首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Invertebrate communities in polluted rivers are often exposed to a wide variety of compounds. Due to complex interactions, 'pollution tolerant' species are not necessarily the most tolerant species to toxicants tested under standard laboratory conditions. It was hypothesized that the distribution of species in polluted rivers is not only dependent on the tolerance of species to toxicants, but also on species-specific capacities to modify or compensate for negative effects of toxicants. To test this hypothesis, species-specific responses to metals in organically enriched river water were studied under controlled conditions. The zebra mussel Dreissena polymorpha and the midge Chironomus riparius were exposed to metal-polluted water from the River Dommel. Additionally, the (interactive) effects of metals and humic acids (HA) on both species were evaluated. In spite of a lower tolerance of Chironomus riparius to metals in laboratory studies, the midge was the most tolerant of the two test species to metal-polluted site water. The results indicated that the sensitivities of the two test species determined in laboratory tests were inversely related to their sensitivities to polluted river water. In accordance with these results, midge larvae were protected from copper (Cu) toxicity by HA, while metal toxicity was not reduced (Cu) or even amplified (cadmium) by HA for the zebra mussel. Thus, the presence of (naturally occurring) HA in site water may partly account for discrepancies between responses of species to bioassays and toxicity tests. It is suggested that these differences in responses to metals in site water are strongly influenced by species-specific preferences for organic compounds (like HA). It is concluded that the response to organic compounds present in site water largely determines whether a species is classified as 'pollution tolerant' or 'pollution sensitive'.  相似文献   

2.
Both local adaptation and acclimation in tolerance mechanisms may allow populations to persist under metal pollution. However, both mechanisms are presumed to incur (energetic) costs and to trade-off with other life-history traits. To test this hypothesis, we exposed Pardosa saltans (Lycosidae) spiderlings originating from metal-polluted and unpolluted sites to a controlled cadmium (Cd) treatment, and compared contents of metal-binding metallothionein-like proteins (MTLPs), internal metal concentrations, and individual survival and growth rates with a reference treatment. While increased MTLP concentrations in offspring originating from both polluted and unpolluted populations upon exposure indicates a plastic tolerance mechanism, survival and growth rates remain largely unaffected, independent of the population of origin. However, MTLP and Cd concentrations were not significantly correlated. We suggest that MTLP production may be an important mechanism enabling P. saltans populations to persist in ecosystems polluted with heavy metals above a certain level.  相似文献   

3.
The influence of different porewater salinities (up to 12 g/L) on the toxicity and bioaccumulation of copper, zinc and lead from metal-spiked sediments was assessed using the midge, Chironomus maddeni. Survival of the larvae was significantly reduced at a porewater salinity of 12 g/L, but no effects were observed at 4 or 8 g/L. Both growth and survival of C. maddeni were reduced after exposure to salt/metal spiked sediments as compared to those exposed to sediments spiked with metals or salt alone. Increased salinity resulted in increased bioaccumulation of copper and zinc, but decreased bioaccumulation of lead. The observed patterns of bioaccumulation were not entirely explained by the modelled free ion activities of the metals, indicating that factors such as osmotic stress, consumption of metal-contaminated sediments or metal interactions may have been important as well. These results highlight the need to consider the influence of existing or potential salinization when undertaking hazard assessments of freshwater systems impacted by contaminants such as trace metals.  相似文献   

4.
- DOI: http://dx.doi.org/10.1065/espr2006.01.007 Goal, Scope and Background Amu Darya river, one of the main water resources of Uzbekistan, shows a relevant longitudinal enrichment of soluble contents which strongly limits the human uses of its waters. Because of the low natural run-off processes, salts and pollutants are mainly driven to the river by the return waters used for washing and irrigating the surrounding lands. The influence of return waters on stream quality is dramatically relevant in the lower reaches of the river where almost all the flowing waters have been previously used for the agriculture practises. To provide analytical evidence on the potential effects of return waters on the quality of the Amu Darya river, the paper reports and comments data on salinity and metals contents of the waters flowing in the artificial channel network of Bukhara and in the Amu Darya river, from Bukhara up to the dam forming the Tuyamuyn Hydro Complex (THC). Methods A total of 15 sampling sites were selected for the analytical survey: Two sites were located on the Amu Darya river downstream from the inflow of the return waters from Bukhara, two in the river entering in the THC, and three downstream from the dam forming the reservoir complex. The waters entering and leaving the Bukhara agricultural area were sampled in two main collectors, while the waters flowing in the channel system were sampled in six distinct collectors. The following parameters were considered in the survey: pH, Oxygen, Hardness, Salinity, Conductivity, P-PO4 3–, P tot, N tot, N-NO3 2–, N-NO2 –, COD, Ca2+, Mg2+, Fe, Mn, Zn, Cr, Cu, Ni, Cd, Pb. Results and Discussion Salt concentrations below 1000 mg/l were measured in the Amu Darya waters upstream to Bukhara. In the drainage system, salinity exceeds the palatability limit and reaches the maximum peak of 3200 mg/l in the outflow collector. Due to dilution effects, salinity returns to lower values (400–700 mg/l) along the Amu Darya river downstream from Bukhara; calcium and magnesium resulted the major constituents of the overall salinity. No serious metal contaminations were detected in the waters entering and leaving the examined channel system. Differently, the Amu Darya waters upstream to the THC showed a relevant metal contamination, with Cr, Ni, Fe concentrations exceeding the limits for human consumption. In the downstream sites, located in the Tuyamuyn Hydro Complex and in the Amu Darya river flowing out from this reservoir, excluding Fe, all the examined metals showed lover concentrations and values below the normative limits. Conclusion The direct human consumption of the lower Amu Darya waters is strongly limited by salinity and by metal contamination. Although the salinity of the return waters from the Bukhara drainage system results in above normal limits, no corresponding increases were measured in the Amu Darya river downstream from the return water inflow at the time of the survey. As for the metal contamination of the Amu Darya river, the survey revealed the presence of relevant sources of metal contamination downstream from Bukhara external to the agricultural drainage system. This contamination resulted in reduced sedimentation processes taking place in the limnetic zones of the Amu Darya river upstream to the dam forming the Tuyamuyn Hydro Complex. Recommendation and Outlook To fully understand the longitudinal increase of Amu Darya salinity, an evaluation of the cumulative effects of the loads from the main agricultural areas is required, also by using mass-balance models. As for the metals, an investigation should be addressed to identify the anthropogenic sources of contaminations present in the lower Amu Darya region and the metal loads should be diverted.  相似文献   

5.
The Joint Danube Survey (JDS)--a comprehensive monitoring survey to assess the environmental pollution status of the river Danube--was carried out in 2001. Samples were taken at 74 positions along the river from Neu-Ulm (River-km 2589) down to the Danube Delta at the Black Sea (River-km 0) and in 24 main tributaries and anabranches. Besides other biological and chemical parameters, concentrations of Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn were determined in sediments and suspended solids. Lowest heavy metal concentrations were measured around River-km 1800. After an increase down to River-km 1000 (the Irongate Reservoir), a constant level or a slight decrease could be found down to and in the Danube Delta. Very high element concentrations were determined at only a few stations of the river Danube and in some tributaries. An evaluation of the pollution status of the river was carried out by enrichment factors (EFs) calculated using adapted background concentrations of heavy metals. Except single sampling sites and some tributaries, the pollution of the river Danube by As, Cr, Cu, Pb, Hg, Ni, and Zn can be regarded as rather low. However, elevated concentrations of Cd were found in both investigated matrices, particularly in the lower stretch of the river Danube beginning at the Irongate.  相似文献   

6.
The Flat Nickel mine at Evje in southern Norway was mined intensively between 1914 and 1945 with little regard for any potential environmental effect. Much of the ore extracted was smelted at a site adjacent to the river Otra south of Evje. Recent studies have revealed heavy metal pollution in the land surrounding the smelter and in water draining from the mine, leading to concern for the aquatic ecosystem in the river Otra. Brown trout were sampled from an uncontaminated lake nine kilometres upstream from the smelter, from the base of the Oddebekken (a tributary draining the mine water into the Otra), from sites immediately upstream and down stream of the smelter and from a site four kilometres down stream from the smelter. Fish from sites adjacent to the smelter and the base of the Oddebekken were smaller than those from the lake and down stream site. Fish from sites adjacent to the smelter and the base of the Oddebekken were more likely to be infected with parasitic nematode Eustrongylidies. At the population but not the individual level the presence of encapsulated parasitic larvae correlated with the concentrations of two metals, Ni and Cu, in fish.  相似文献   

7.
A silent epidemic of environmental metal poisoning?   总被引:16,自引:0,他引:16  
The main objective of this paper is to provoke and stimulate debate on the health effects of long-term, low-level exposure of human populations to toxic metals. Over one billion (10(9)) human guinea pigs are now being exposed to elevated levels of toxic metals and metalloids in the environment. The number of persons suffering from subclinical metal poisoning is believed to be several million. A large portion of the cases are in developed countries but the urban areas of developing countries have become 'hot-spots' of metal pollution, and the populations of such countries are particularly susceptible to environmental toxins. As a global problem, the potential health effects of metallic hazards should be a matter of public health concern, especially if the emissions of toxic metals into the environment continue at the current rate.  相似文献   

8.
Surficial sediments, midge larvae (Chironomidae, Diptera) and tubificid worms (Tubificidae, Oligochaeta) were collected at 65 sampling sites located in four different river basins in Flanders (Belgium). Concentrations of the trace metals Cu, Zn, Cd and Pb were measured in organisms and sediments by atomic absorption spectrophotometry. Sediments were subjected to a simultaneous extraction scheme to identify trace metal partitioning among various geochemical phases. Three geochemical characteristics of the sediment were analysed; Total Organic Carbon (TOC), Fe oxides and Mn oxides. Non-linear regression models were constructed to determine the relative importance of the different sediment factors contributing to the variation in metal accumulation by the tubificid worms and chironomids. Generally, the amount of variation that could be explained by these models was limited, with coefficients of determination ranging from 0.05 to 0.66. In most cases, metal levels in organisms were positively related to the easily reducible and reducible metal fractions, and negatively related to the TOC and Fe sediment content. The correlations between metal concentrations in tubificid worms and chrinomid larvae were also rather poor, with coefficients of determinations ranging from 0.01 to 0.52. This indicates that understanding the chemistry of the environment does not suffice to predict the concentrations in organisms. Differences in the structural and functional organisation of the organisms, which among others determine the route of exposure, are at least equally important causes of variability in metal availability and accumulation.  相似文献   

9.
Bioaccumulation of As, Cd, Cu, Pb and Zn by Macrobrachium prawns was observed to occur in the Strickland River downstream of a gold mine at Porgera, Papua New Guinea. This was despite the total metal concentrations of waters and sediments indicating no difference from reference sites within tributaries. To provide information on potential sources and bioavailability of metals to prawns, an extensive range of analyses were made on waters, suspended solids, deposited sediments and plant materials within the river system. Dissolved metal concentrations were mostly sub-micrograms per liter and no major differences existed in concentrations or speciation between sites within the Strickland River or its tributaries. Similarly, no differences were detected between sites for total or dilute acid-extractable metal concentrations in bed sediments and plant materials, which may be ingested by the prawns. However, the rivers in this region are highly turbid and the dilute acid-extractable cadmium and zinc concentrations in suspended solids were greater at sites in the Strickland River than at sites in tributaries. The results indicated that mine-derived inputs increased the proportion of these forms of metals or metalloids in the Strickland River. These less strongly bound metals and metalloids would be more bioavailable to the prawns via the dietary pathway. The results highlighted many of the difficulties in using routine monitoring data without information on metal speciation to describe metal uptake and predict potential effects when concentrations are low and similar to background. The study indicated that the monitoring of contaminant concentrations in organisms that integrate the exposure from multiple exposure routes and durations may often be more effective for detecting impacts than intermittent monitoring of contaminants in waters and sediments.  相似文献   

10.
The biological availability of metals in municipal wastewater effluents is strongly influenced by the physical and chemical conditions of both the effluent and the receiving water. Aquatic organisms are exposed to both dissolved and particulate (food ingestion) forms of these metals. In the present study, the distribution of metals in specific tissues was used to distinguish between exposure routes (i.e. dissolved vs. particulate phase) and to examine metal bioavailability in mussels exposed to municipal effluents. Caged Elliptio complanata mussels were deployed at sites located between 1.5 km upstream and 12 km downstream of a major effluent outfall in the St. Lawrence River. Metals in surface water samples were fractionated by filtration techniques to determine their dissolved, truly-dissolved (<10 kDa), total-particulate and acid-reactive-particulate forms. At the end of the exposure period (90 days), pooled mussel soft tissues (digestive gland, gills, gonad, foot and mantle) were analyzed for several metals. The results showed that gills and digestive gland were generally the most important target tissues for metal bioaccumulation, while gill/digestive gland metal ratios suggest that both exposure routes should be considered for mussels exposed to municipal effluents. We also found that Ag and Cd in the dispersion plume nearest the outfall, in contrast to other metals such as Cu and Zn, are more closely associated with colloids and were generally less bioavailable than at the reference site in the St. Lawrence River.  相似文献   

11.
F. Van Hoof  M. Van San 《Chemosphere》1981,10(10):1127-1135
In order to find the causative agent in frequently occuring fish kills in a Belgian river a series of toxicity tests has been conducted in which rudd (Scardinius erythrophtalmus) were exposed to acute lethal and subacute non lethal concentrations of copper, chromium, cadmium and zinc. The concentrations of these metals in gills, opercle, kidney, liver and muscle were measured. Metal levels in gills were the most valuable indicator of acute lethal exposure. This information was compared with levels found in rudd from a surface water storage reservoir and from the river Meuse. Fish collected after fish kills in the river Meuse were analysed. In one case copper could be identified as one of the toxicants concerned by fish tissue analysis. Metal levels in fish tissues can give valuable additional information concerning the cause of kills provided that background information is available about metal levels in water and normal tissue levels.  相似文献   

12.
The speciation of heavy metals was measured over a variety of natural and undisturbed water/sediment interfaces. Simultaneously, two benthic species (oligochaete Limnodrilus spp. and the midge Chironomus riparius) were exposed to these sediments. Under occurring redox conditions, free ion activities of trace metals Cd, Cu, Ni, Pb, and Zn were measured with a chelating exchange technique, while geochemical conditions (i.e., redox) remained in tact. Free ion activities were compared with total dissolved concentrations in pore waters and surface waters in order to relate speciation to bioaccumulation. Limnodrilus spp. and C. riparius have accumulation patterns that could be linked to time-dependent exposure concentrations, expressed as chemical speciation, in the surface water and the sediment's pore water. Concentrations of free metal ions in the overlying surface water, rather than in sediment pore water, proved to be the best predictor for uptake. For the first time, measurements are obtained from sediments without disturbing physical-chemical conditions and thus bioavailability, a major restriction of other studies so far.  相似文献   

13.
The study presents a 3-year time series data on dissolved trace elements and rare earth elements (REEs) in a monsoon-dominated river basin, the Nethravati River in tropical Southwestern India. The river basin lies on the metamorphic transition boundary which separates the Peninsular Gneiss and Southern Granulitic province belonging to Archean and Tertiary–Quaternary period (Western Dharwar Craton). The basin lithology is mainly composed of granite gneiss, charnockite and metasediment. This study highlights the importance of time series data for better estimation of metal fluxes and to understand the geochemical behaviour of metals in a river basin. The dissolved trace elements show seasonality in the river water metal concentrations forming two distinct groups of metals. First group is composed of heavy metals and minor elements that show higher concentrations during dry season and lesser concentrations during the monsoon season. Second group is composed of metals belonging to lanthanides and actinides with higher concentration in the monsoon and lower concentrations during the dry season. Although the metal concentration of both the groups appears to be controlled by the discharge, there are important biogeochemical processes affecting their concentration. This includes redox reactions (for Fe, Mn, As, Mo, Ba and Ce) and pH-mediated adsorption/desorption reactions (for Ni, Co, Cr, Cu and REEs). The abundance of Fe and Mn oxyhydroxides as a result of redox processes could be driving the geochemical redistribution of metals in the river water. There is a Ce anomaly (Ce/Ce*) at different time periods, both negative and positive, in case of dissolved phase, whereas there is positive anomaly in the particulate and bed sediments. The Ce anomaly correlates with the variations in the dissolved oxygen indicating the redistribution of Ce between particulate and dissolved phase under acidic to neutral pH and lower concentrations of dissolved organic carbon. Unlike other tropical and major world rivers, the effect of organic complexation on metal variability is negligible in the Nethravati River water.  相似文献   

14.
The ecotoxicological implications of a flooding disaster were investigated with the exceptional Elbe flood in August 2002 as an example. Sediment samples were taken shortly after the flood at 37 sites. For toxicity assessment the midge Chironomus riparius (Insecta) and the mudsnail Potamopyrgus antipodarum (Gastropoda) were exposed to the sediment samples for 28 days. For a subset of 19 sampling sites, the contamination level and the biological response of both species were also recorded before the flood in 2000. The direct comparison of biological responses at identical sites revealed significant differences for samples taken before and immediately after the flood. After flood sediments of the river Elbe caused both higher emergence rates in the midge and higher numbers of embryos in the mudsnail. Contrary to expectations the toxicity of the sediments decreased after the flood, probably because of a dilution of toxic substances along the river Elbe and a reduction in bioavailability of pollutants as a result of increasing TOC values after the flood.  相似文献   

15.
Since 1976, active and passive biological monitoring programs using the freshwater mussel Dreissena polymorpha have been carried out to study trends in the bioavailability of heavy metals in the rivers Rhine and Meuse. The Cd concentration in mussels exposed in the river Rhine has decreased from 74 mg kg(-1) in 1976 to 1.5 mg kg(-1) in 1988. In the river Meuse, however, the Cd concentration in Dreissena polymorpha has increased from 6 mg/kg (-1) to 22 mg kg(-1). Cu concentrations in mussels have not changed. Comparison of heavy metal concentrations in mussels from Lake Heerhugowaard, Lake Markermeer, Lake Maarsseveen and the river Dieze demonstrated that background concentrations for Cu, Zn, Cd and Pb in Dreissena polymorpha are about 12, 110, 1 and 0.5 mg kg(-1), respectively. Mussels from these four locations showed seasonal variation in heavy metal concentrations. This may be caused by both changes in the bioavailability of the metals and by the annual growth and reproductive cycle of the mussels. Therefore, one should take care that animals are collected at the same location and in the same section in long-term active biological monitoring programs.  相似文献   

16.
Chironomids may adapt to pollution stress but data are confined to species that can be reared in the laboratory. A microcosm approach was used to test for adaptation and species differences in heavy metal tolerance. In one experiment, microcosms containing different levels of contaminants were placed in polluted and reference locations. The response of Chironomus februarius to metal contaminants suggested local adaptation: relatively more flies emerged from clean sediment at the reference site and the reverse pattern occurred at the polluted site. However, maternal effects were not specifically ruled out. In another species, Kiefferulus intertinctus, there was no evidence for adaptation. In a second experiment, microcosms with different contaminant levels were placed at two polluted and two unpolluted sites. Species responded differently to contaminants, but there was no evidence for adaptation in the species where this could be tested. Adaptation to heavy metals may be uncommon and species specific, but more sensitive species need to be tested across a range of pollution levels. Factors influencing the likelihood of adaptation are briefly discussed.  相似文献   

17.
The eggs of terrestrial gastropods represent a major investment of resources by the parent, not least in the provision of essential metals. In this experiment 11 populations of Helix aspersa were collected from habitats with different histories of lead exposure and allowed to reproduce in the laboratory. After 4 months on a low metal diet, five four-egg samples were taken from a single clutch of each population and analysed for their metal content. Within-clutch and between population variation in the eggs were measured. No Pb or Cd was detected in any of the eggs. Both trace and essential metals show considerable variation between eggs within the same clutch. Cu levels were consistent across populations while egg Zn was closely correlated with soil Zn. Median Ca and Mg levels show little relation to soil concentrations. However, Ca provision declines with soil Pb across the populations. While the metal content of the eggs appears to be closely regulated, an interaction between Pb and Ca in the parental tissues may mediate the supply of Ca to the eggs.  相似文献   

18.
The negative effects of pollution on amphibians are especially high when animals are additionally stressed by other environmental factors such as water salinity. However, the stress provoked by salinity may vary among populations because of adaptation processes. We tested the combined effect of a common fertilizer, ammonium nitrate (0-90.3 mg N-NO3NH4/L), and water salinity (0-2‰) on embryos of two Pelophylax perezi populations from ponds with different salinity concentrations. Embryos exposed to the fertilizer were up to 17% smaller than controls. Survival rates of embryos exposed to a single stressor were always below 10%. The exposure to both stressors concurrently increased mortality rate (>95%) of embryos from freshwater. Since the fertilizer was lethal only when individuals were stressed by the salinity, it did not cause lethal effects on embryos naturally adapted to saline environments. Our results underscore the importance of testing multiple stressors when analyzing amphibian sensitivity to environmental pollution.  相似文献   

19.
Introduction In this work, sediments of the River Tisa (Tisza) are studied to assess their environmental pollution levels for some major heavy metals, as well as to predict the investigated elements’ mobility on the basis of their association type with the substrate. The Tisa River catchments area is a subbasin of the River Danube. Part of this river, 166 km long, belongs to the Serbian province of Vojvodina, before it flows into the Danube. It has been chosen for our investigation, because it has been exposed to intense pollution in the last decades. Materials and Methods The river sediment samples were collected at 32 locations. The proportions of sand, silt and clay fractions were determined. The sequential extraction procedure following a modified Tessier method was applied for speciation of the metal forms in the collected samples. The metal concentrations of Zn, Cd, Pb, Ni, Cu, Cr, Fe and Mn in extracts were determined by atomic absorption spectroscopy. Results and Discussion Granulometric analysis showed that some 50% of the Tisa River sediments were silt and clay, while the rest was sand with quartz, as the main constituent. The average metal content of the surface river sediment samples for every fraction of sequential extraction was presented and discussed in relation to pH, Eh and metal fractionation. The average metal content from the Tisa River sediments, obtained as an average of the metal’s concentration released in all five sequential extraction fractions was compared with: average metal contents of the Tisa River sediments in Hungary, metal content in soils formed on the Tisa River alluvium of Vojvodina, average metal content in soils of Vojvodina, and average metal content in soils of Hungary. An assessment of metal pollution levels in Tisa River sediments was made by comparing mean values for obtained results for the Tisa River sediments with the freshwater sediment’s Quality Guidelines as published by US EPA, Environment Canada and soil standards for Serbia. Conclusion According to US EPA and Canadian Quality Guidelines for freshwater sediments, the concentration of heavy metals in Tisa sediments were: (a) much higher than defined concentrations below which harmful effects on river biota are unlikely to be observed, (b) below defined concentrations above which harmful effects on river biota are likely to be observed. The concentration levels of Pb, Ni, Cu and Cr in Tisa River sediments are safe when compared with Serbian MAQ (Maximum Allowed Quantity) standards for soils, but they are unsafe in the case of Zn and Cd. Recommendations and Outlook The quality of sediments in the Tisa River was on the border line between potentially polluted and polluted. This line could very easily be exceeded since the quality of sediments in the Tisa River in Hungary was already worse than in Serbia. These results indicated the need for further monitoring of heavy metals in that locality.  相似文献   

20.
The extraction kinetic of trace metals (Cd, Cu, Pb, and Zn) in river sediments by four extraction agents was studied. As extractants ammonium acetate, acetic acid, hydroxylamine and EDTA solutions were assayed. These reagents can leach the metals more or less selectively from several metal compartments of sediments. The metal leaching kinetic model permits classification of the metal species in labile and moderately-labile ones. The combination of two or more non specific reagents permits a high characterisation of metal distribution and leachability. The results obtained with this model in four river sediments were compared with data obtained by the SM&T sequential extraction procedure, in order to characterise the chemical nature of leached metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号