首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
乙炔是一种易燃易爆的重要有机化工原料,为评估乙炔的燃爆风险,采用最小点火能测试仪、爆轰管考察了压力对乙炔分解爆炸的影响规律。研究表明压力为影响乙炔分解爆炸的敏感因素,乙炔发生分解爆炸的最小点火能随系统压力的升高呈指数型下降,点火温度随压力的升高而降低,分解爆炸的后果为系统初始压力的8~10倍。乙炔分解爆炸的临界压力随温度的升高而降低,温度每升高1℃,临界压力降低约4×10-4MPa。在乙炔的生产储运及使用过程中,应综合考虑温度的影响并严格控制临界分压。  相似文献   

2.
通过爆炸极限测试装置测定二氯甲烷在常压空气中的爆炸极限,结果表明二氯甲烷在常压下,室温~120℃内不存在爆炸极限。考察温度、压力及氧氮混合气中氧含量对二氯甲烷爆炸极限的影响,结果表明:温度对二氯甲烷爆炸极限几乎没有影响;随着压力的增大,二氯甲烷爆炸下限没有变化,但爆炸上限变化较为明显;随着氧气浓度的增大,二氯甲烷爆炸下限有较小幅度变化,但爆炸上限变化幅度较大;绘制了二氯甲烷在常温常压下的爆炸极限三元图,得到该工况条件下"二氯甲烷-氧气-氮气"混合体系的燃爆区域,极限氧含量为17. 8%(相当于含氧量22. 1%的氧氮混合气)。因此在工业生产过程中降低体系的压力及氧气含量有助于预防二氯甲烷燃爆危险的发生。  相似文献   

3.
环氧氯丙烷生产工艺中双氧水分解产生的氧气与含氯丙烯、环氧氯丙烷、甲醇的可燃气体混合存在燃爆危险,为预防燃爆发生,利用5L爆炸极限测试仪测定分离罐气相出口可燃气在不同氧气浓度条件下的爆炸极限,并以此绘制爆炸极限三元图,得到不同工况条件下"可燃气-氧气-氮气"混合体系的燃爆区域。结果表明:随着氧气浓度的升高,可燃气爆炸上限明显提高,但爆炸下限变化不明显;随温度上升,气相出口组分发生变化,LOC值逐渐降低;正常冷却条件下极限氧含量为12%,冷却效果差时为10%,冷却失效时为9.3%;设置氧浓度报警时参考最小LOC值,留出裕度空间,控制体系氧含量小于5%有助于预防燃爆发生。  相似文献   

4.
为防止双氧水法制环氧氯丙烷工艺过程中气相燃爆事故的发生,利用Aspen软件对反应器气相空间、一级冷凝器、二级冷凝器、吸附及尾气排放单元开展了组分模拟和燃爆风险分析,针对高风险单元开展了工况条件下的燃爆参数测试,根据测试结果制定了工艺气冷凝处理方案.结果表明:一级冷凝器冷凝温度低于33℃时,工艺气中氯丙烯含量低于该温度下的爆炸上限,进入爆炸区间,设定一级冷凝温度为35℃;二级冷凝器中氯丙烯的极限氧含量为10.9%,控制二级冷凝器中氧浓度低于8.9%,可以达到燃爆防控的目标.  相似文献   

5.
乙炔发生器是利用电石和水相互作用以制取乙炔的设备。由于电石属于遇水燃烧的一级危险品 ,乙炔又系易燃易爆气体 ,所以乙炔发生器也是具有燃烧爆炸危险的压力容器。因此 ,正确认识乙炔发生器着火爆炸的原因 ,及其安全使用要求至关重要。1乙炔发生器燃烧爆炸的原因造成乙炔发生器发生燃爆事故的原因较多。例如 :①结构设计不合理 ,冷却水不足或没有按时换水等造成电石过熟 ,罐体升温过高 ;②缺少必要的安全装置 (如安全阀、回火防止器等 )或安全装置失灵 ;③发生器罐体或胶管连接处漏气 ;④装料换料时遇明火 ,机件之间或机件与硅铁之间相互…  相似文献   

6.
针对电石遇潮湿空气释放乙炔的危险特性,以潮湿空气与电石粉尘及电石粉尘堆垛表面接触的方式,替代传统的遇湿易燃危险性测试方法,拟合得到了乙炔气体释放速率随潮湿空气相对湿度变化的方程式,提出了将乙炔气体浓度控制在低于发生火灾爆炸危险区域的潮湿空气相对湿度和稀释乙炔气体浓度的氮气保护进气流量(Q)计算公式。结果表明:电石遇潮湿空气释放乙炔气体的浓度受温度和相对湿度的影响,根据不同温度条件下潮湿空气中水汽的分压(Ps)和乙炔气体的密度(ρ乙炔),可计算得到一定气相空间内电石遇潮湿空气释放乙炔气体的浓度;潮湿空气的相对湿度可以有效表征乙炔气体的释放量,用于评估在一定气相空间内电石遇潮湿空气释放乙炔气体发生火灾爆炸的可能性。  相似文献   

7.
为研究乙烯基乙炔的热危险性,采用C80微量热仪研究了乙烯基乙炔在空气中的放热现象,得到了升温速率对乙烯基乙炔聚合放热的影响、反应活化能以及绝热条件下达到最大反应速率所需时间TMRad.结果表明:随着升温速率的增大,乙烯基乙炔的起始放热温度和最大放热温度随之升高;活化能范围为50 ~ 170 kJ/mol;TMRad为1,8,24,48 h时对应的起始温度分别为112.69,99.65,93.78,90.23 ℃.  相似文献   

8.
为研究硝酸异辛酯在储存及运输过程中的危险特性,有效预防和减少事故的发生,按照危险货物分类测试程序,通过隔板、克南、时间压力、撞击、摩擦等试验对硝酸异辛酯的固有危险性进行了评价;利用热分析技术考察了不同温升速率、水及酸雨等条件对硝酸异辛酯的热分解特性的影响.结果表明:硝酸异辛酯在相对封闭空间内遇热量、火焰、爆炸冲击及外部的机械刺激条件下表现出轻微的燃爆危险性,但不足以将其按照爆炸品进行管理;随着温升速率的增加,硝酸异辛酯热分解起始放热温度也逐渐增大,而水和酸雨均对硝酸异辛酯的分解具有促进作用,与纯硝酸异辛酯相比,其反应起始放热温度分别降低了12.4℃和27.2℃,放热量分别增大了387.439J/g和568.076J/g,失控分解危险性大大增加.  相似文献   

9.
针对历年来发生的丁二烯事故,分析事故发生原因主要包括丁二烯泄漏、聚合失控和丁二烯过氧化物累积被引燃引爆3类。重点综述了丁二烯聚合机理与潜在风险,其中丁二烯二聚主要受温度的影响;丁二烯含氧自由基聚合主要受温度、氧、杂质(铁离子和水)等影响。总结了针对性的安全防控措施,包括丁二烯系统氧含量控制、温度控制、杂质控制,以及聚过氧化物的处置。  相似文献   

10.
加氢裂化装置是石化炼油装置中爆炸和火灾危险性最高的装置,根据加氢裂化的工艺和装置特点,从物料和主要设备两个方面分析了加氢裂化装置的火灾危险特性,探讨了加氢裂化装置发生事故原因,从设置监测装置、防止反应失控和强化灭火预案等方面提出了加氢裂化装置安全管理对策.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号