首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In tanneries, the phases of conditioning and preparing the hide for tanning, as well as the transportation and fixation of tanning substances, are all carried out in aqueous media. Most of the steps of these processes are carried out with fresh water, which is used as a vehicle for the diffusion of chemical products and the extraction of undesirable materials from the hide. The objective of this study is to provide the minimization of water consumption at tanneries by applying the reuse of water at some stages of the process. Alternatives for water reuse were evaluated through analysis of the process wastewater to determine the concentration of some contaminant parameters. In tests with half-hides, the possibility of reusing the liquors from the 2nd bating washing in the 1st bating washing, and of reusing the liquors from the pre-deliming washing in the pre-deliming operation, was verified. In industrial scale the water reuse from a mixture of bating washings in the deliming and deliming bating was tested successfully. The quality of wet-blue leather analyzed in the systems with and without water reuse did not show any considerable differences and satisfies the tannery specifications. Finally, a mathematical program for mass integration was applied to solve the problem of water reuse in the beamhouse steps.  相似文献   

2.
The environmental impact of the tanning industry is generally significant with outputs of wastes, i.e. high concentrations of organics, salts and heavy metals (chromium compounds), both in solid and liquid form, as a result. In order to bring the tanning industry more in line with present environmental thinking, various methods have been devised to reduce impacts.The underlying study proposes a modification of the method for unhairing–liming of hides where the unhairing–liming liquids are reused several times after being recharged by reduced quantities of chemicals. The study, therefore, aims at reducing both the economic and environmental costs of the unhairing–liming process.Experiments were carried out at lab scale with a simulation apparatus designed for the purpose. Life cycle assessment was used to evaluate the net environmental benefits of the modified method. The present value approach was used to evaluate the economic feasibility of the modified method. The quality of the produced leather was assessed by experts from the tanning sector (tanners).On the environmental level, the modified method reduced the environmental impact of the process by 24%, COD was reduced by 50% as well as sulfide which was reduced by 73% when the process water was recycled four times.The modified method requires some investment in new equipment and is a little more labor intensive as compared with the conventional method but does permit for savings in water up to 58% and chemicals up to 28% as well as wastewater treatment cost which was reduced by 58%. The modified method allowed for four times reuse of the unhairing–liming liquor without visibly affecting the quality of the final product of leather.It was concluded that both the economic and the environmental costs of the unhairing–liming process were reduced relative to the same of the conventional method.  相似文献   

3.
Kinetics of enzymatic unhairing by protease in leather industry   总被引:2,自引:0,他引:2  
In leather industry, unhairing is a heavy pollution operation. The conventional lime-sulfide process produces a large amount of sulfide which is toxic to health and difficult to dispose. Moreover, conventional lime-sulfide process leads to the destruction of the hair causing increased COD, BOD and TDS loads in the effluent. As an alternative method, enzymatic unhairing is a promising clean technology. The main utilized enzyme preparations are proteases.There are many reports about enzymatic unhairing, most of which are qualitative. The kinetics of enzymatic unhairing by protease was discussed in this article. It will provide useful information to enzymatic unhairing. In our research, by analysis of the concentrations of released total protein in enzyme bath during protease unhairing, the good linearity between released total protein and square root of time (min1/2) was obtained at the initial stage. The good linearity suggests that enzymatic unhairing by protease is a diffusion-controlled process at the initial stage. The analysis of kinetics of released saccharides also confirms the same conclusion. On the other hand, the same characteristics between the kinetics of released saccharides and that of released total protein further confirms that it is the hydrolysis of core protein by protease that leads to the degradation of proteoglycans and the release of protein and saccharides. However, in our tests, the kinetics of released collagen indicates that the injury to skin took place in 3-6 h. Therefore, it’s necessary to control the time of protease unhairing within an appropriate limit.  相似文献   

4.
《Journal of Cleaner Production》2007,15(13-14):1217-1227
Leather processing has been an important industrial activity, which has gained significant economic relevance in India. The recent practices of leather manufacture cause difficulties with regard to environmental challenges. The conventional method for making the skins ready for tanning and the tanning by itself employs a wide variety of chemicals which result in an increase in chemical oxygen demand (COD), total dissolved solids (TDS), chlorides, sulfates and chromium in the tannery effluent. In this study, an integrated chemo-enzymatic methodology has been explored which would minimize or to some extent eradicate the unsafe chemicals involved in the process to provide a clean environment. The sequence involves an enzymatic dehairing, NaOH based fibre opening and a pickle-less chrome tanning. The modified process results in decrease in COD and TS (total solids) loads by 67 and 78%, respectively, as compared with control process. The process explored appears to be economically viable.  相似文献   

5.
This paper presents a study on the resource and environmental profile of leather for communicating to the consumers about the environmental burdens of leather products. The results indicate that significant environmental impacts were caused during the tanning and finishing of leather as well as the electricity production and transportation required in the life cycle. The use of fossil fuels in the production of energy has greater impact with increased emissions leading to about 15190 kg CO2 equivalent of global warming and about 73 kg SO2 equivalent of acidification while producing 100 m2 of leather for shoe uppers. Further resource use of 174 kg of coal, 6.5 kg of fuel oil, 17.4 m3 of water and 348 kg of chemicals of which about 204 kg are hazardous are consumed, and wastewater of about 17 m3, BOD of 55 kg, COD of about 146 kg, TDS of 732 kg and solid waste of about 1445 kg are generated during the life cycle for the production of 100 m2 of leather. The total solid waste generated is 1317 kg, out of which about 80% is biodegradable contributed by slaughtering, tanning and finishing stage, 14% is non-biodegradable contributed by tanning, finishing and electricity production stages and 6% is hazardous mainly from tanning and finishing stage of leather.  相似文献   

6.
Municipal sewage from an oxidation ditch was treated for reuse by nanofiltration (NF) in this study. The NF performance was optimized, and its fouling characteristics after different operational durations (i.e., 48 and 169 hr) were analyzed to investigate the applicability of nanofiltration for water reuse. The optimum performance was achieved when transmembrane pressure = 12 bar, pH = 4 and flow rate = 8 L/min using a GE membrane. The permeate water quality could satisfy the requirements of water reclamation for different uses and local standards for water reuse in Beijing. Flux decline in the fouling experiments could be divided into a rapid flux decline and a quasi-steady state. The boundary flux theory was used to predict the evolution of permeate flux. The expected operational duration based on the 169-hr experiment was 392.6 hr which is 175% longer than that of the 48-hr one. High molecular weight (MW) protein-like substances were suggested to be the dominant foulants after an extended period based on the MW distribution and the fluorescence characteristics. The analyses of infrared spectra and extracellular polymeric substances revealed that the roles of both humic- and polysaccharide-like substances were diminished, while that of protein-like substances were strengthened in the contribution of membrane fouling with time prolonged. Inorganic salts were found to have marginally influence on membrane fouling. Additionally, alkali washing was more efficient at removing organic foulants in the long term, and a combination of water flushing and alkali washing was appropriate for NF fouling control in municipal sewage treatment.  相似文献   

7.
One of the methods to decrease the pollution of tanneries' wastewater is hair saving unhairing of hides. An investigation of proteolytic activity of enzymatic preparation (EP) has shown that some EPs have high stability in strong alkaline solutions and can be used for the hair saving process.Based on this investigation, a new hair saving unhairing method using a system containing EP, sodium hydroxide, sodium sulphide, and disodium hydrophosphate was developed. The method results in a high quality pelt suitable for leather manufacturing, decreases the pollution caused by sodium sulphide and the other products of hair degradation and avoids the pollution caused by calcium compounds.  相似文献   

8.
During the last few decades new materials and technologies have being studied and applied in order to reduce the ecological impact of leather production. Severe restrictions imposed by the pollution control authorities on the disposal of chromium, total dissolved solids and chlorides in tannery effluents have forced the tanners and researchers to look for eco-benign pickling and tanning processes. In this study, we would focus on the novel process development of pickling with the presence of oxazolidine based product. Investigations indicated that oxazolidine is a potential material to replace neutral salts in pickling and, realize high chrome exhaustion in the subsequential chrome tanning.  相似文献   

9.
Performance of a full-scale anoxic-oxic activated sludge treatment plant(4.0×10~5 m~3/day for the first-stage project) was followed during a year.The plant performed well for the removal of carbon,nitrogen and phosphorus in the process of treating domestic wastewater within a temperature range of 10.8℃ to 30.5℃.Mass balance calculations indicated that COD utilization mainly occurred in the anoxic phase,accounting for 88.2% of total COD removal.Ammonia nitrogen removal occurred 13.71% in the anoxic zones and 78.77% in the aerobic zones.The contribution of anoxic zones to total nitrogen(TN) removal was 57.41%.Results indicated that nitrogen elimination in the oxic tanks was mainly contributed by simultaneous nitrification and denitrification(SND).The reduction of phosphorus mainly took place in the oxic zones,51.45% of the total removal.Denitrifying phosphorus removal was achieved biologically by 11.29%.Practical experience proved that adaptability to gradually changing temperature of the microbial populations was important to maintain the plant overall stability.Sudden changes in temperature did not cause paralysis of the system just lower removal efficiency,which could be explained by functional redundancy of microorganisms that may compensate the adverse effects of temperature changes to a certain degree.Anoxic-oxic process without internal recycling has great potential to treat low strength wastewater(i.e.,TN 35 mg/L) as well as reducing operation costs.  相似文献   

10.
Concern about pollution related problems in the global scenario are persuading all the processing industries to adopt cleaner manufacturing practices. Thus, the leather industry is also under pressure to look for effective alternative tanning materials for chromium. Natural products like vegetable tannins are regaining importance. However, there are limitations in the use of vegetable tanning materials because of its high organic load in the effluent, which are difficult to degrade leading to high chemical oxygen demand (COD). Moreover, conventional vegetable tanning process requires partial pickling that involves the use of sodium chloride, to suppress osmotic swelling. This results in very high amount of total dissolved solid (TDS) content in wastewaters. In this investigation, an attempt has been made to design an eco-friendly vegetable tanning process combining pickle-free tanning and application of proteolytic enzymes to improve the exhaustion of vegetable tannins. Such an approach has resulted in more than 95% tannin exhaustion in the case of the experimental process, an increase of 10% compared with the conventional vegetable tanning process. The tanned leathers showed slight improvement in hydrothermal stability. Physical and tactile evaluation of experimental leathers has been better than conventionally tanned leathers. Surface colour values illustrated negligible variation in colour and shade between control and experimental leathers. The resultant leather showed opened up, split compact fibre structure that has been well coated, indicating that the enzyme assisted tanning process did not bring about any major change or destruction on the fibre structure of the leathers. The optimized system has been field tested in a commercial tannery. The results showed that the enzyme assisted tanning process is efficient in terms of improved quality of leather and also led to reduction in total solids (TS), chlorides and COD loads. The enzyme assisted tanning system presented appears to be a viable option for combating pollution arising from the conventional vegetable tanning system.  相似文献   

11.
制革厂的清洁生产技术   总被引:5,自引:0,他引:5  
联合国工业发展组织选择南京制革厂推行低污染制革生产技术,采用在废液中投加氧化镁的方法将金属铬沉淀出来,得到的铬泥体积比通常用氢氧化钠方法要小得多,该方法可使废水中90%以上的铬回收利用,年产90万张猪革的工厂可获利22~27万元/年  相似文献   

12.
A quantitative PCR(q PCR) assay was used to quantify Ancylostoma caninum ova in wastewater and sludge samples.We estimated the average gene copy numbers for a single ovum using a mixed population of ova.The average gene copy numbers derived from the mixed population were used to estimate numbers of hookworm ova in A.caninum seeded and unseeded wastewater and sludge samples.The newly developed qP CR assay estimated an average of3.7 × 10~3 gene copies per ovum,which was then validated by seeding known numbers of hookworm ova into treated wastewater.The qP CR estimated an average of(1.1 ± 0.1),(8.6 ± 2.9)and(67.3 ± 10.4) ova for treated wastewater that was seeded with(1 ± 0),(10 ± 2) and(100 ± 21)ova,respectively.The further application of the q PCR assay for the quantification of A.caninum ova was determined by seeding a known numbers of ova into the wastewater matrices.The qP CR results indicated that 50%,90% and 67% of treated wastewater(1 L),raw wastewater(1 L)and sludge(~4 g) samples had variable numbers of A.caninum gene copies.After conversion of the q PCR estimated gene copy numbers to ova for treated wastewater,raw wastewater,and sludge samples,had an average of 0.02,1.24 and 67 ova,respectively.The result of this study indicated that qP CR can be used for the quantification of hookworm ova from wastewater and sludge samples;however,caution is advised in interpreting qP CR generated data for health risk assessment.  相似文献   

13.
Physiological changes in crop plants in response to the elevated tropospheric ozone (O3) may alter N and C cycles in soil. This may also affect the atmosphere-biosphere exchange of radiatively important greenhouse gases (GHGs), e.g. methane (CH4) and nitrous oxide (N2O) from soil. A study was carried out during July to November of 2007 and 2008 in the experimental farm of Indian Agricultural Research Institute, New Delhi to assess the effects of elevated tropospheric ozone on methane and nitrous oxide emissions from rice (Oryza sativa L.) soil. Rice crop was grown in open top chambers (OTC) under elevated ozone (EO), non-filtered air (NF), charcoal filtered air (CF) and ambient air (AA). Seasonal mean concentrations of O3 were 4.3 ± 0.9, 26.2 ± 1.9, 59.1 ± 4.2 and 27.5 ± 2.3 ppb during year 2007 and 5.9 ± 1.1, 37.2 ± 2.5, 69.7 ± 3.9 and 39.2 ± 1.8 ppb during year 2008 for treatments CF, NF, EO and AA, respectively. Cumulative seasonal CH4 emission reduced by 29.7% and 40.4% under the elevated ozone (EO) compared to the non-filtered air (NF), whereas the emission increased by 21.5% and 16.7% in the charcoal filtered air (CF) in 2007 and 2008, respectively. Cumulative seasonal emission of N2O ranged from 47.8 mg m−2 in elevated ozone to 54.6 mg m−2 in charcoal filtered air in 2007 and from 46.4 to 62.1 mg m−2 in 2008. Elevated ozone reduced grain yield by 11.3% and 12.4% in 2007 and 2008, respectively. Global warming potential (GWP) per unit of rice yield was the least under elevated ozone levels. Dissolved organic C content of soil was lowest under the elevated ozone treatment. Decrease in availability of substrate i.e., dissolved organic C under elevated ozone resulted in a decline in GHG emissions. Filtration of ozone from ambient air increased grain yield and growth parameters of rice and emission of GHGs.  相似文献   

14.
The increasing manufacture of surfactants and their wide application in industry,agriculture and household detergents have resulted in large amounts of surfactant residuals being discharged into water and distributed into sediment. Surfactants have the potential to enhance arsenic mobility, leading to risks to the environment and even human beings. In this study, batch and column experiments were conducted to investigate arsenic mobilization from contaminated sediment by the commercial anionic surfactants sodium dodecylbenzenesulfonate(SDBS), sodium dodecyl sulfate(SDS), sodium laureth sulfate(AES)and nonionic surfactants phenyl-polyethylene glycol(Triton X-100) and polyethylene glycol sorbitan monooleate(Tween-80). The ability of surfactants to mobilize arsenic followed the order AES SDBS SDS ≈ Triton X-100 Tween 80. Arsenic mobilization by AES and Triton X-100 increased greatly with the increase of surfactant concentration and p H, while arsenic release by SDBS, SDS and Tween-80 slightly increased. The divalent ion Ca~(2+) caused greater reduction of arsenic mobilization than Na~+. Sequential extraction experiments showed that the main fraction of arsenic mobilized was the specifically adsorbed fraction. Solid phase extraction showed that arsenate(As(V)) was the main species mobilized by surfactants,accounting for 65.05%–77.68% of the total mobilized arsenic. The mobilization of arsenic was positively correlated with the mobilization of iron species. The main fraction of mobilized arsenic was the dissolved fraction, accounting for 70% of total mobilized arsenic.  相似文献   

15.
Circular economy (CE) focuses on resource-productivity and eco-efficiency improvement in a comprehensive way, especially on the industrial structure optimization of new technology development and application, equipment renewal and management renovation. The leather industry on the one side boosts the local economic development, on the other side however leads to the tremendous environment pollution and biological chains destruction. The CE model has been implemented as a new way of raw materials, water and energy consumption reduction in the leather industry. Reduce, Reuse, Recycle and Recover of the tannery effluents have been discussed in detail according to the different operation processes. The successful treatment approaches with analysis in the aspects such as wastewater, solid waste, sulfide, Chemical Oxygen Demand (COD), ammonium salt, chloride and chrome of the leather tannery with CE model provide guidance for the sustainable development of leather industry in the future.  相似文献   

16.
Soybean wastewater was used to generate biomass resource by use of purple non-sulfur bacteria (PNSB). This study investigated the enhancement of PNSB cell accumulation in wastewater by Mg2 + under the light-anaerobic condition. Results showed that with the optimal Mg2 + dosage of 10 mg/L, biomass production was improved by 70% to 3630 mg/L, and biomass yield also was improved by 60%. Chemical Oxygen Demand (COD) removal reached above 86% and hydraulic retention time was shortened from 96 to 72 hr. The mechanism analysis indicated that Mg2 + could promote the content of bacteriochlorophyll in photosynthesis because Mg2 + is the bacteriochlorophyll active center, and thus improved adenosine triphosphate (ATP) production. An increase of ATP production enhanced the conversion of organic matter in wastewater into PNSB cell materials (biomass yield) and COD removal, leading to more biomass production. With 10 mg/L Mg2 +, bacteriochlorophyll content and ATP production were improved by 60% and 33% respectively.  相似文献   

17.
Batch experiments were conducted to evaluate fluoride removal by Al,Fe,and Ti-based coagulants and adsorbents,as well as the effects of coexisting ions and formation of aluminum–fluoride complexes on fluoride removal by co-precipitation with alum(Al_2(SO_4)_3·18H_2O).Aluminum sulfate was more efficient than the other coagulants for fluoride removal in the pH range between 6 and 8.Nano-crystalline TiO_2 was more effective for fluoride removal than Al and Fe hydroxides in a pH range of 3–5.Coexisting anions in water decreased the removal of fluoride in the order:phosphate(2.5 mg/L) arsenate(0.1 mg/L) bicarbonate(200 mg/L) sulfate(100 mg/L) = nitrate(100 mg/L) silicate(10 mg/L) at a pH of 6.0.The effect of silicate became more significant at pH 7.0.Calcium and magnesium improved the removal of fluoride.Zeta-potential measurements determined that the adsorption of fluoride shifted the PZC of Al(OH)_3 precipitates from 8.9 to 8.4,indicating the chemical adsorption of fluoride at the surface.The presence of fluoride in solution significantly increased the soluble aluminum concentration at pH 6.5.A Visual MINTEQ modeling study indicated that the increased aluminum solubility was caused by the formation of AlF~(2+),AlF~(+2),and AlF_3complexes.The AlF_x complexes decreased the removal of fluoride during co-precipitation with aluminum sulfate.  相似文献   

18.
CAF空穴气浮—生物接触氧化工艺在制革废水处理中的应用   总被引:14,自引:1,他引:14  
罗浩 《环境工程》1997,15(5):3-5,16
介绍了一种皮革废水处理新工艺,即CAF空穴气浮—接触氧化工艺。经预处理的制革综合污水采用CAF系统混凝气浮,生物接触氧化工艺处理后,CODCr、BOD5、TSS、FOG、硫化物以及总铬的去除率均在95%以上,可达到回用标准。  相似文献   

19.
A chrome tanning process which allows the reuse of tanning floats has been developed. The most commonly used chromium salts were replaced by highly masked and basified ones. This substitution eliminates basification operation and prevents pH change and the considerable neutral salts concentration increase in the tanning float. Consequently, tanning float can be reused several times. An optimum chromium salt concentration in the tanning float between 10% and 12.5% has been determined. It has been shown that the number of times the tanning float can be reused depends on the quality of the leather grain to be manufactured. In the best case, a saving of 18 L of water per kilogram of tanned leather is calculated. This means savings of 90% of water normally used.  相似文献   

20.
In this study,direct contact membrane distillation(DCMD)was used for treating fermentation wastewater with high organic concentrations.DCMD performance characteristics including permeate flux,permeate water quality as well as membrane fouling were investigated systematically.Experimental results showed that,after 12 hr DCMD,the feed wastewater was concentrated by about a factor of 3.7 on a volumetric basis,with the permeate flux decreasing from the initial 8.7 L/m~2/hr to the final 4.3 L/m~2/hr due to membrane fouling;the protein concentration in the feed wastewater was increased by about 3.5 times and achieved a value of 6178 mg/L,which is suitable for reutilization.Although COD and TOC in permeate water increased continuously due to the transfer of volatile components from wastewater,organic rejection of over 95%was achieved in wastewater.GC–MS results suggested that the fermentation wastewater contained 128kinds of organics,in which 14 organics dominated.After 12 hr DCMD,not only volatile organics including trimethyl pyrazine,2-acetyl pyrrole,phenethyl alcohol and phenylacetic acid,but also non-volatile dibutyl phthalate was detected in permeate water due to membrane wetting.FT-IR and SEM–EDS results indicated that the deposits formed on the membrane inner surface mainly consisted of Ca,Mg,and amine,carboxylic acid and aromatic groups.The fouled membrane could be recovered,as most of the deposits could be removed using a HCl/Na OH chemical cleaning method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号