首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Planktonic populations of the calanoid copepod Labidocera aestiva show significant biochemical genetic heterogeneity along the Atlantic coast of the USA. In summer, 1981, copepods were collected by surface tows at Beaufort Inlet, North Carolina; Fort Pierce Inlet, Florida; and Vineyard Sound, Massachusetts. Genetic variation within each population and genetic differentiation among the three populations were studied by micro-acrylamide gel electrophoresis of six loci encoding four enzymes. All six enzyme loci were polymorphic when all populations were considered together, but the North Carolina population was monomorphic at two loci. High genetic variability was indicated by the following: (1) the number of alleles per locus averaged over all loci was 2.57±0.26 SD; (2) the average proportion of loci for which the frequency of the most common allele was not greater than 0.95 was 0.78±0.10; (3) the frequency of heterozygous individuals was 0.25±0.07. Genetic differentiation among population samples in the three regions was demonstrated in several ways: allele frequencies at one aminopeptidase-I locus, Lap-1, differed significantly among samples of the three populations, and there were unique alleles of high frequency at this locus in two population samples. Values of the statistic of genetic distance (D) averaged 0.20±0.08 for pairwise comparisons between all samples. Compared to expected heterozygosity if individuals across the entire range sampled mated at random, there were highly significant heterozygote deficiencies at five of the six loci. Genetic differentiation of populations of L. aestiva may result from (1) differential selection on populations in the three regions, or (2) restricted gene flow between the populations. Gene flow may be limited by geographic separation or differences in life history, such as seasonal presence in the plankton and diapause egg production.Contribution No. 5810 of Woods Hole Oceanographic Institution  相似文献   

2.
Spatial and temporal distribution of allozyme variation at three loci in a cohort of the barnacle, Hexaminius foliorum, living on leaves of Avicennia marina was studied from recruitment to adulthood at three geographical scales. Analysis of populations shortly after recruitment showed that there were significant divergences in allele frequencies at the coarsest geographical scale studied (between estuaries, 50 km apart, Wright's F statistic=0.016) and at the finest geographic scale (between sites, 50–100 m apart, Wright's F statistic=0.018). There was, however, no significant genetic divergence at an intermediate scale (between bays, 3–4 km apart, Wright's F statistic=0.002). The genetic differences between populations decreased over time due to the selection against the null homozygotes originally present at high frequency at two loci. There was sufficient mortality (ranging from 35.5 to 80%) between seasons to account for the deaths needed for the observed changes in allele frequencies. Differences in the genetic structure between estuaries may be the result of isolation and limited mixing of cyprid larvae among estuaries. Differences in the genetic structure between sites may be due to pre- and post-settlement mortality acting on H. foliorum.Communicated by G.F. Humphrey, Sydney  相似文献   

3.
P. J. Smith 《Marine Biology》1986,91(2):173-180
Gel electrophoresis was used to measure genetic variation in the orange roughyHoplostethus atlanticus. Samples were collected on the continental slope in the Tasman Sea, South-west Pacific Ocean and North-east Atlantic Ocean, at various periods from 1982 to 1984. Twenty-two enzymatic loci were resolved in seven samples to give observed heterozygosities between 0.104±0.037 and 0.125±0.044. There was little genetic differentiation between populations separated by a distance of approximately 21 000 km. Tasman-Pacific and Atlantic samples differed significantly in allele frequency at only two loci, while at a third locus a rare allele was found only in the Atlantic Ocean.  相似文献   

4.
Specimens of the deep-sea brittle-star Ophiomusium lymani were collected from six sites in the Rockall Trough (northeast Atlantic_. Four monomorphic and four polymorphic loci were detected, with up to 75 individuals screened at any one locus. The results showed little difference in allele frequencies between sites and, consequently, estimates of genetic identity indicated no significant genetic differentiation between the populations sampled. Deficits of heterozygotes were observed at all polymorphic loci, but the deficiencies were only significant at the phosphoglucose isomerase locus from two locations. The deficit of heterozygotes was not the same across loci, suggesting that inbreeding is not the cause of the excess homozygosity. No relationship between heterozygosity and depth was observed.  相似文献   

5.
The objective of the present study was to investigate the population genetic structure of the commercially important camouflage grouper, Epinephelus polyphekadion (Bleeker, 1849), in the western and central Pacific Ocean to improve existing management. Camouflage grouper are widely distributed in the Indo-Pacific and form brief, seasonal, spawning aggregations that are often heavily fished. The present study examined populations sampled in 1997-1998 at five sites in the western central Pacific spanning a geographic distance of ~5,000 km: New Caledonia, Great Barrier Reef, Palau, Marshall Islands, and Pohnpei (Micronesia). Primer pairs were developed to examine genetic variation at three polymorphic microsatellite loci. Cluster analysis, using genetic distance, revealed three regional groupings: (1) Palau, (2) Pohnpei and the Marshall Islands, and (3) the Great Barrier Reef and New Caledonia. Highly significant allele frequency differences were observed among sites. At Pohnpei, significant allele frequency differences in successive years were also apparent, possibly related to genetic variation among cohorts or between local spawning groups. The inter-annual differences at Pohnpei suggest that there may be further genetic structuring over relatively modest distances, a finding relative to determining management units for this commercially valuable species and suggests that future studies need to incorporate possible small-scale temporal or spatial components into study design.  相似文献   

6.
Spatial and temporal patterns of gene-enzyme variation were estimated in the sibling species Gammarus zaddachi Sexton and G. salinus Spooner by starch gel electrophoresis. Twenty-one G. zaddachi and 18 G. salinus populations from coastal and estuarine areas in the Baltic Sea, North Sea and other localities of north-western Europe were surveyed. Both amphipods display similar electrophoresis patterns of the enzyme systems studied. Considerable interspecific and interpopulational differences were detected in allele frequencies at three highly polymorphic loci, phosphoglucose isomerase (PGI), glutamate oxalacetate transaminase (GOT) and arginine phosphokinase (APK). G. zaddachi exhibits a pronounced genetic heterogeneity in most areas of the sampled range. Populations from northern French and western English coasts differ significantly from the other samples in allele frequencies at the PGI or APK locus, respectively. Baltic populations are widely uniform in their genetic composition but can be distinguished from samples taken at North Sea sites in allele frequencies at the APK locus. The latter reveal a clinal variation, ranging from the Danish to the French coast. In contrast to G. zaddachi, a low degree of genetic differentiation was observed among the G. salinus populations examined. This indicates that migration and interregional mixing may be more important in maintaining the genetic structure than in G. zaddachi which, compared to G. salinus, prefers habitats of lower salinity levels. Evidently, less extensive dispersal capabilities owing to the confinement of G. zaddachi to brackish waters of dilute salt concentrations may account for a diminished gene flow and considerable genetic separation of local populations. This assumption is supported by the genetic homogeneity documented in Baltic G. zaddachi populations. In view of the low and constant salinities in wide areas of this brackish-water sea such barriers do not exist. Survey studies performed with selected populations over a 3-yr period demonstrated a general pattern of temporal constancy in the allozyme variation observed.  相似文献   

7.
Allelic frequencies at three polymorphic, enzyme-encoding gene loci (GOT-2, EST-1, EST-2) were determined for Callinectes sapidus (Rathbun) megalopae and adults sampled along the Texas coast of the Gulf of Mexico. Significant temporal and spatial variation was observed at all three loci. Primary findings included: (1) megalopal allelic frequencies often differed significantly from those observed among neighboring adult populations; (2) larval allelic frequencies appeared to vary seasonally, with populations showing sharp differences in the summer months but tending to be more homogeneous in winter; (3) allelic frequencies among adult populations were significantly heterogeneous, but only one locus (EST-2) showed significant temporal variation; (4) juvenile and adult crabs sampled within one bay showed no size-specific differences in allelic frequencies. The spatial heterogeneity in allelic frequencies suggests that interpopulation gene flow is not sufficient to overcome population differentiation resulting from genetic drift and/or natural selection. Temporal variation in larval allelic frequencies suggests seasonal changes in larval source populations which may result from population differences in spawning season or developmental times or from seasonal changes in coastal current patterns.  相似文献   

8.
J. Gold  T. Turner 《Marine Biology》2002,140(2):249-265
Allelic variation at eight nuclear-encoded microsatellites was assayed among 967 red drum (Sciaenops ocellatus) sampled from four consecutive cohorts at seven geographic localities (=28 samples total) in the northern Gulf of Mexico (Gulf). Number of alleles per microsatellite ranged from 6 to 21; average direct-count heterozygosity values per sample (-SE) ranged from 0.560ǂ.018 to 0.903ǂ.009. Tests of Hardy-Weinberg equilibrium revealed significant departures from expected genotype proportions at one microsatellite, which was omitted from further analysis. Tests of genotypic equilibrium indicated that genotypes between pairs of microsatellites were randomly associated. Homogeneity tests of allele distributions across cohorts within localities were non-significant following correction for multiple tests executed simultaneously, and results from molecular analysis of variance indicated that the genetic variance component attributable to variation among cohorts did not differ significantly from zero. Homogeneity tests of allele distributions among localities (cohorts pooled) revealed significant differences both before and after correction for multiple tests. Neighbor-joining clustering of a pairwise matrix of Š values (an unbiased estimator of FST), spatial autocorrelations, and regression analysis revealed a pattern of isolation by distance, where genetic divergence among geographic samples increases with geographic distance between sample localities. The pattern and degree of temporal and spatial divergence in the nuclear-encoded microsatellites paralleled almost exactly those of mitochondrial (mt) DNA, as determined in a prior study. Stability of both microsatellite and mtDNA allele distributions within localities indicates that the small but significant genetic divergence among geographic samples represents true signal and that overlapping populations of red drum in the northern Gulf may be influenced by independent population dynamics. The degree of genetic divergence in microsatellites and mtDNA is virtually identical, indicating that genetic effective size of microsatellites and mtDNA in red drum are the same. This, in turn, suggests either that gene flow in red drum in the northern Gulf could be biased sexually or that red drum populations may not be in equilibrium between genetic drift and migration. If a sexual bias exists, the observation that divergence in mtDNA is considerably less than 4 times that of microsatellites could suggest female-mediated dispersal and/or male philopatry. The observed isolation-by-distance effect indicates a practical limit to dispersal. Approximate estimates of geographic neighborhood size suggest the limit is in the range 700-900 km. Although the genetic studies of red drum indicate significant genetic divergence across the northern Gulf, the genetic differences do not delimit specific populations or stocks with fixed geographic boundaries.  相似文献   

9.
Allozyme electrophoresis was used to characterize genetic variation within and among natural populations of the red sea urchin Strongylocentrotus franciscanus. In 1995 to 1996, adult urchins were sampled from twelve geographically separated populations, seven from northern California and five from southern California (including Santa Rosa Island). Significant population heterogeneity in allelic frequencies was observed at five of six polymorphic loci. No geographic pattern of differentiation was evident; neighboring populations were often more genetically differentiated than distant populations. Northern and southern populations were not consistently distinguishable at any of the six loci. In order to assess within-population genetic variation and patterns of recruitment, large samples were collected from several northern California populations in 1996 and 1997, and were divided into three size classes, roughly representing large adults (>60 mm), medium-sized individuals (31 to 60 mm, “subadults”) and individuals <2 yr of age (≤30 mm test diam, referred to as “recruits”). Comparisons of allelic counts revealed significant spatial and temporal differentiation among size-stratified population samples. Recruit samples differed significantly from adult samples collected at the same locale, and showed extensive between-year variation. Genetic differentiation among recruit samples was much higher in 1997 than in 1996. Between-year differences within populations were always greater for recruits than for adults. Potential explanations for the differentiation of recruit samples include pre- and post-settlement natural selection and high interfamily variance in reproductive success or “sweepstakes” recruitment. Unless recruit differentiation can be attributed to an improbable combination of strong and spatially diverse selection, such differentiation across northern California populations indicates that the larval pool is not well mixed geographically (even on spatial scales <20 km), despite long planktonic larval duration. Received: 6 July 1999 / Accepted: 25 January 2000  相似文献   

10.
To determine the genetic population structure of blue crabs (Callinectes sapidus Rathbun), electrophoretic allozyme analysis was performed on 750 individuals collected from 16 nearshore locations ranging from New York to Texas, USA. Twenty enzymes and non-enzymatic proteins coded by 31 presumptive loci were examined. Twenty-two loci were either monomorphic or polymorphic at less than theP 95 level; alleles for these polymorphic loci were geographically dispersed. Allele frequencies for three of the remaining polymorphic loci were homogeneous over all populations, as were levels of polymorphism and heterozygosity. Phenograms generated by the UPGMA (unweighted pair-group method using arithmetic averages) and distance Wagner methods exhibited no geographic pattern in the clustering of populations. Estimates ofN em (effective number of migrants per generation between populations) indicated substantial gene flow, with aalues sufficiently high to infer panmixia between all blue crab populations from New York to Texas. However, despite this high level of gene flow, two striking patterns of geographic differentiation occurred: genetic patchiness and clinal variation. Allele frequencies atEST-2, GP-1, IDHP-2, DPEP-1, DPEP-2, andTPEP exhibited genetic patchiness on local and range-wide geographic scales, and allele frequencies atEST-2 varied temporally. Genetic patchiness in blue crabs is likely to be the result of the pre-settlement formation and subsequent settlement of genetically heterogeneous patches of larvae; allele frequencies of those larval patches may then be further modified through ontogeny by localized selection. In the Atlantic Ocean, a regional latitudinal cline ofEST-2 allele frequencies was superimposed on the range-wide genetic patchiness exhibited by that locus. This pattern against a background of high gene flow is highly likely to be maintained by selection. In estuaries along the Atlantic Ocean coast, a combination of low adult long-distance migration and a high retention rate of locally spawned larvae could serve to segregate populations and allow for the development of the geographic cline inEST-2. The Gulf of Mexico showed no apparent cline, perhaps due to long-distance migration of females in some regions of the Gulf, or to masking by genetic patchiness. These results emphasize the importance of both ecological and evolutionary time scales and structuring mechanisms in determining genetic population structure.  相似文献   

11.
Electrophoretic studies of gene-enzyme variation in the littoral talitrids Talitrus saltator (Montagu) and Talorchestia deshayesii (Audouin) were undertaken to estimate the amount of divergence among geographically separated populations. Samples of both species were taken from sandy beaches over a transect of approximately 3 500 km along the coast of the European continent including Baltic, North Sea and Atlantic locations. A total of 22 T. saltator and 15 T. deshayesii populations were analysed for genetic variation at various enzyme loci. Both amphipods revealed relatively low levels of polymorphism and heterozygosity. Among the loci studied, phosphoglucose isomerase (Pgi) and phosphoglucomutase (Pgm) were highly polymorphic. Patterns of micro- and macrogeographic variation in terms of distributions of allele frequencies at these particular loci are compared. Interpopulation allozymic variation was shown to be lower in T. deshayesii than in T. saltator. As demonstrated by T. saltator populations sampled in coastal sites ranging from Denmark to western France, clinal variation in frequencies of two alleles became evident at the PGI locus, exhibiting a steady increase in the level of polymorphism with decreasing latitudes. It is argued that limited gene flow and, to some extent, random genetic drift may account for the gene pool structure of the talitrid species investigated.  相似文献   

12.
Variations in the relative contributions of gene flow and spatial and temporal variation in recruitment are considered the major determinants of population genetic structure in marine organisms. Such variation can be assessed through repeated measures of the genetic structure of a species over time. To test the relative importance of these two phenomena, temporal variation in genetic composition was measured in the limpet Cellana grata, among four annual cohorts over 10 years at four rocky shores in Hong Kong. A total of 408 limpets, comprising individuals from 1998, 1999, 2006 and 2007 cohorts were screened for genetic variation using five microsatellite loci. Minor but significant genetic differentiation was detected among samples from the 1998/1999 collection (F ST = 0.0023), but there was no significant differentiation among the 2006/2007 collection (F ST = 0.0008). Partitioning of genetic variation among shores was also significant in 1998/1999 but not in the 2006/2007 collection, although there was no correlation between genetic and geographic distances. There was no significant difference between collections made in 1998/1999 and 2006/2007. This lack of clear structure implies a high level of gene flow, but differentiation with time may be the result of stochastic recruitment variation among shores. Estimates of effective population size were not high (599, 95% C.L. 352–11397), suggesting the potential susceptibility of the populations to genetic drift, although a significant bottleneck effect was not detected. These findings indicate that genetic structuring between populations of C. grata in space and time may result from spatio-temporal variation in recruitment, but the potential development of biologically significant differentiation is suppressed by a lack of consistency in recruitment variability and high connectivity among shores.  相似文献   

13.
The somatic growth dynamics of green turtles (Chelonia mydas) resident in five separate foraging grounds within the Hawaiian Archipelago were assessed using a robust non-parametric regression modelling approach. The foraging grounds range from coral reef habitats at the north-western end of the archipelago, to coastal habitats around the main islands at the south-eastern end of the archipelago. Pelagic juveniles recruit to these neritic foraging grounds from ca. 35 cm SCL or 5 kg (~6 years of age), but grow at foraging-ground-specific rates, which results in quite different size- and age-specific growth rate functions. Growth rates were estimated for the five populations as change in straight carapace length (cm SCL year–1) and, for two of the populations, also as change in body mass (kg year–1). Expected growth rates varied from ca. 0–2.5 cm SCL year–1, depending on the foraging-ground population, which is indicative of slow growth and decades to sexual maturity, since expected size of first-time nesters is 80 cm SCL. The expected size-specific growth rate functions for four populations sampled in the south-eastern archipelago displayed a non-monotonic function, with an immature growth spurt at ca. 50–53 cm SCL (~18–23 kg) or ca. 13–19 years of age. The growth spurt for the Midway atoll population in the north-western archipelago occurs at a much larger size (ca. 65 cm SCL or 36 kg), because of slower immature growth rates that might be due to a limited food stock and cooler sea surface temperature. Expected age-at-maturity was estimated to be ca. 35–40 years for the four populations sampled at the south-eastern end of the archipelago, but it might well be >50 years for the Midway population. The Hawaiian stock comprises mainly the same mtDNA haplotype, with no differences in mtDNA stock composition between foraging-ground populations, so that the geographic variability in somatic growth rates within the archipelago is more likely due to local environmental factors rather than genetic factors. Significant temporal variability was also evident, with expected growth rates declining over the last 10–20 years, while green turtle abundance within the archipelago has increased significantly since the mid-1970s. This inverse relationship between somatic growth rates and population abundance suggests a density-dependent effect on somatic growth dynamics that has also been reported recently for a Caribbean green turtle stock. The Hawaiian green turtle stock is characterised by slow growth rates displaying significant spatial and temporal variation and an immature growth spurt. This is consistent with similar findings for a Great Barrier Reef green turtle stock that also comprises many foraging-ground populations spanning a wide geographic range.Communicated by P.W. Sammarco, Chauvin  相似文献   

14.
Monitoring temporal changes in genetic variation has been suggested as a means of determining if a population has experienced a demographic bottleneck. Simulations have shown that the variance in allele frequencies over time ( F ) can provide reasonable estimates of effective population size ( Ne ). This relationship between F and Ne suggests that changes in allele frequencies may provide a way to determine the severity of recent demographic bottlenecks experienced by a population. We examined allozyme variation in experimental populations of the eastern mosquitofish ( Gambusia holbrooki ) to evaluate the relationship between the severity of demographic bottlenecks and temporal variation in allele frequencies. Estimates of F from both the fish populations and computer simulations were compared to expected rates of drift. We found that different methods for estimating F had little effect on the analysis. The variance in estimates of F was large among both experimental and simulated populations experiencing similar demographic bottlenecks. Temporal changes in allele frequencies suggested that the experimental populations had experienced bottlenecks, but there was no relationship between observed and expected values of F . Furthermore, genetic drift was likely to be underestimated in populations experiencing the most severe bottlenecks. The weak relationship between F and bottleneck severity is probably due to both sampling error associated with the number of polymorphic loci examined and the loss of alleles during the bottlenecks. For populations that may have experienced severe bottlenecks, caution should be used in making evolutionary interpretations or management recommendations based on temporal changes in allele frequencies.  相似文献   

15.
Genetic variation was examined in Helonias bullata , a threatened perennial plant species that occurs in isolated wetland habitats. Fifteen populations representing the species' geographic range were sampled. Genetic diversity was low for the species ( H es = 0.053) as well as within populations ( H ep = 0.029). Of the 33 allozyme loci examined, 11 (33%) were polymorphic, while on average only 12.8% (4) of the loci were polymorphic within populations. The number of alleles per polymorphic locus was 2.36 for the species and averaged 2.09 across populations. For every genetic parameter calculated, variation in H. bullata was lower than that typically found for narrowly distributed plant species. The lowest levels of genetic diversity were found in northern areas that were colonized following the last glacial epoch. The number of genotypes detected per population ranged from three to 21, with a mean of 13 for this clonally reproducing species. We found a relatively high proportion of total genetic diversity (30.6%) among populations and a significant correlation (p < 0.002) between genetic distance and geographic distance. Genetic drift phenomena appear to play a major role in the population genetics of this species. Anomalously, several populations that appeared most limited in size and vigor were genetically most variable, perhaps because they represent older, relictual populations. Life-history characteristics of H. bullata coupled with low levels of genetic diversity and the degradation and disappearance of wetlands threaten the existence of this species.  相似文献   

16.
An electrophoretic survey of allozyme variation revealed substantial genetic differentiation within the eastern Australian population ofActinia tenebrosa. This differentiation appears to reflect the effects of both asexual reproduction and limited gene flow among local populations separated by up to 1050 km. Variation was assessed within groups of 27 to 55 adults sampled between September 1985 and December 1988 collected from small areas of shore within each of 24 local populations. All individuals were collected from stable rock platforms, with the exception of Boulder Bay, where some sea anemones were removed from small mobile boulders. High levels of variability were detected for each of seven enzyme-encoding loci. The patterns of genotypic variation detected imply that local populations are maintained by predominantly asexually generated recruitment. Levels of multi-locus genotypic diversity within samples were consistently less than 50% of the level expected for sexual reproduction with free recombination. This was reflected by the detection of relatively low numbers of multi-locus genotypes and significant departures from expectations for single-locus Hardy-Weinberg equilibria within 17 of the 24 local populations. Standardised genetic variances (F ST ), calculated from the genotypes of all individual adults were typically much greater than those expected for marine organisms with widely dispersed larvae. The former values were reduced, but were still extremely large when clonal genotype frequencies were substituted into the calculation. These data imply that although widely dispersed larvae may be an important source of initial colonists, levels of gene flow among established local populations are low. Furthermore, cluster analysis revealed a clear subdivision of the population into northern and southern groups. However, this subdivision was largely explained by strong clinal variation at a GPI-encoding locus. For this locus, allele frequencies ranged from fixation of the A allele in samples from the 12 most northern sites to near fixation of the alternative B allele in southern samples. Subdivision of the eastern Australian population is consistent with the predicted off-shore movement of the Eastern Australian Current close to the border between Victoria and New South Wales. However, the split into northern and southern regions, as evidenced by the variation forGpi, could reflect patterns of gene flow and/or other factors such as natural selection or the recent patterns of colonisation.Contribution No. 78 from the Ecology and Genetics Group of the University of Wollongong  相似文献   

17.
Biochemical genetic variation at a leucine aminopeptidase (LAP) locus is related to salinity variation in several marine bivalve molluscs. This paper details an investigation of the Long Island Sound model of LAP selection (LAP genotype-dependent mortality occurring among newly settled Mytilus edulis mussels) carried out in 1997 among three M. galloprovincialis mussel populations along the salinity gradient of Wellington Harbour, New Zealand. Significant LAP genotypic heterogeneity was observed at the LAP locus between small (<25 mm shell length) and large (>25 mm shell length) M. galloprovincialis from Petone and Eastbourne (the two sites experiencing the greatest salinity variation), whereas genotypic heterogeneity was not significantly different between small and large mussels from Seatoun (the site experiencing the least salinity variation). The Lap 3 allele decreased in frequency and the Lap 4 allele increased in frequency at Petone and Eastbourne, whereas the Lap 3 and Lap 4 allele frequencies remained effectively constant at Seatoun. Both these findings are consistent with the Long Island Sound model of selection. At all three locations, the Lap 3,3 genotype decreased in frequency from small to large mussels, whereas the Lap 3,4 genotype increased in frequency from small to large mussels. All other LAP genotypes occurred at low frequencies (<0.10) at all three locations and showed no evidence of frequency change from small to large-size mussels nor evidence of clinal change among the three locations. These genotype frequency data possibly indicate that the Lap 3,3 genotype is at a selective disadvantage compared to the Lap 3,4 genotype at all three locations, and that this selective disadvantage is related to the extent of salinity variation which exists at each location. Further investigation is required before it can be determined if the Long Island Sound model of selection best describes the size-dependent and location-specific changes in LAP allele and genotype frequencies along this salinity gradient. Comparison of the population genetic structure at the LAP locus in 1995 and in 1997 revealed a profound change from heterozygote excesses to heterozygote deficiencies for all three M. galloprovincialis populations. The reason for the change is unknown, but the change indicates that population genetic structure at the LAP locus is highly variable in time, but consistent in space, among these M.␣galloprovincialis populations. Received: 5 February 1998 / Accepted: 27 May 1998  相似文献   

18.
This paper reports data on 28 allozyme loci in wild and artificially reared sea bass (Dicentrarchus labrax) samples, originating from either coastal lagoon or marine sites in the Mediterranean Sea. F ST analysis (θ estimator) indicated strong genetic structuring among populations; around 34% of the overall genetic variation is due to interpopulation variation. Pairwise θ estimates showed that, on average, the degree of genetic structuring was much higher between marine populations than between samples from lagoons. Six polymorphic loci showed differences in allele frequencies between marine and lagoon samples. Multivariate analyses of individual allozymic profiles and of allele frequencies suggested that different arrays of genotypes prevail in lagoons compared to marine samples, particularly at those loci that, on the basis of previous acclimation experiments, had been implicated in adaptation to freshwater. On the other hand, variation at “neutral” allozyme loci reflects to a greater extent the geographic location of populations. Allozyme differentiation was also studied in a D. labrax population from the Portuguese coast. Average genetic distance between this population and the Mediterranean populations was quite high (Nei's D = 0.236) and calls into question the taxonomic status of the Portuguese population. Finally, genetic relationships between D. labrax and D. punctatus were evaluated. Average Nei's D was 0.648, revealing high genetic differentiation between the two species, even for two sympatric populations of these species in Egypt; thus gene flow was not indicated between species. Received: 24 October 1996 / Accepted: 27 November 1996  相似文献   

19.
P. M. Stevens 《Marine Biology》1991,108(3):403-410
Seven populations of the pea crabPinnotheres atrinicola Page were sampled from around the North Island of New Zealand from February to October 1987, and individuals were scored at 23 presumptive enzymatic loci. For a brachyuran crab,P. atrinicola revealed high levels of polymorphism and heterozygosity. Of the loci scored, phosphoglucose isomerase (Gpi) and phosphoglucomutase (Pgm) were distinguished by high variability ( =0.602 and 0.526, respectively). A clinal variation in electromorph frequency was evident at several loci, and atGpi in particular. Statistical analyses revealed that, despite relatively small genetic distance separation, a high degree of structuring was present between the geographic populations. The degree of population subdivision observed in this study is atypical of brachyuran crabs. It is suggested that the genetic differentiation observed between pea crab populations is maintained by life-history attributes and current movements which restrict gene flow between populations and, to some extent, by random genetic drift.Publication No. 41 from the Evolutionary Genetics Laboratory, University of Auckland  相似文献   

20.
Four populations of the predatory gastropodNucella lapillus were sampled at sites around the South West Peninsula of England in 1986, and analysed for allozyme variation at 18 enzyme loci. Two of these loci, Gpd-1 andHk-1, exhibited sex-specific phenotypes. An absolute locus association was observed between two other loci,Mdh-1 andEst-3. This association was only found at one site (Prawle), and it is suggested that the presence of chromosomal polymorphisms could explain this finding. As a measure of overall similarity, Nei's genetic identity statistic,I, was calculated; the mean for all populations was 0.989, with values ranging from 0.981 to 0.997. Although similar on this gross level, considerable interpopulation variation was evident. Observed mean heterozygosity (per locus) ranged from 0.043 to 0.104 (mean 0.074). Populations differed also in the loci at which significant heterozygote deficits were seen (of the seven deficits recorded only those at thePep-1 locus were consistent across sites) and in the presence of rare alleles undetected elsewhere. The variation observed showed no correlation to shell morphology or geographical distance and confirmed the conclusion that species of the genusNucella show considerable disjunct variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号