首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Agricultural landscapes of the southern Brazilian Amazon are the result of 80 years of governmental policies to install a powerful agricultural sector. Yet, this rapid expansion raised important environmental considerations especially with regard to deforestation. The agricultural frontier is thus now facing a huge challenge: to combine socioeconomic development with environmental conservation in the context of frontier expansion. Based on a conceptual model of the agricultural frontier, we review historical changes in environmental and development policies in the Brazilian state of Mato Grosso and emphasize their ambivalent trend to both encourage and control the progress of the frontier. We then extend this model with an integration stage where environmental governance and economic development evolve from competing to complementary concepts. At this stage, the efforts to slow down deforestation are accompanied with programs to promote new agricultural practices and support industrialization. Finally, we put into perspective this recent evolution with regard to the underlying reasons for changing the agricultural model, thus considering the agricultural frontier to be at a tipping point where first positive results need to be confirmed in spite of an unstable economic and political situation.  相似文献   

2.

In tropical areas, pioneer occupation fronts steer the rapid expansion of deforestation, contributing to carbon emissions. Up-to-date carbon emission estimates covering the long-term development of such frontiers depend on the availability of high spatial–temporal resolution data. In this paper, we provide a detailed assessment of carbon losses from deforestation and potential forest degradation from fragmentation for one expanding frontier in the Brazilian Amazon. We focused on one of the Amazonia’s hot-spots of forest loss, the BR-163 highway that connects the high productivity agricultural landscapes in Mato Grosso with the exporting harbors of the Amazon. We used multi-decadal (1984–2012) Landsat-based time series on forested and non-forested area in combination with a carbon book-keeping model. We show a 36% reduction in 1984s biomass carbon stocks, which led to the emission of 611.5 TgCO2 between 1985 and 1998 (43.6 TgCO2 year−1) and 959.8 TgCO2 over 1999–2012 (68.5 TgCO2 year−1). Overall, fragmentation-related carbon losses represented 1.88% of total emissions by 2012, with an increasing relevance since 2004. We compared the Brazilian Space Agency deforestation assessment (PRODES) with our data and found that small deforestation polygons not captured by PRODES had increasing importance on estimated deforestation carbon losses since 2000. The comparative analysis improved the understanding of data-source-related uncertainties on carbon estimates and indicated disagreement areas between datasets that could be subject of future research. Furthermore, spatially explicit, annual deforestation and emission estimates like the ones derived from this study are important for setting regional baselines for REDD+ or similar payment for ecosystem services frameworks.

  相似文献   

3.

Local, regional, and global processes affect deforestation and land-use changes in the Brazilian Amazon. Characteristics are: direct conversions from forest to pasture; regional processes of indirect land-use change, described by the conversion of pastures to cropland, which increases the demand for pastures elsewhere; and teleconnections, fueled by the global demands for soybeans as animal fodder. We modeled land-use changes for two scenarios Trend and Sustainable Development for a hot spot of land-use change along the BR-163 highway in Mato Grosso and Pará, Brazil. We investigated the differences between a coupled modeling approach, which incorporates indirect land-use change processes, and a noncoupled land-use model. We coupled the regional-scale LandSHIFT model, defined for Mato Grosso and Pará, with a subregional model, alucR, covering a selected corridor along the BR-163. The results indicated distinct land-use scenario outcomes from the coupled modeling approach and the subregional model quantification. We found the highest deforestation estimates returned from the subregional quantification of the Trend scenario. This originated from the strong local dynamics of past deforestation and land-use changes. Land-use changes exceeded the demands estimated at regional scale. We observed the lowest deforestation estimates at the subregional quantification of the Sustainable Development story line. We highlight that model coupling increased the representation of scenario outcomes at fine resolution while providing consistency across scales. However, distinct local dynamics were explicitly captured at subregional scale. The scenario result pinpoints the importance of policies to aim at the cattle ranching sector, to increase land tenure registration and enforcement of environmental laws.

  相似文献   

4.
Patterns of land-use and land-cover change are usually grouped into one of two categories defined by the dominant trend: (1) deforestation resulting from expanding agriculture and (2) forest expansion, usually related to the abandonment of marginal lands. At regional scale, however, both processes can occur simultaneously even in the absence of net change. Given the focus on net change, such redistribution of agricultural and natural and seminatural lands has been generally overlooked. The interaction between agriculture modernization, human demography and complex topographic gradients of northwestern Argentina has resulted in processes of both forest recovery and deforestation, thus providing the opportunity to analyze patterns and driving forces of land-cover redistribution. We analyzed 20 years (1986–2006) of land-cover change in a subtropical watershed in relation to topographic and demographic variables. Although net forest change represented <1 %, forests redistribution affected 7 % of forest lands. There was a consistent geographic segregation of deforestation and forest recovery, with forests expanding over steep highlands and agriculture expanding over lowland irrigated areas. Population trends were not associated to forest expansion in lowlands but they explained 32 % of forest recovery in highlands. Highland forest expansion and lowland deforestation, respectively, imply conservation opportunities for humid montane forests and the environmental services they provide (e.g., watershed conservation) and threats for the conservation of dry forests and its biodiversity. Our study exemplifies the importance of land-use redistribution (rather than net change) with relevant environmental consequences at regional scale.  相似文献   

5.

The need to balance agricultural production and environmental protection shifted the focus of Brazilian land-use policy toward sustainable agriculture. In 2010, Brazil established preferential credit lines to finance investments into low-carbon integrated agricultural systems of crop, livestock and forestry. This article presents a simulation-based empirical assessment of integrated system adoption in the state of Mato Grosso, where highly mechanized soybean–cotton and soybean–maize double-crop systems currently prevail. We employ bioeconomic modeling to explicitly capture the heterogeneity of farm-level costs and benefits of adoption. By parameterizing and validating our simulations with both empirical and experimental data, we evaluate the effectiveness of the ABC Integration credit through indicators such as land-use change, adoption rates and budgetary costs of credit provision. Alternative scenarios reveal that specific credit conditions might speed up the diffusion of low-carbon agricultural systems in Mato Grosso.

  相似文献   

6.
Amazonia contains more carbon (C) than a decade of global, human-induced CO2 emissions (60–80 billion tons). This C is gradually being released to the atmosphere through deforestation. Projected increases in Amazon deforestation associated with investments in road paving and other types of infra-structure may increase these C emissions. An increase of 25–40% in Amazon deforestation due to projected road paving could counterbalance nearly half of the reductions in C emissions that would be achieved if the Kyoto Protocol were implemented. Forecasted emission increases could be curtailed if development strategies aimed at controlling frontier expansion and creating economic alternatives were implemented. Given ancillary benefits and relative low costs, reducing deforestation in Amazonia and other tropical areas could be an attractive option for climate mitigation. Projects that help contain deforestation and reduce frontier expansion can play an important role in climate change mitigation but currently are not allowed as an abatement strategy under the climate regime. Creating incentives for forest conservation and decreased deforestation can be a unique opportunity for both forest conservation and climate mitigation.  相似文献   

7.
8.
Global tropical deforestation continues to occur at high rates despite political attention. National-level forest baselines are being established all over the world to guide the implementation of several policy mechanisms. However, identifying the direct and indirect drivers of deforestation and understanding the complexity of their interlinkages are often difficult. We first analyzed deforestation between 1990 and 2005 at the national level and found an annual deforestation rate of 0.62 %. Next, we performed separate analyses for four natural regions in Colombia and found annual deforestation rates between 0.42 and 1.92 %. Using general linear models, we identified several direct causes and underlying factors influencing deforestation at the national level: rural population density, cattle, protected areas, and slope. Significant differences in deforestation rates and causes were found across regions. In the Caribbean region, drivers of loss are urban population, unsatisfied basic needs, slope, and precipitation and four land use variables (illicit crops, pastures, cattle, and fires). In the Orinoco region, crops are the main driver of forest loss, and in the Amazonian region, deforestation is primarily due to fires related to the colonization front. Policy mechanisms will have to take into account regional patterns to successfully balance development and forest preservation in Colombia.  相似文献   

9.
Identifying the patterns of land cover change (LCC) and their main proximate causes and underlying driving forces in tropical rainforests is an urgent task for designing adequate management and conservation policies. The Lachuá region maintains the largest lowland rainforest remnant in Guatemala, but it has been highly deforested and fragmented during the last decades. This is the first paper to describe the patterns of LCC and the associated political and socioeconomic factors in the region over the last 50 years. We estimated spatial and temporal variations in LCC from a random sample of 24 1-km2 landscape plots during three time periods (1962–1987, 1987–2006, and 2006–2011) and evaluated how they were related to some important proximate causes and underlying driving forces. During the study period, 55 % of forest cover disappeared, at an annual rate of 1.6 %. The deforestation rate increased from 0.6 % (during the first study period) to 2.8 % (last period), but there was very high spatial variation. Landscape plots located outside conservation areas and close to roads lost between 80 and 100 % of forest cover, whereas the forest cover in landscapes located within protected areas remained intact during the study period. The establishment of new human settlements, roads, and annual crops was the main proximate cause during the first period, but during the second and third periods, open areas were mainly created to establish cattle pastures. Because ~75 % of forest cover has disappeared outside the protected areas, the conservation of this biodiversity hot spot will depend on the expansion of protected areas, and the promotion of forest regrowth and alternative biodiversity-friendly land uses in the landscape matrix.  相似文献   

10.
District Swat is part of the high mountain Hindu-Kush Himalayan region of Pakistan. Documentation and analysis of land use change in this region is challenging due to very disparate accounts of the state of forest resources and limited accessible data. Such analysis is, however, important due to concerns over the degradation of forest land leading to deterioration of the protection of water catchments and exposure of highly erodible soils. Furthermore, the area is identified as hotspot for biodiversity loss. The aim of this paper is to identify geophysical and geographical factors related to land use change and model how these relationships vary across the district. For three selected zones across the elevation gradient of the district, we analyse land use change by studying land use maps for the years 1968, 1990 and 2007. In the high-altitude zone, the forest area decreased by 30.5 %, a third of which was caused by agricultural expansion. In the mid-elevation zone, agriculture expanded by 70.3 % and forests decreased by 49.7 %. In the lower altitudes, agriculture expansion was 129.9 % consuming 31.7 % of the forest area over the forty-year time period. Annual deforestation rates observed were 0.80, 1.28 and 1.86 % in high, mid and low altitudes, respectively. In the high-altitude ecosystems, accessibility (distance to nearest road and city) had no significant role in agriculture expansion; rather land use change appears significantly related to geophysical factors such as slope, aspect and altitude. In the low-elevation zone, accessibility was the factor showing the closest association with agriculture expansion and abandonment. The analysis illustrates that land use change processes vary quite considerably between different altitudinal and vegetation cover zones of the same district and that environmental constraints and stage of economic development provide important contextual information.  相似文献   

11.
There has been a significant lack of land cover change studies in relation to deforestation in the Democratic People’s Republic of Korea (North Korea). The purpose of this study is to characterize deforestation in North Korea through land cover change trajectory and spatial analysis. We used three 30-m gridded land cover data sets for North Korea representing the conditions of the late 1980s, 1990s, and 2000s, respectively, as well as a digital elevation model. We examined the land cover trajectories during the two decades, i.e., which land cover became which at the pixel level. In addition, we calculated topographic characteristics of deforested pixels. Major findings from the study are summarized as follows: (1) net forest loss in North Korea was negligible in the latter decade compared to the former (>5000 km2), whereas other land cover changes were still active; (2) as a result of deforestation, forest land cover became mostly agricultural, particularly in the latter decade (95 %); (3) expansion of agricultural land cover continued during the time, increasing by >42 %; and (4) elevation and slope of deforested areas decreased slightly in the latter decade. The key contribution of the study is that it has demonstrated which land cover became which at the 30-m pixel level, complementing existing studies that examined overall forest stock in North Korea.  相似文献   

12.
Forests in lowland Bolivia suffer from severe deforestation caused by different types of agents and land use activities. We identify three major proximate causes of deforestation. The largest share of deforestation is attributable to the expansion of mechanized agriculture, followed by cattle ranching and small-scale agriculture. We utilize a spatially explicit multinomial logit model to analyze the determinants of each of these proximate causes of deforestation between 1992 and 2004. We substantiate the quantitative insights with a qualitative analysis of historical processes that have shaped land use patterns in the Bolivian lowlands to date. Our results suggest that the expansion of mechanized agriculture occurs mainly in response to good access to export markets, fertile soil, and intermediate rainfall conditions. Increases in small-scale agriculture are mainly associated with a humid climate, fertile soil, and proximity to local markets. Forest conversion into pastures for cattle ranching occurs mostly irrespective of environmental determinants and can mainly be explained by access to local markets. Land use restrictions, such as protected areas, seem to prevent the expansion of mechanized agriculture but have little impact on the expansion of small-scale agriculture and cattle ranching. The analysis of future deforestation trends reveals possible hotspots of future expansion for each proximate cause and specifically highlights the possible opening of new frontiers for deforestation due to mechanized agriculture. Whereas the quantitative analysis effectively elucidates the spatial patterns of recent agricultural expansion, the interpretation of long-term historic drivers reveals that the timing and quantity of forest conversion are often triggered by political interventions and historical legacies.  相似文献   

13.
This paper discusses the linkages between population change, land use, and deforestation in the Amazon regions of Brazil, Bolivia, Colombia, Ecuador, Perú, and Venezuela. We begin with a brief discussion of theories of population–environment linkages, and then focus on the case of deforestation in the PanAmazon. The core of the paper reviews available data on deforestation, population growth, migration and land use in order to see how well land cover change reflects demographic and agricultural change. The data indicate that population dynamics and net migration exhibit to deforestation in some states of the basin but not others. We then discuss other explanatory factors for deforestation, and find a close correspondence between land use and deforestation, which suggests that land use is loosely tied to demographic dynamics and mediates the influence of population on deforestation. We also consider national political economic contexts of Amazon change in the six countries, and find contrasting contexts, which also helps to explain the limited demographic-deforestation correspondence. The paper closes by noting general conclusions based on the data, topics in need of further research and recent policy proposals.Readers should send their comments on this paper to: BhaskarNath@aol.com within 3 months of publication of this issue  相似文献   

14.
Land cover change in the Brazilian Amazon depends on the spatial variability of political, socioeconomic and biophysical factors, as well as on the land use history and its actors. A regional scale analysis was made in Rondônia State to identify possible differences in land cover change connected to spatial policies of land occupation, size and year of establishment of properties, accessibility measures and soil fertility. The analysis was made based on remote sensing data and household level data gathered with a questionnaire. Both types of analyses indicate that the highest level of total deforestation is found inside agrarian projects, especially in those established more than 20 years ago. Even though deforestation rates are similar inside and outside official settlements, inside agrarian projects forest depletion can exceed 50% at the property level within 10–14 years after establishment. The data indicate that both small-scale and medium to large-scale farmers contribute to deforestation processes in Rondônia State encouraged by spatial policies of land occupation, which provide better accessibility to forest fringes where soil fertility and forest resources are important determinants of location choice.  相似文献   

15.
The Brazilian Amazon has about 69 % of available freshwater in Brazil, an amount that ends up creating the illusion that no lack of water and not lacking in the region, the large supply of this resource becomes a problem when it comes to the Management and Planning Water Resources in the Amazon, according to the wasteful use and lack of maintenance of stocks, compounded by the release of untreated wastewater. Speaking of water conservation programs in the Amazon a few decades ago and still today, with less intensity, is somewhat strange, given the large amount of water available and the culture of abundance. Thus, this research discusses the importance of the use of rainwater for non-potable purposes, since the potential for exploitation, throughout the year, due to this high rainfall in the Amazon region, ranging from, on average, 119.6 mm in months from November to 441.6 mm in March. The methods used for sizing of the reservoir were the Rippl and interactive, and economic viability checking done by the methods of net present value and discounted payback. As a result, there was a volume exceeding 1,000 m³ obtained by the method of Rippl, while the interactive method was a maximum of 75 m³. The economic viability presented fragile as a function of time to return exceeds the useful life of the utilization system for rainwater.  相似文献   

16.
The present research focuses on estimating forest area change with respect to the ongoing forest land conversion. The study tests the hypothesis that forest land is being converted to the selected land use categories with high growth tendency and controlling deforestation rate to its half of the present level would significantly improve the land cover under forest. The rate of forest land conversion to other land use categories is analyzed and then compared with the total area expanded under three land use classes. We used Systems dynamic modeling approach to estimate forest area by simulating forest land conversion in Pakistan, projecting to 2030. The results show that rangeland, built-up area and cultivated land have increased over time; growth rate of built-up area (9%) is highest followed by rangeland area (1.7%) and cultivated area (0.3%), respectively; rangeland is the dominant category in terms of area expanded (0.74 m. ha). Sensitivity analysis showed that reducing deforestation rate to half of the past level of 1% could not significantly improve forest area; therefore, it is suggested that controlling deforestation alone is not an effective strategy unless drastic measures, e.g., demarcation of forest boundaries, land use control policy and afforestation campaign would be started in the country.  相似文献   

17.

Southern Amazonia is the first region of Brazil’s Amazon area to be exposed to intensive conversion to agriculture and ranching. This conversion emits greenhouse gases from the carbon stock in the biomass and soils of the previous vegetation. Quantifying these carbon stocks is the first step in quantifying the impact on global warming from this conversion. This review is limited to information on Brazilian Amazonia’s carbon stocks. It indicates large amounts of carbon at risk of emission in both biomass and soils, as well as considerable uncertainty in estimates. Reducing uncertainty is a priority for research but the existence of uncertainty must not be used as an excuse for delaying measures to contain deforestation. The magnitude of carbon stocks is proportional to greenhouse gas emissions per hectare of deforestation and consequently to impact on global climate.

  相似文献   

18.
When exploiting forest resources, the resource use must be sustainable if its use is to support its function in the natural ecosystem. The African mahogany, a prized timber species, is widely exploited, raising policy concerns about the management of forest resources to meet the social, economic, and ecological needs of present and future generations. This paper explores, for the purpose of policy implication, the relationship between the exportation and deforestation of African mahoganies. The analysis employed a Granger causality test within the error correction model to evaluate the direction of causality between African mahoganies exports and deforestation in Ghana. The results suggested that in the short run, there was significant (P < 0.01) unidirectional causality from African mahoganies exports to deforestation. However, there was no directional causality from deforestation to mahogany exports. Thus, mahogany extraction and logging in general are among the major factors contributing to deforestation in Ghana. The general assessment of historical trends in the extraction levels of the two main genera of African mahoganies revealed that Entandrophragma cylindricum and Khaya ivorensis have been the most exploited species over the years. Improvements in, and the enforcement of, existing forest institutions and incentives, as well as related policies, could minimise the rate of deforestation not only of the African mahogany but also in timber logging, thus stemming forest degradation and deforestation in the country.  相似文献   

19.
The Brazilian Amazon is a globally important ecosystem that is undergoing rapid development and land-use change. Roads are a key spatial determinant of land-use conversion and strongly influence the rates and patterns of habitat loss and represent a key component of models that attempt to predict the spatio-temporal patterns of Amazonian land-use change and the consequences of such changes. However, the spatio-temporal patterns of road network development are poorly understood and seldom quantified. Here, we used manually digitised satellite imagery at multiple temporal and spatial scales across the Brazilian Amazon to quantify and model the rate at which road networks are proliferating. We found that the road network grew by almost 17,000 km per year between 2004 and 2007. There was large spatial variation in road network density, with some municipalities having road densities as high as 0.5 km/km2, and road network growth rates were highest in municipalities with an intermediate road network density. Simulations indicated that road network development within municipalities follows a logistic growth pattern through time, with most of the development occurring within a 39-year time period. This time period is similar to those of other boom and bust development dynamics observed in the Brazilian Amazon. Understanding the temporal patterns of road development will aid the development of better predictive land-use change models for the Amazon, given the key importance of roads as a predictor of deforestation in many existing models.  相似文献   

20.
There has been a concerted effort by the international scientific community to understand the multiple causes and patterns of land-cover change to support sustainable land management. Here, we examined biophysical suitability, and a novel integrated index of “Economic Pressure on Land” (EPL) to explain land cover in the year 2000, and estimated the likelihood of future land-cover change through 2050, including protected area effectiveness. Biophysical suitability and EPL explained almost half of the global pattern of land cover (R 2 = 0.45), increasing to almost two-thirds in areas where a long-term equilibrium is likely to have been reached (e.g. R 2 = 0.64 in Europe). We identify a high likelihood of future land-cover change in vast areas with relatively lower current and past deforestation (e.g. the Congo Basin). Further, we simulated emissions arising from a “business as usual” and two reducing emissions from deforestation and forest degradation (REDD) scenarios by incorporating data on biomass carbon. As our model incorporates all biome types, it highlights a crucial aspect of the ongoing REDD + debate: if restricted to forests, “cross-biome leakage” would severely reduce REDD + effectiveness for climate change mitigation. If forests were protected from deforestation yet without measures to tackle the drivers of land-cover change, REDD + would only reduce 30 % of total emissions from land-cover change. Fifty-five percent of emissions reductions from forests would be compensated by increased emissions in other biomes. These results suggest that, although REDD + remains a very promising mitigation tool, implementation of complementary measures to reduce land demand is necessary to prevent this leakage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号