimentation, and suspended sediments) or were affected by underlying community compositions. We used 3 metrics (weighted abundance, abundance of highly sensitive species, and number of highly sensitive species) to derive sensitivity to these stressors and simulated the ability of these metrics to detect a range of stressor intensities. Regardless of spatial patterns of sensitivities across the sampled area, BTA distinguished differences in sensitivity to different stressors. The BTA also successfully separated differences in community composition from differences in sensitivity to stressors. Conversely, the 3 metrics differed widely in their ability to detect simulated impacts and likely reflect underlying ecological processes, suggesting that use of multiple metrics would be informative for spatial planning and allocating conservation priorities. Our results suggest BTA could be used as a first step in strategic prioritization of protected areas and as an underlying layer for spatial planning.  相似文献   

5.
Deforestation is a primary driver of biodiversity change through habitat loss and fragmentation. Stream biodiversity may not respond to deforestation in a simple linear relationship. Rather, threshold responses to extent and timing of deforestation may occur. Identification of critical deforestation thresholds is needed for effective conservation and management. We tested for threshold responses of fish species and functional groups to degree of watershed and riparian zone deforestation and time since impact in 75 streams in the western Brazilian Amazon. We used remote sensing to assess deforestation from 1984 to 2011. Fish assemblages were sampled with seines and dip nets in a standardized manner. Fish species (n = 84) were classified into 20 functional groups based on ecomorphological traits associated with habitat use, feeding, and locomotion. Threshold responses were quantified using threshold indicator taxa analysis. Negative threshold responses to deforestation were common and consistently occurred at very low levels of deforestation (<20%) and soon after impact (<10 years). Sensitive species were functionally unique and associated with complex habitats and structures of allochthonous origin found in forested watersheds. Positive threshold responses of species were less common and generally occurred at >70% deforestation and >10 years after impact. Findings were similar at the community level for both taxonomic and functional analyses. Because most negative threshold responses occurred at low levels of deforestation and soon after impact, even minimal change is expected to negatively affect biodiversity. Delayed positive threshold responses to extreme deforestation by a few species do not offset the loss of sensitive taxa and likely contribute to biotic homogenization.  相似文献   

6.
Abstract: Individual species may be useful as indicators of biodiversity if an association exists between the presence of a species and another component of biodiversity. We evaluated 40 species of birds and small mammals, including 11 species of conservation concern, as potential indicators of species richness and species composition in southern California coastal sage scrub habitats. This habitat, which is the target of large-scale conservation planning, has been greatly reduced by human development and supports many plants and animals of conservation concern. We asked whether there is an association between the presence of a potential indicator species and the species richness and composition of the bird or small-mammal community in which it is found. We used point counts and live-trapping to quantify the distribution of birds and small mammals, respectively, at 155 points in 16 sites located in three counties. Of the few species we found associated with species richness, some were associated with higher species richness and others with lower richness, and species of conservation concern were not more frequently associated with species richness than were common species. Ordination analysis revealed a geographic gradient in coastal sage scrub bird and small-mammal species composition across southern California, and 18 of the species we evaluated were associated with the composition of the bird and small-mammal community in which they were found. Our results suggest that efforts to conserve bird and small-mammal biodiversity in coastal sage scrub should not focus exclusively on rare species or on locations with the highest species richness, but instead should focus on a diverse suite of species that are representative of the range of variation in communities found in coastal sage scrub habitats.  相似文献   

7.
Habitat Loss and Changes in the Species-Area Relationship   总被引:4,自引:0,他引:4  
Abstract: The species-area relationship (SAR) has been used successfully to predict extinction from extent of habitat reduction. These extinction estimates assume that species have uniformly distributed range requirements and a minimum abundance level required for persistence; how many species are lost depends solely on how much habitat is removed, not on where it is removed. We consider another limiting case in which range requirements, rather than abundances, determine extinctions. We used a new method for constructing SARs based on assumptions about geographic ranges of species. Our results show that habitat destruction can change the SAR and consequently the number of species predicted to be lost due to habitat destruction. Our method generates SARs that vary in shape according to the specific distributions of geographic range and occupancy but that have the common feature of being described by a power law with an exponent of <1. When the geographic range of species was included in the SAR, the way habitat was lost became important. Although the SAR before habitat destruction is often used to predict species loss after habitat destruction, assumptions must be clearly stated. To predict the damage caused by habitat loss with our model, it is necessary to know the fraction of aggregated species, the distribution of geographic ranges, the form of habitat destruction, and the sampling protocol. The remaining theoretical challenge is to develop a full theory that links abundance and range.  相似文献   

8.
Efforts to anticipate threats to biodiversity take the form of species richness predictions (SRPs) based on simple correlations with current climate and habitat area. We review the major approaches that have been used for SRP, species-area curves and climate envelopes, and suggest that alternative research efforts may provide more understanding and guidance for management. Extinction prediction suffers from a number of limitations related to data and the novelty of future environments. We suggest additional attention to (1) identification of variables related to biodiversity that are diagnostic and potentially more predictable than extinction, (2) constraints on species dispersal and reproduction that will determine population persistence and range shifts, including limited sources or potential immigrants for many regions, and (3) changes in biotic interactions and phenology. We suggest combinations of observational and experimental approaches within a framework available for ingesting heterogeneous data sources. Together, these recommendations amount to a shift in emphasis from prediction of extinction numbers to identification of vulnerabilities and leading indicators of change, as well as suggestions for surveillance tools needed to evaluate important variables and the experiments likely to provide most insight.  相似文献   

9.
Determining which vegetation types organisms perceive similarly and classifying these types into groups that function as similar habitats are necessary steps toward expanding the focus of conservation strategies from single species to ecosystems. Therefore, the methods used to determine these habitat classifications are crucial to the successful design and implementation of these conservation strategies. Typically, this process has been accomplished through best professional judgement. We used quantitative techniques to group vegetation types into habitats based on the occurrence of breeding wildlife species ( n = 420) in Oregon. After calculating faunal similarities among all regional vegetation types ( n = 130), we used cluster analysis to group vegetation types into wildlife habitats. We classified the original 130 vegetation types into 30 wildlife habitat types that we believe function similarly. We tested this classification to assess whether vegetation types could be correctly classified into habitat types based on wildlife species composition. Discriminant analysis correctly classified 95% of the vegetation types into their wildlife habitat types, strengthening our confidence in this approach. This approach for classifying habitat types allows consistent development of conservation strategies at coarse resolutions and aids in identifying vegetation types where additional biodiversity surveys are needed. Finally, this approach can be refined continuously as the precision of vegetation mapping and our understanding of organism-habitat associations improve.  相似文献   

10.
Ecosystem function and resilience are compromised when habitats become fragmented due to land‐use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape‐scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post‐agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10–160 years with ≥80% canopy cover and in landscapes with 0‐17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local‐ and landscape‐scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.  相似文献   

11.
Present biodiversity comprises the evolutionary heritage of Earth's epochs. Lineages from particular epochs are often found in particular habitats, but whether current habitat decline threatens the heritage from particular epochs is unknown. We hypothesized that within a given region, humans threaten specifically habitats that harbor lineages from a particular geological epoch. We expect so because humans threaten environments that dominated and lineages that diversified during these epochs. We devised a new approach to quantify, per habitat type, diversification of lineages from different epochs. For Netherlands, one of the floristically and ecologically best-studied regions, we quantified the decline of habitat types and species in the past century. We defined habitat types based on vegetation classification and used existing ranking of decline of vegetation classes and species. Currently, most declining habitat types and the group of red-listed species are characterized by increased diversification of lineages dating back to Paleogene, specifically to Paleocene-Eocene and Oligocene. Among vulnerable habitat types with large representation of lineages from these epochs were sublittoral and eulittoral zones of temperate seas and 2 types of nutrient-poor, open habitats. These losses of evolutionary heritage would go unnoticed with classical measures of evolutionary diversity. Loss of heritage from Paleocene-Eocene became unrelated to decline once low competition, shade tolerance, and low proportion of non-Apiaceae were accounted for, suggesting that these variables explain the loss of heritage from Paleocene-Eocene. Losses of heritage from Oligocene were partly explained by decline of habitat types occupied by weak competitors and shade-tolerant species. Our results suggest a so-far unappreciated human threat to evolutionary heritage: habitat decline threatens descendants from particular epochs. If the trends persist into the future uncontrolled, there may be no habitats within the region for many descendants of evolutionary ancient epochs, such as Paleogene.  相似文献   

12.
13.
Assessing Risks to Biodiversity from Future Landscape Change   总被引:11,自引:0,他引:11  
We examined the impacts of possible future land development patterns on the biodiversity of a landscape. Our landscape data included a remote sensing derived map of the current habitat of the study area and six maps of future habitat distributions resulting from different land development scenarios. Our species data included lists of all bird, mammal, reptile, and amphibian species in the study area, their habitat associations, and area requirements for each. We estimated the area requirements using home ranges, sampled population densities, or genetic area requirements that incorporate dispersal distances. Our measures of biodiversity were species richness and habitat abundance. We calculated habitat abundance in two ways. First, we computed the total habitat area for each species in each landscape. Second, we calculated the number of habitat units for each species in each landscape by dividing the size of each habitat patch in the landscape by the area requirement and summing over all patches. Species richness was based on presence of habitat. Species became extinct in the landscape if they had no habitat area or no habitat units, respectively. We then computed ratios of habitat abundance in each future landscape to habitat abundance in the present for each species. We also computed the ratio of future to present species richness. We then calculated summary statistics across all species. Species richness changed little from present to future. There were distinctly greater risks to habitat abundance in landscapes that extrapolated from present trends or zoning patterns, however, as opposed to landscapes in which land development activities followed more constrained patterns. These results were stable when tested using Monte Carlo simulations and sensitivity tests on the area requirements. We conclude that this methodology can begin to discriminate the effects of potential changes in land development on vertebrate biodiversity.  相似文献   

14.
Habitat loss, trophic collapse, and the decline of ecosystem services   总被引:8,自引:0,他引:8  
The provisioning of sustaining goods and services that we obtain from natural ecosystems is a strong economic justification for the conservation of biological diversity. Understanding the relationship between these goods and services and changes in the size, arrangement, and quality of natural habitats is a fundamental challenge of natural resource management. In this paper, we describe a new approach to assessing the implications of habitat loss for loss of ecosystem services by examining how the provision of different ecosystem services is dominated by species from different trophic levels. We then develop a mathematical model that illustrates how declines in habitat quality and quantity lead to sequential losses of trophic diversity. The model suggests that declines in the provisioning of services will initially be slow but will then accelerate as species from higher trophic levels are lost at faster rates. Comparison of these patterns with empirical examples of ecosystem collapse (and assembly) suggest similar patterns occur in natural systems impacted by anthropogenic change. In general, ecosystem goods and services provided by species in the upper trophic levels will be lost before those provided by species lower in the food chain. The decrease in terrestrial food chain length predicted by the model parallels that observed in the oceans following overexploitation. The large area requirements of higher trophic levels make them as susceptible to extinction as they are in marine systems where they are systematically exploited. Whereas the traditional species-area curve suggests that 50% of species are driven extinct by an order-of-magnitude decline in habitat abundance, this magnitude of loss may represent the loss of an entire trophic level and all the ecosystem services performed by the species on this trophic level.  相似文献   

15.
Wright JT  Gribben PE  Byers JE  Monro K 《Ecology》2012,93(6):1262-1268
Invasive habitat-forming ecosystem engineers modify the abiotic environment and thus represent a major perturbation to many ecosystems. Because native species often persist in these invaded habitats but have no shared history with the ecosystem engineer, the engineer may impose novel selective pressure on native species. In this study, we used a phenotypic selection framework to determine whether an invasive habitat-forming ecosystem engineer (the seaweed Caulerpa taxifolia) selects for different phenotypes of a common co-occurring native species (the bivalve Anadara trapezia). Compared to unvegetated habitat, Caulerpa habitat has lower water flow, lower dissolved oxygen, and sediments are more silty and anoxic. We determined the performance consequences of variation in key functional traits that may be affected by these abiotic changes (shell morphology, gill mass, and palp mass) for Anadara transplanted into Caulerpa and unvegetated habitat. Both linear and nonlinear performance gradients in Anadara differed between habitats, and these gradients were stronger in Caulerpa compared to unvegetated sediment. Moreover, in Caulerpa alternate phenotypes performed well, and these phenotypes were different from the dominant phenotype in unvegetated sediment. By demonstrating that phenotype-performance gradients differ between habitats, we have highlighted a role for Caulerpa as an agent of selection on native species.  相似文献   

16.
Abstract:  Researchers predict that new infrastructure development will sharply increase the rate and extent of deforestation in the Brazilian Amazon. There are no predictions, however, of which species it will affect. We used a spatially explicit model that predicts the location of deforestation in the Brazilian Amazon by 2020 on the basis of historical patterns of deforestation following infrastructure development. We overlaid the predicted deforested areas onto maps of bird ranges to estimate the amount of habitat loss within species ranges. We also estimated the amount of habitat loss within modified ecoregions, which were used as surrogates for areas of bird endemism. We then used the extent of occurrence criterion of the World Conservation Union to predict the future conservation status of birds in the Brazilian Amazon. At current rates of development, our results show that at least 16 species will qualify as threatened or will lose more than half of their forested habitat. We also identified several subspecies and isolated populations that would also qualify as threatened. Most of the taxa we identified are not currently listed as threatened, and the majority are associated with riverine habitats, which have been largely ignored in bird conservation in Amazonia. These habitats and the species they hold will be increasingly relevant to conservation as river courses are altered and hydroelectric dams are constructed in the Brazilian Amazon.  相似文献   

17.
Growing threats to biodiversity and global alteration of habitats and species distributions make it increasingly necessary to consider evolutionary patterns in conservation decision making. Yet, there is no clear‐cut guidance on how genetic features can be incorporated into conservation‐planning processes, despite multiple molecular markers and several genetic metrics for each marker type to choose from. Genetic patterns differ between species, but the potential tradeoffs among genetic objectives for multiple species in conservation planning are currently understudied. We compared spatial conservation prioritizations derived from 2 metrics of genetic diversity (nucleotide and haplotype diversity) and 2 metrics of genetic isolation (private haplotypes and local genetic differentiation) in mitochondrial DNA of 5 marine species. We compared outcomes of conservation plans based only on habitat representation with plans based on genetic data and habitat representation. Fewer priority areas were selected for conservation plans based solely on habitat representation than on plans that included habitat and genetic data. All 4 genetic metrics selected approximately similar conservation‐priority areas, which is likely a result of prioritizing genetic patterns across a genetically diverse array of species. Largely, our results suggest that multispecies genetic conservation objectives are vital to creating protected‐area networks that appropriately preserve community‐level evolutionary patterns.  相似文献   

18.
Examining resource management needs at the landscape level has become critical for the conservation of ecosystems and the preservation of species. Geographic information systems (GIS) that allow for the integration of spatially referenced databases are a powerful tool that can be used by resource managers to examine potential impacts and develop strategies for regional planning. We applied a landscape-level approach to examine the potential impacts of citrus development on habitats and species in southwest Florida. We developed GIS models for panthers, Sandhill Cranes, and wading birds that reflect changes in potential habitats under a series of development scenarios. The models indicate that, under the maximum development scenario, 63% of potential panther habitat, 66% of potential Sandhill Crane habitat, and 67% and 33% of potential wading bird nesting and foraging habitats could be lost. In addition, the habitat that would remain would be severely fragmented. Several key areas were identified that will be critical to the continued existence of these species and to maintenance of regional biodiversity. The areas identified are habitats not represented on the existing public lands concentrated in the southern portion of the study area and/or that provide connections among existing natural areas.  相似文献   

19.
Detailed empirical models predicting both species occurrence and fitness across a landscape are necessary to understand processes related to population persistence. Failure to consider both occurrence and fitness may result in incorrect assessments of habitat importance leading to inappropriate management strategies. We took a two-stage approach to identifying critical nesting and brood-rearing habitat for the endangered Greater Sage-Grouse (Centrocercus urophasianus) in Alberta at a landscape scale. First, we used logistic regression to develop spatial models predicting the relative probability of use (occurrence) for Sage-Grouse nests and broods. Secondly, we used Cox proportional hazards survival models to identify the most risky habitats across the landscape. We combined these two approaches to identify Sage-Grouse habitats that pose minimal risk of failure (source habitats) and attractive sink habitats that pose increased risk (ecological traps). Our models showed that Sage-Grouse select for heterogeneous patches of moderate sagebrush cover (quadratic relationship) and avoid anthropogenic edge habitat for nesting. Nests were more successful in heterogeneous habitats, but nest success was independent of anthropogenic features. Similarly, broods selected heterogeneous high-productivity habitats with sagebrush while avoiding human developments, cultivated cropland, and high densities of oil wells. Chick mortalities tended to occur in proximity to oil and gas developments and along riparian habitats. For nests and broods, respectively, approximately 10% and 5% of the study area was considered source habitat, whereas 19% and 15% of habitat was attractive sink habitat. Limited source habitats appear to be the main reason for poor nest success (39%) and low chick survival (12%). Our habitat models identify areas of protection priority and areas that require immediate management attention to enhance recruitment to secure the viability of this population. This novel approach to habitat-based population viability modeling has merit for many species of concern.  相似文献   

20.
Abstract:  We measured the net progress of land reform in achieving a national policy goal for biodiversity conservation in the context of ongoing clearing of native vegetation and additions of land to a highly nonrepresentative (residual) reserve network, interior South Island, New Zealand. We used systematic conservation-planning approaches to develop a spatially explicit index of risk of biodiversity loss (RBL). The index incorporated information from national data sets that describe New Zealand's remaining indigenous land cover, legal protection, and land environments and modeled risk to biodiversity on the basis of stated assumptions about the effects of past habitat loss and legal protection. The index identified irreplaceable and vulnerable native habitats in lowland environments as the most at risk of biodiversity loss, and risk was correlated with the density of threatened plant records. To measure achievement, we used changes in the index that reflected gains made and opportunity costs incurred by legal protection and privatization. Application of the index to measure the difference made by land reform showed it had caused a net increase in the risk of biodiversity loss because most land vulnerable to habitat modification and rich in threatened plant species was privatized and land at least risk of biodiversity loss was protected. The application revealed that new high-elevation reserves did little to mitigate biodiversity decline, that privatization of low-elevation land further jeopardized the most vulnerable biodiversity in lowland native habitats, and that outcomes of land reform for biodiversity deteriorated over time. Further development of robust achievement measures is needed to encourage more accountable biodiversity conservation decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号