首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colombian Andean forests cover nine million ha. These forests provide an informative case study of mountain deforestation in South America. They are surrounded by tropical lowland forests, and they host most of the country’s human population. This study evaluates the relative importance of human and natural variables in deforestation of the Colombian Andes between 1985 and 2005 using remote sensing methods, geographic information system (GIS) technology and general linear models (GLM). The following factors affected the annual deforestation in the region positively: forced population migration, unsatisfied basic needs, economic activity, crops, pastures, illicit crops, protected areas and slope. Factors having a negative effect were tenure of small land parcels, road density, water scarcity and mean temperature. The results of this study also provide insight into the differences between the dynamics of lowland forests and those of montane forests. Montane forests had a lower annual rate of deforestation than did forests in the lowlands. Socio-economic, demographic and biophysical factors explain overall deforestation rates for the region. However, when altitude variation is taken into account, intraregional differences in the Andes become evident. Deforestation processes differ between those areas adjacent to the high Andean valleys where most of the country’s population concentrates and those areas in the tropical lowlands north, west and east of the Andean chain. Differences between lowland and montane forest dynamics are due partly to the accessibility of forests and differences in wealth and economic activities. In montane forests, deforestation is positively influenced by economic activity, the presence of protected areas and higher slopes. Deforestation in montane forests is negatively affected by tenure of small land parcels, road density, water scarcity and mean temperature. Lowland deforestation rates are more closely related to rural population, pasture percentage, crops, protected areas and temperature. Our results suggest that montane forests appear to be in a more advanced stage of colonisation and economic development, whereas lowland forests are closer to the colonisation frontier and to rapidly growing colonist populations. This study reinforces the idea that although the most common tropical drivers of deforestation are found in the Andes, these drivers operate differently when intraregional differences are considered.  相似文献   

2.
There has been a concerted effort by the international scientific community to understand the multiple causes and patterns of land-cover change to support sustainable land management. Here, we examined biophysical suitability, and a novel integrated index of “Economic Pressure on Land” (EPL) to explain land cover in the year 2000, and estimated the likelihood of future land-cover change through 2050, including protected area effectiveness. Biophysical suitability and EPL explained almost half of the global pattern of land cover (R 2 = 0.45), increasing to almost two-thirds in areas where a long-term equilibrium is likely to have been reached (e.g. R 2 = 0.64 in Europe). We identify a high likelihood of future land-cover change in vast areas with relatively lower current and past deforestation (e.g. the Congo Basin). Further, we simulated emissions arising from a “business as usual” and two reducing emissions from deforestation and forest degradation (REDD) scenarios by incorporating data on biomass carbon. As our model incorporates all biome types, it highlights a crucial aspect of the ongoing REDD + debate: if restricted to forests, “cross-biome leakage” would severely reduce REDD + effectiveness for climate change mitigation. If forests were protected from deforestation yet without measures to tackle the drivers of land-cover change, REDD + would only reduce 30 % of total emissions from land-cover change. Fifty-five percent of emissions reductions from forests would be compensated by increased emissions in other biomes. These results suggest that, although REDD + remains a very promising mitigation tool, implementation of complementary measures to reduce land demand is necessary to prevent this leakage.  相似文献   

3.
Climate change is expected to cause shifts in species distributions worldwide, threatening their viability due to range reductions and altering their representation in protected areas. Biodiversity hotspots might be particularly vulnerable to climate change because they hold large numbers of species with small ranges which could contract even further as species track their optimal habitat. In this study, we assessed the extent to which climate change could cause distribution shifts in threatened and range-restricted birds in Colombia, a megadiverse region that includes the Tropical Andes and Tumbes-Choco-Magdalena hotspots. To evaluate how climate change might influence species in this region, we developed species distribution models using MAXENT. Species are projected to lose on average between 33 and 43 % of their total range under future climate, and up to 18 species may lose their climatically suitable range completely. Species whose suitable climate is projected to disappear occur in mountainous regions, particularly isolated ranges such as the Sierra Nevada de Santa Marta. Depending on the representation target considered, between 46 and 96 % of the species evaluated may be adequately represented in protected areas. In the future, the fraction of species potentially adequately represented is projected to decline to 30–95 %. Additional protected areas may help to retain representativeness of protected areas, but monitoring of species projected to have the largest potential declines in range size will be necessary to assess the need of implementing active management strategies to counteract the effects of climate change.  相似文献   

4.
The present study used temporal remote sensing data for 1990, 2001 and 2006 to assess spatio-temporal patterns of forest cover changes in Shiwalik range of the Himalaya, Dehradun forest division. Forests are innately associated to human well-being. However, with the increasing anthropogenic activities, deforestation has increased. Quantitative change analysis of the forest cover for the past two decades provides valuable insight into the forest conservation vis-à-vis anthropogenic activities in the region. Spatio-temporal datasets along with biotic and abiotic variables provide opportunities to model the forest cover change further. The present study investigates forest cover change and predicts status of forest cover in the Dehradun forest division. Land Change Modeller (LCM) was used to predict status of forest cover for 2010 and 2015 using current disturbance scenarios. Comparing actual LULC of 2006 with the predicted LULC of 2006 validated change prediction model and agreement was 61.03%. The forested areas are getting degraded due to anthropogenic activities, but deforestation/degradation does not contribute much in expanding urban area. Agricultural areas and fallow lands are the main contributors to increased urban area. The study demonstrates the potential of geospatial tools to understand spatio-temporal forest cover change and generate the future scenarios.  相似文献   

5.

Mountain forest areas are key for providing a wide range of ecosystem services and are hot spots for land use change processes, in particular, increase in forest cover at the expense of mountain pastures and meadows. Mountain forest systems in eastern and western Europe have likely similar future socio-economic situations but significantly different socio-economic history. Using a scenario-based land use modelling approach (Dyna-CLUE framework) we model three scenarios (trend, liberalisation and self-sufficiency) of future land use in the Polish Carpathians and the Swiss Alps, focussing on forest cover change. We find that forest cover increase can be expected to continue in European mountainous regions under all likely scenarios, limited only by relatively strict policy interventions. Biophysical factors, rather than socio-economic ones, are key for defining the suitability for, and therefore likely locations of future forest cover, but land use legacy plays a very important role in the spatial patterns of future forest cover, particularly in eastern Europe.

  相似文献   

6.
Regional Environmental Change - On a global scale, protected areas (PAs) are one of the main tools used for biodiversity conservation. However, accelerated biodiversity loss and lack of social...  相似文献   

7.
Recent climate change is already affecting both ecosystems and the organisms that inhabit them, with mountains and their associated biota being particularly vulnerable. Due to the high conservation value of mountain ecosystems, reliable science-based information is needed to implement additional conservation efforts in order to ensure their future. This paper examines how climate change might impact on the distribution of the main alpine and subalpine vegetation in terms of losses of suitable area in the Oriental Pyrenees. The algorithm of maximum entropy (Maxent) was used to relate current environmental conditions (climate, topography, geological properties) to present data for the studied vegetation units, and time and space projections were subsequently carried out considering climate change predictions for the years 2020, 2050 and 2080. All models predicted rising altitude trends for all studied vegetation units. Moreover, the analysis of future trends under different climate scenarios for 2080 suggests an average loss in potential ranges of 92.3–99.9 % for alpine grasslands, 76.8–98.4 % for subalpine (and alpine) scrublands and 68.8–96.1 % for subalpine forest. The drastic reduction in the potential distribution areas for alpine grasslands, subalpine scrublands and Pinus uncinata forests highlights the potential severity of the effects of climate change on vegetation in the highest regions of the Pyrenees. Thus, alpine grasslands can be expected to become relegated to refuge areas (summit areas), with their current range being taken over by subalpine scrublands. Furthermore, subalpine forest units will probably become displaced and will occupy areas that currently present subalpine scrub vegetation.  相似文献   

8.
Identifying the patterns of land cover change (LCC) and their main proximate causes and underlying driving forces in tropical rainforests is an urgent task for designing adequate management and conservation policies. The Lachuá region maintains the largest lowland rainforest remnant in Guatemala, but it has been highly deforested and fragmented during the last decades. This is the first paper to describe the patterns of LCC and the associated political and socioeconomic factors in the region over the last 50 years. We estimated spatial and temporal variations in LCC from a random sample of 24 1-km2 landscape plots during three time periods (1962–1987, 1987–2006, and 2006–2011) and evaluated how they were related to some important proximate causes and underlying driving forces. During the study period, 55 % of forest cover disappeared, at an annual rate of 1.6 %. The deforestation rate increased from 0.6 % (during the first study period) to 2.8 % (last period), but there was very high spatial variation. Landscape plots located outside conservation areas and close to roads lost between 80 and 100 % of forest cover, whereas the forest cover in landscapes located within protected areas remained intact during the study period. The establishment of new human settlements, roads, and annual crops was the main proximate cause during the first period, but during the second and third periods, open areas were mainly created to establish cattle pastures. Because ~75 % of forest cover has disappeared outside the protected areas, the conservation of this biodiversity hot spot will depend on the expansion of protected areas, and the promotion of forest regrowth and alternative biodiversity-friendly land uses in the landscape matrix.  相似文献   

9.
Mountain forests provide a multitude of services beyond timber production. In a large European project (ARANGE—Advanced multifunctional forest management in European mountain RANGEs), the impacts of climate change and forest management on ecosystem services (ES) were assessed. Here, we provide background information about the concept that was underlying the ARANGE project, and its main objectives, research questions, and methodological approaches are presented. The project focused on synergies and trade-offs among four key ES that are relevant in European mountain ranges: timber production, carbon storage, biodiversity conservation, and protection from gravitational natural hazards. We introduce the concept and selection of case study areas (CSAs) that were used in the project; we describe the concept of representative stand types that were developed to provide a harmonized representation of forest stands and forest management in the CSAs; we explain and discuss the climate data and climate change scenarios that were applied across the seven CSAs; and we introduce the linker functions that were developed to relate stand- and landscape-scale forest features from model simulations to ES provisioning in mountain forests. Finally, we provide a brief overview of the Special Feature, with an attempt to synthesize emerging response patterns across the CSAs.  相似文献   

10.
Global tropical deforestation continues to occur at high rates despite political attention. National-level forest baselines are being established all over the world to guide the implementation of several policy mechanisms. However, identifying the direct and indirect drivers of deforestation and understanding the complexity of their interlinkages are often difficult. We first analyzed deforestation between 1990 and 2005 at the national level and found an annual deforestation rate of 0.62 %. Next, we performed separate analyses for four natural regions in Colombia and found annual deforestation rates between 0.42 and 1.92 %. Using general linear models, we identified several direct causes and underlying factors influencing deforestation at the national level: rural population density, cattle, protected areas, and slope. Significant differences in deforestation rates and causes were found across regions. In the Caribbean region, drivers of loss are urban population, unsatisfied basic needs, slope, and precipitation and four land use variables (illicit crops, pastures, cattle, and fires). In the Orinoco region, crops are the main driver of forest loss, and in the Amazonian region, deforestation is primarily due to fires related to the colonization front. Policy mechanisms will have to take into account regional patterns to successfully balance development and forest preservation in Colombia.  相似文献   

11.
The southern Yucatán has been identified as a deforestation hot spot. Land-change studies document the extent of forest loss at a regional scale, and case studies provide insights into the drivers of deforestation at the household level. Those studies have paid minimal attention to sub-regional analysis, especially to discrete land-management units above the household level. This analysis of upland forest change addresses the range of variation in deforestation among 96 ejidos (communal lands) and the Calakmul Biosphere Reserve, the two dominant land-tenure and land-management units in the region. Satellite imagery, census, and land-tenure data are used to establish the extent and location of deforestation patterns, and multivariate techniques are employed to identify biophysical and socioeconomic variables that explain such patterns. Results show that, for the 1984–1993 period, deforestation in the southern Yucatán was not as prevalent as implied by its hot spot designation. Three clusters of deforestation are identified. A logistic regression analysis establishes that size of forest holdings, population growth, and location in the precipitation gradient correlate with ejidos that experienced higher deforestation rates than the rest of the land-tenure units. For the 1993–2000 period, conservation programs and changes in the economic context of this “hollow frontier” contributed to reduce deforestation rates and extent. This analysis illustrates the spatio-temporal heterogeneity of much tropical forest change and caution that it should bring to simple formulations of modeling this change and prescribing policies to control it.  相似文献   

12.
长江流域国家级保护地数量庞大、保护类型多样,为了实现对长江流域自然资源的整体保护和管理的目的,从全域尺度分析其空间分布特征是梳理长江国家公园廊道构建的重要基础。通过数理统计与ArcGIS空间分析,结合中国自然地理表征和人文地理表征,对长江流域现有8类共计996处国家级保护地空间的分布特征进行了研究,结果表明:(1)长江流域国家级保护地总体呈集聚分布,并形成三江源区域、三江并流区域、川西高山高原区域、秦岭中段区域、渝西盆地区域、环洞庭湖区域、环鄱阳湖区域、黄山区域、环太湖区域9个集聚区;(2)长江流域国家级保护地主要集中在中切割高山区和中下游低山丘陵平原区,覆盖了河网密布、水资源丰富、植物种类繁多、土壤肥沃、可达性较高、人口密度适中及经济发展水平较高的东部和中部区域。基于其国家保护地空间分布特征,提出构建“长江源头—入海口”重要保护节点、“洞庭湖—鄱阳湖—巢湖—太湖”重要保护片区、“武当山—华釜山—大凉山、巫山—武陵山—药山”重要保护带的“三重要”模式与“国家公园先行区—国家级保护地聚集区—自然、社会、经济优势区—原生动植物本底”的“四层次”体系相结合的长江国家公园廊道空间策略  相似文献   

13.
Forests in lowland Bolivia suffer from severe deforestation caused by different types of agents and land use activities. We identify three major proximate causes of deforestation. The largest share of deforestation is attributable to the expansion of mechanized agriculture, followed by cattle ranching and small-scale agriculture. We utilize a spatially explicit multinomial logit model to analyze the determinants of each of these proximate causes of deforestation between 1992 and 2004. We substantiate the quantitative insights with a qualitative analysis of historical processes that have shaped land use patterns in the Bolivian lowlands to date. Our results suggest that the expansion of mechanized agriculture occurs mainly in response to good access to export markets, fertile soil, and intermediate rainfall conditions. Increases in small-scale agriculture are mainly associated with a humid climate, fertile soil, and proximity to local markets. Forest conversion into pastures for cattle ranching occurs mostly irrespective of environmental determinants and can mainly be explained by access to local markets. Land use restrictions, such as protected areas, seem to prevent the expansion of mechanized agriculture but have little impact on the expansion of small-scale agriculture and cattle ranching. The analysis of future deforestation trends reveals possible hotspots of future expansion for each proximate cause and specifically highlights the possible opening of new frontiers for deforestation due to mechanized agriculture. Whereas the quantitative analysis effectively elucidates the spatial patterns of recent agricultural expansion, the interpretation of long-term historic drivers reveals that the timing and quantity of forest conversion are often triggered by political interventions and historical legacies.  相似文献   

14.

Explorations of future land use change are important to understand potential conflicts between competing land uses, trade-offs associated with particular land change trajectories, and the effectiveness of policies to steer land systems into desirable states. Most model-based explorations and scenario studies focused on conversions in broad land use classes, but disregarded changes in land management or focused on individual sectors only. Using the European Union (EU) as a case study, we developed an approach to identifying typical combinations of land cover and management changes by combining the results of multimodel simulations in the agriculture and forest sectors for four scenarios from 2000 to 2040. We visualized land change trajectories by mapping regional hotspots of change. Land change trajectories differed in extent and spatial pattern across the EU and among scenarios, indicating trajectory-specific option spaces for alternative land system outcomes. In spite of the large variation in the area of change, similar hotspots of land change were observed among the scenarios. All scenarios indicate a stronger polarization of land use in Europe, with a loss of multifunctional landscapes. We analyzed locations subject to change by comparing location characteristics associated with certain land change trajectories. Results indicate differences in the location conditions of different land change trajectories, with diverging impacts on ecosystem service provisioning. Policy and planning for future land use needs to account for the spatial variation of land change trajectories to achieve both overarching and location-specific targets.

  相似文献   

15.
The current state and phytodiversity of mountain steppes in Sverdlovsk oblast have been evaluated, involving an inventory of several botanical and botanical-geomorphological natural landmarks in the steppe landscape. New growth localities of rare plant species have been discovered. Scientific and natureconservation significance of the surveyed mountain steppe areas has been demonstrated. A set of informative indices has been used to identify the key protection sites of steppe vegetation. Four sites are recommended for inclusion in the system of specially protected areas with the status of natural landmarks.  相似文献   

16.
To protect biodiversity and improve environmental conditions, China has invested billions of dollars in reforestation and payments for ecosystem service programs. Here, we examine the Sloping Land Conversion Program, the largest such program in the world and found that after 13 years of implementation at our study site, it has had negative impacts on natural tropical forests. GIS and remote sensing techniques revealed that both natural forests and natural shrub and grasslands were replaced by non-native monocultural plantations on Hainan Island, China, a key tropical biodiversity hotspot. Under current Chinese policy, these plantations are classified simply as “forests”, with the assumption that they are equivalent to natural forests. This lack of a distinction in forest quality has led to substantial deforestation and plantation expansion, including encroachment into protected areas on Hainan. Additional social and economic drivers of these changes were identified by examining the participants in this program and their actions. Without a new ecologically based definition of forests and new goals for reforestation, such programs designed to improve ecosystem services, and forest quality may actually threaten remaining natural forests and other vegetation types in Hainan and in other areas of mainland China.  相似文献   

17.

Local, regional, and global processes affect deforestation and land-use changes in the Brazilian Amazon. Characteristics are: direct conversions from forest to pasture; regional processes of indirect land-use change, described by the conversion of pastures to cropland, which increases the demand for pastures elsewhere; and teleconnections, fueled by the global demands for soybeans as animal fodder. We modeled land-use changes for two scenarios Trend and Sustainable Development for a hot spot of land-use change along the BR-163 highway in Mato Grosso and Pará, Brazil. We investigated the differences between a coupled modeling approach, which incorporates indirect land-use change processes, and a noncoupled land-use model. We coupled the regional-scale LandSHIFT model, defined for Mato Grosso and Pará, with a subregional model, alucR, covering a selected corridor along the BR-163. The results indicated distinct land-use scenario outcomes from the coupled modeling approach and the subregional model quantification. We found the highest deforestation estimates returned from the subregional quantification of the Trend scenario. This originated from the strong local dynamics of past deforestation and land-use changes. Land-use changes exceeded the demands estimated at regional scale. We observed the lowest deforestation estimates at the subregional quantification of the Sustainable Development story line. We highlight that model coupling increased the representation of scenario outcomes at fine resolution while providing consistency across scales. However, distinct local dynamics were explicitly captured at subregional scale. The scenario result pinpoints the importance of policies to aim at the cattle ranching sector, to increase land tenure registration and enforcement of environmental laws.

  相似文献   

18.
This paper assesses the relative importance of socioeconomic factors linked to fire occurrence through the simulation of future land use/land cover (LULC) change scenarios in the Madrid region (Spain). This region is a clear example of the socioeconomic changes that have been occurring over recent decades in the European Mediterranean as well as their impact on LULC and fire occurrence. Using the LULC changes observed between 1990 and 2006 as a reference, future scenarios were run up to 2025 with the conversion of land use and its effects model. Simultaneously, the relationship between LULC arrangement (interfaces) and historical fire occurrence was calculated using logistic regression analysis and used to quantify changes in future fire occurrence due to projected changes in LULC interfaces. The results revealed that it is possible to explain the probability of fire occurrence using only variables obtained from LULC maps, although the explanatory power of the model is low. In this context, border areas between some LULC types are of particular interest (i.e., urban/forest, grassland/forest and agricultural/forest interfaces). Results indicated that expected LULC changes in Euro-Mediterranean regions, particularly given the foreseeable increase in the wildland–urban interface, will substantially increase fire occurrence (up to 155 %). This underlines the importance of future LULC scenarios when planning fire prevention measures.  相似文献   

19.
In this paper, we investigate how mountain communities perceive and adapt to climatic and environmental change. Primary data were collected at community and household level through in-depth interviews, focus group discussions, and quantitative questionnaires covering 210 households in six villages of the West Karakoram (Hundur and Darkut in the Yasin Valley; Hussainabad, Altit, Gulmit, and Shiskat in the Hunza valley of Gilgit-Baltistan). The relevance of the area with respect to our scopes is manifold. First, this is one of the most extreme and remote mountainous areas of the world, characterized by complex and fragile institutional and social fabrics. Second, this region is one of the focal points of research for the hydro-meteo-climatological scientific community, because of its relevance in terms of storage and variability of water resources for the whole Indus basin, and for the presence of conflicting signals of climate change with respect to the neighboring regions. Third, the extreme hardships due to a changing environment, as well as to the volatility of the social and economic conditions are putting great stress on the local population. As isolating climate change as a single driver is often not possible, community perceptions of change are analyzed in the livelihood context and confronted with multi-drivers scenarios affecting the lives of mountain people. We compare the collected perceptions with the available hydro-climatological data, trying to answer some key questions such as: how are communities perceiving, coping with, and adapting to climatic and environmental change? Which are the most resorted adaptation strategies? How is their perception of change influencing the decision to undertake certain adaptive measures?  相似文献   

20.
Natural vegetation and native plant species contribute significantly to the daily needs of local people especially in developing countries. This exerts a high pressure on local species and jeopardizes the conservation of the most vulnerable plants. In Burkina Faso, conservation measures, such as the creation of protected forests, have been taken to safeguard the remaining indigenous vegetation. However, little is known about the effectiveness of these protected areas in conserving biodiversity. This study assessed and compared the population structures and regeneration potential of three vulnerable woody species—Diospyros mespiliformis Hochst., Prosopis africana (Guill. & Perr.) Taub. and Sterculia setigera Del.—in protected and unprotected areas in the Sudanian zone of Burkina Faso. The population structure and regeneration pattern of each species were compared between the North and South Sudanian sectors of Burkina Faso. The populations of all three species were unstable in both protected and unprotected areas. D. mespiliformis and P. africana displayed relatively good regeneration while P. africana lacked regeneration in unprotected areas. Regeneration was poor for S. setigera, regardless of protection status. The results suggest that the populations of the targeted species are unstable, regardless of the protection status of the area considered. This is probably due to the high anthropogenic pressure facing natural resources and raises serious concerns about the effectiveness of the protected areas in conserving biodiversity. Urgent measures are needed to ensure effective and efficient management and conservation of biodiversity in the protected areas of Burkina Faso.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号