首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Overexploitation of wildlife populations occurs across the humid tropics and is a significant threat to the long-term survival of large-bodied primates. To investigate the impacts of hunting on primates and ways to mitigate them, we developed a spatially explicit, individual-based model for a landscape that included hunted and un-hunted areas. We used the large-bodied neotropical red howler monkey (Alouatta seniculus) as our case study species because its life history characteristics make it vulnerable to hunting. We modeled the influence of different rates of harvest and proportions of landscape dedicated to un-hunted reserves on population persistence, population size, social dynamics, and hunting yields of red howler monkeys. In most scenarios, the un-hunted populations maintained a constant density regardless of hunting pressure elsewhere, and allowed the overall population to persist. Therefore, the overall population was quite resilient to extinction; only in scenarios without any un-hunted areas did the population go extinct. However, the total and hunted populations did experience large declines over 100 years under moderate and high hunting pressure. In addition, when reserve area decreased, population losses and losses per unit area increased disproportionately. Furthermore, hunting disrupted the social structure of troops. The number of male turnovers and infanticides increased in hunted populations, while birth rates decreased and exacerbated population losses due to hunting. Finally, our results indicated that when more than 55% of the landscape was harvested at high (30%) rates, hunting yields, as measured by kilograms of biomass, were less than those obtained from moderate harvest rates. Additionally, hunting yields, expressed as the number of individuals hunted/year/km2, increased in proximity to un-hunted areas, and suggested that dispersal from un-hunted areas may have contributed to hunting sustainability. These results indicate that un-hunted areas serve to enhance hunting yields, population size, and population persistence in hunted landscapes. Therefore, spatial regulation of hunting via a reserve system may be an effective management strategy for sustainable hunting, and we recommend it because it may also be more feasible to implement than harvest quotas or restrictions on season length.  相似文献   

2.
Effect of Hunting in Source-Sink Systems in the Neotropics   总被引:3,自引:0,他引:3  
Abstract: Previous studies of the sustainability of wildlife hunting in the Neotropics have not considered the potential dispersal of animals into hunted areas. A literature review of studies of subsistence hunting in the Neotropics suggests that hunting is often conducted in areas adjacent to relatively undisturbed habitat that may act as sources of animals for the hunted sites. We compared studies of tapir (   Tapirus terrestris ) hunting at different sites to illustrate the potential bias of sustainability evaluations based on local productivity. The limited information available suggests that dispersal could have a key role in rebuilding animal populations depleted by hunting. Thus, factors that strongly affect dispersal—such as spatial distribution and size of areas with and without hunting, population size in source areas, and social behavior—should be considered when the sustainability of hunting is evaluated in areas with heterogeneous hunting pressure. We suggest the application of two models that use spatial controls (recognizing the potential source-sink nature of some hunted systems and protecting unhunted refugia) to avoid wildlife overexploitation when biological data and enforcement capabilities to regulate harvests are limited. This approach may produce more reliable evaluations of sustainability, provide information on the dynamics of hunting systems, and help local communities and policymakers conserve key areas (including protected areas) that may act as game sources.  相似文献   

3.
Abstract:  Tanzania is a premier destination for trophy hunting of African lions (Panthera leo) and is home to the most extensive long-term study of unhunted lions. Thus, it provides a unique opportunity to apply data from a long-term field study to a conservation dilemma: How can a trophy-hunted species whose reproductive success is closely tied to social stability be harvested sustainably? We used an individually based, spatially explicit, stochastic model, parameterized with nearly 40 years of behavioral and demographic data on lions in the Serengeti, to examine the separate effects of trophy selection and environmental disturbance on the viability of a simulated lion population in response to annual harvesting. Female population size was sensitive to the harvesting of young males (≥3 years), whereas hunting represented a relatively trivial threat to population viability when the harvest was restricted to mature males (≥6 years). Overall model performance was robust to environmental disturbance and to errors in age assessment based on nose coloration as an index used to age potential trophies. Introducing an environmental disturbance did not eliminate the capacity to maintain a viable breeding population when harvesting only older males, and initially depleted populations recovered within 15–25 years after the disturbance to levels comparable to hunted populations that did not experience a catastrophic event. These results are consistent with empirical observations of lion resilience to environmental stochasticity .  相似文献   

4.
Abstract:  Many researchers have obtained extinction-rate estimates for plant populations by comparing historical and current records of occurrence. A population that is no longer found is assumed to have gone extinct. Extinction can then be related to characteristics of these populations, such as habitat type, size, or species, to test ideas about what factors may affect extinction. Such studies neglect the fact that a population may be overlooked, however, which may bias estimates of extinction rates upward. In addition, if populations are unequally detectable across groups to be compared, such as habitat type or population size, comparisons become distorted to an unknown degree. To illustrate the problem, I simulated two data sets, assuming a constant extinction rate, in which populations occurred in different habitats or habitats of different size and these factors affected their detectability. The conventional analysis implicitly assumed that detectability equalled 1 and used logistic regression to estimate extinction rates. It wrongly identified habitat and population size as factors affecting extinction risk. In contrast, with capture-recapture methods, unbiased estimates of extinction rates were recovered. I argue that capture-recapture methods should be considered more often in estimations of demographic parameters in plant populations and communities.  相似文献   

5.
Abstract: Considerable attention has recently been focused on using levels of developmental instability among members of a population to detect environmental or genetic stresses on animals or plants. It is not yet clear, however, that high developmental instability in a sample of individuals always indicates environmental stress or poor genetic quality. We studied 13 fragmented populations of prairie phlox (   Phlox pilosa L.) to test the hypothesis that developmental instability should decrease with increasing population size—as expected if small populations suffer genetic problems associated with inbreeding or are exposed to more environmental stress than larger populations. We used two different measures of developmental instability, each calculated for two different traits: radial asymmetry of flowers (for petal width and petal length) and modular fluctuating asymmetry of leaves (  for leaf widths at two points along the leaf  ). There were weak but significant correlations among individuals for four of six pairwise combinations of these measures. Surprisingly, three of our four measures of developmental instability showed strong population size effects that were opposite to those expected: developmental instability increased with population size. We conclude that measures of developmental instability cannot be applied uncritically for biomonitoring without considerable knowledge of developmental mechanisms, natural history, and population biology of the species in question.  相似文献   

6.
Abstract:  Disease is increasingly recognized as a threat to the conservation of wildlife, and in many cases the source of disease outbreaks in wild carnivores is the domestic dog. For disease to spill over from a domestic to a wild population, three conditions must be satisfied: susceptibility of the wild species, presence of the disease agent in the domestic population, and contact between the two populations of interest. We investigated the potential for disease spillover from the domestic dog population to the wild carnivore population in the Isoso of Bolivia, an area of tropical dry forest contiguous with a national park. Using questionnaires and discussions with residents, we gathered data on the demography of dogs in the Isoso, including adult and neonatal mortality, litter size, and hunting frequency. We analyzed a large data set containing self-recorded information on hunting in various communities of the Isoso to determine the extent of dog participation in hunting and the duration of hunting trips. Finally, we took blood samples from dogs in the Isoso for a serosurvey of common canine pathogens. More than 95% of dogs had positive titers to canine distemper virus and canine parvovirus. There was also a high seroprevalence in dogs for other pathogens, a high population turnover of dogs (which may allow diseases to be maintained endemically), and frequent opportunities for contact between domestic and wild carnivores. Based on our results and the susceptibility of wild species previously reported in the literature, domestic dogs represent a disease risk for wildlife in the Bolivian Isoso.  相似文献   

7.
Abstract: The endangered Hawaiian monk seal breeds at six locations in the northwestern Hawaiian Islands. To determine whether significant genetic differentiation exists among these sites, we used microsatellite loci to examine the monk seal population structure at the five largest breeding colonies. Of 27 loci isolated from other seal species, only 3 were polymorphic in an initial screening of one individual from each breeding site. Only two alleles were found at each of these 3 loci in samples of 46–108 individuals. This extremely low variation is consistent with other measures of genetic variability in this species and is probably the result of a recent severe population bottleneck, combined with a long-term history of small population sizes. Although the smallest monk seal subpopulation in this study ( Kure Atoll) showed some evidence of heterozygote deficit, possibly indicative of inbreeding, the next smallest ( Pearl and Hermes Reef) had an apparent excess of heterozygous individuals. Genetic differentiation was detected between the two subpopulations at extreme ends of the range ( Kure and French Frigate Shoals). This trend was significant only at the microsatellite locus for which we had the largest sample size ( Hg6.3: R ST = 0.206, p = 0.002; allelic goodness of fit G h = 15.412, p < 0.005). French Frigate Shoals is the source population for translocated animals that have been released primarily at Kure Atoll. Differentiation between these sites consisted of allele frequency differences (with the same allele predominant in each location at all three loci), rather than the preservation of alternative alleles. Although the translocations have had positive demographic effects, we recommend continued genetic monitoring of both the source and recipient populations because translocated individuals are now entering the breeding population.  相似文献   

8.
Abstract:  The sustainability of seed extraction from natural populations has been questioned recently. Increased recruitment failure under intense seed harvesting suggests that seed extraction intensifies source limitation. Nevertheless, areas where more seeds are collected tend to also have more intense hunting of seed-dispersing animals. We studied whether such hunting, by limiting disperser activity, could cause quantitative dispersal limitation, especially for large crops and for crops in years of high seed abundance. In each of four Carapa procera (Meliaceae) populations in French Guiana and Surinam, two with hunting and two without, we compared seed fate for individual trees varying in crop size in years of high and low population-level seed abundance. Carapa seeds are a nontimber forest product and depend on dispersal by scatter-hoarding rodents for survival and seedling establishment. Hunting negatively affected the proportion of seeds dispersed and caused greater numbers of seeds to germinate or be infested by moths below parent trees, where they would likely die. Hunting of seed-dispersing animals disproportionally affected large seed crops, but we found no additional effect of population-level seed abundance on dispersal rates. Consistently lower rates of seed dispersal, especially for large seed crops, may translate to lower levels of seedling recruitment under hunting. Our results therefore suggest that the subsistence hunting that usually accompanies seed collection is at the cost of seed dispersal and may contribute to recruitment failure of these nontimber forest products. Seed extraction from natural populations may affect seedling recruitment less if accompanied by measures adequately incorporating and protecting seed dispersers.  相似文献   

9.
Carnivores are widely hunted for both sport and population control, especially where they conflict with human interests. It is widely believed that sport hunting is effective in reducing carnivore populations and related human-carnivore conflicts, while maintaining viable populations. However, the way in which carnivore populations respond to harvest can vary greatly depending on their social structure, reproductive strategies, and dispersal patterns. For example, hunted cougar (Puma concolor) populations have shown a great degree of resiliency. Although hunting cougars on a broad geographic scale (> 2000 km2) has reduced densities, hunting of smaller areas (i.e., game management units, < 1000 km2), could conceivably fail because of increased immigration from adjacent source areas. We monitored a heavily hunted population from 2001 to 2006 to test for the effects of hunting at a small scale (< 1000 km2) and to gauge whether population control was achieved (lambda < or = 1.0) or if hunting losses were negated by increased immigration allowing the population to remain stable or increase (lambda > or = 1.0). The observed growth rate of 1.00 was significantly higher than our predicted survival/fecundity growth rates (using a Leslie matrix) of 0.89 (deterministic) and 0.84 (stochastic), with the difference representing an 11-16% annual immigration rate. We observed no decline in density of the total population or the adult population, but a significant decrease in the average age of independent males. We found that the male component of the population was increasing (observed male population growth rate, lambda(OM) = 1.09), masking a decrease in the female component (lambda(OF) = 0.91). Our data support the compensatory immigration sink hypothesis; cougar removal in small game management areas (< 1000 km2) increased immigration and recruitment of younger animals from adjacent areas, resulting in little or no reduction in local cougar densities and a shift in population structure toward younger animals. Hunting in high-quality habitats may create an attractive sink, leading to misinterpretation of population trends and masking population declines in the sink and surrounding source areas.  相似文献   

10.
Abstract:  Metapopulations may be very sensitive to global climate change, particularly if temperature and precipitation change rapidly. We present an analysis of the role of climate and other factors in determining metapopulation structure based on presence and absence data. We compared existing and historical population distributions of desert bighorn sheep ( Ovis canadensis ) to determine whether regional climate patterns were correlated with local extinction. To examine all mountain ranges known to hold or to have held desert bighorn populations in California and score for variables describing climate, metapopulation dynamics, human impacts, and other environmental factors, we used a geographic information system (GIS) and paper maps. We used logistic regression and hierarchical partitioning to assess the relationship among these variables and the current status of each population (extinct or extant). Parameters related to climate—elevation, precipitation, and presence of dependable springs—were strongly correlated with population persistence in the twentieth century. Populations inhabiting lower, drier mountain ranges were more likely to go extinct. The presence of domestic sheep grazing allotments was negatively correlated with population persistence. We used conditional extinction probabilities generated by the logistic-regression model to rank native, naturally recolonized, and reintroduced populations by vulnerability to extinction under several climate-change scenarios. Thus risk of extinction in metapopulations can be evaluated for global-climate-change scenarios even when few demographic data are available.  相似文献   

11.
Subsistence hunting presents a conservation challenge by which biodiversity preservation must be balanced with safeguarding of human livelihoods. Globally, subsistence hunting threatens primate populations, including Madagascar's endemic lemurs. We used population viability analysis to assess the sustainability of lemur hunting in Makira Natural Park, Madagascar. We identified trends in seasonal hunting of 11 Makira lemur species from household interview data, estimated local lemur densities in populations adjacent to focal villages via transect surveys, and quantified extinction vulnerability for these populations based on species-specific demographic parameters and empirically derived hunting rates. We compared stage-based Lefkovitch with periodic Leslie matrices to evaluate the impact of regional dispersal on persistence trajectories and explored the consequences of perturbations to the timing of peak hunting relative to the lemur birth pulse, under assumptions of density-dependent reproductive compensation. Lemur hunting peaked during the fruit-abundant wet season (March–June). Estimated local lemur densities were roughly inverse to body size across our study area. Life-history modeling indicated that hunting most severely threatened the species with the largest bodies (i.e., Hapalemur occidentalis, Avahi laniger, Daubentonia madagascariensis, and Indri indi), characterized by late-age reproductive onsets and long interbirth intervals. In model simulations, lemur dispersal within a regional metapopulation buffered extinction threats when a majority of local sites supported growth rates above the replacement level but drove regional extirpations when most local sites were overharvested. Hunt simulations were most detrimental when timed to overlap lemur births (a reality for D. madagascariensis and I. indri). In sum, Makira lemurs were overharvested. Regional extirpations, which may contribute to broad-scale extinctions, will be likely if current hunting rates persist. Cessation of anthropogenic lemur harvest is a conservation priority, and development programs are needed to help communities switch from wildlife consumption to domestic protein alternatives.  相似文献   

12.
Allozyme electrophoresis was conducted in an attempt to identify the origin ofMarenzelleria sp. found in the North Sea and Baltic Sea. The analysis covered eight enzymes with ten loti from nine populations found on the North American Atlantic toast, these populations in the North Sea and five populations in the Baltic. The North Sea spionids correspond to the Type IMarenzelleria from North American coastal waters between Barnstable Harbor (Massachusetts) and Cape Henlopen (Delaware). Nei's genetic distance between these North American populations and those from the North Sea wasD = 0.010 to 0.020. TheMarenzelleria sp. found in the Baltic Sea very probably stems from North American populations of Type II found from the region of Chesapeake Bay (Trippe Bay) south to the Currituck Sound (North Carolina). The genetic distance between these North American populations and the Baltic populations isD = 0.000 to 0.001. The invaders appear to have lost little of their genetic variation while colonizing the North and Baltic Seas. Probably, both colonizing events tan be attributed to large numbers of individuals reaching Europe simultaneously on one or more occasions. In addition, aMarenzelleria Type III was found by electrophoresis among specimens from Currituck Sound (North Carolina), rohere it is sympatric withMarenzelleria Type II. Salinity is discussed as an important factor for the establishment ofMarenzelleria Type I in the North Sea and Type II in the Baltic Sea.  相似文献   

13.
Abstract:  An important aim of conservation biology is to understand how habitat change affects the dynamics and extinction risk of populations. We used matrix models to analyze the effect of habitat degradation on the demography of the declining perennial plant Trifolium montanum in 9 calcareous grasslands in Germany over 4 years and experimentally tested the effect of grassland management. Finite population growth rates (λ) decreased with light competition, measured as leaf-area index above T. montanum plants. At unmanaged sites λ was <1 due to lower recruitment and lower survival and flowering probability of large plants. Nevertheless, in stochastic simulations, extinction of unmanaged populations of 100 flowering plants was delayed for several decades. Clipping as a management technique rapidly increased population growth because of higher survival and flowering probability of large plants in managed than in unmanaged plots. Transition-matrix simulations from these plots indicated grazing or mowing every second year would be sufficient to ensure a growth rate ≥1 if conditions stayed the same. At frequently grazed sites, the finite growth rate was approximately 1 in most populations of T. montanum . In stochastic simulations, the extinction risk of even relatively small grazed populations was low, but about half the extant populations of T. montanum in central Germany are smaller than would be sufficient for a probability of survival of >95% over 100 years. We conclude that habitat change after cessation of management strongly reduces recruitment and survival of established individuals of this perennial plant. Nevertheless, our results suggest extinction processes may take a long time in perennial plants, resulting in an extinction debt. Even if management is frequent, many remnant populations of T. montanum may be at risk because of their small size, but even a slight increase in size could considerably reduce their extinction risk.  相似文献   

14.
Abstract: Habitat loss and subsistence hunting are two of the main activities that affect wildlife in frontier areas. We compared subsistence hunting patterns in four villages with different ethnic composition and degree of habitat disturbance in the vicinity of Calakmul Biosphere Reserve, Campeche, Mexico. We also compared differences between some of these villages in harvest composition and prey availability to determine hunting preferences. We used a Landsat TM satellite image to analyze the degree of disturbance around the villages. We conducted periodic surveys of subsistence hunting and prey availability. Wildlife availability was assessed monthly on nine transects (3000 m) established in the vicinity of three villages. The relative amount of disturbed habitat was smaller in an indigenous Maya village ( IV ) and larger in a mestizo village ( MV ). The two mixed-composition villages ( MCVs) had intermediate levels of disturbance. Ten species, four large and six small, of birds and mammals accounted for 97% of the hunting records. Hunting was more intense in IV and less intense in MCV1. The three village types had different hunting preferences. The habitat-mosaic composition in the vicinity of the villages influenced prey availability and subsistence-hunting preferences. Changes in the habitat mosaic were caused by the size of the holding and by ethnic composition. In spite of longer settlement time, the habitat mosaic in the vicinity of IV was less transformed than that of the other sites. Their larger holding size and greater diversity of economic activities may explain why the Mayas at IV have transformed the landscape less than the other groups and can hunt more and larger prey.  相似文献   

15.
Low Genetic Variability in the Hawaiian Monk Seal   总被引:1,自引:0,他引:1  
The Hawaiian monk seal (   Monachus schauinslandi) is a critically endangered species that has failed to recover from human exploitation despite decades of protection and ongoing management efforts designed to increase population growth. The seals breed at five principal locations in the northwestern Hawaiian islands, and inter-island migration is limited. Genetic variation in this species is expected to be low due to a recent population bottleneck and probable inbreeding within small subpopulations. To test the hypothesis that small population size and strong site fidelity has led to low within-island genetic variability and significant between-island differentiation, we used two independent approaches to quantify genetic variation both within and among the principal subpopulations. Mitochondrial control region and tRNA gene sequences (359 base pairs) were obtained from 50 seals and revealed very low genetic diversity (0.6% variable sites), with no evidence of subpopulation differentiation. Multilocus DNA fingerprints from 22 individuals also indicated low genetic variation in at least some subpopulations (band-sharing values for "unrelated" seals from the same island ranged from 49 to 73%). This method also provided preliminary evidence of population subdivision (  F'st estimates of 0.20 and 0.13 for two adjacent island pairs). Translocations of seals among islands may therefore have the potential to relieve local inbreeding and possibly to reduce the total amount of variation preserved in the population. Genetic variation is only one of many factors that determine the ability of an endangered species to recover. Maintenance of existing genetic diversity, however, remains an important priority for conservation programs because of the possibility of increased disease resistance in more variable populations and the chance that inbreeding depression may only be manifest under adverse environmental conditions.  相似文献   

16.
Abstract: To assess the genetic consequences for a Neotropical tree of the loss of its main seed disperser, we compared the genetic structure of Inga ingoides in a site where the spider monkey (Ateles paniscus) was abundant and a site where it had been eliminated by subsistence hunting. Gene flow should be reduced in the site where the spider monkey is absent, and there should be a corresponding subpopulation differentiation of seedlings within the spatial range of the movements of these primates in the absence of between-site differences in allelic frequencies. At the microhabitat (  family) scale, seedlings growing under parent plants should be genetically more related in the absence of the spider monkey than in its presence. Subpopulation differentiation was smaller where the spider monkey was present (  four loci, FST = 0.011) than where it was absent (  four loci, FST = 0.053) for the first year of study, but not for the second year (three loci, FST = 0.005 vs. 0.003). The number of alleles in common among seedlings growing under parent plants was smaller in the presence of the spider monkey than in its absence, showing family genetic structure in the first generation for both years of study ( Mann-Whitney, z = −2.17, p = 0.03 and z = −2.72, p = 0.006 for 1996 and 1997, respectively). This family genetic structure in the first generation should accelerate the development of population genetic structure. Development of genetic structure might result in demographic changes, one of which would be a fitness reduction if the species were self-incompatible, as suggested for Inga by available evidence. Large birds and mammals are the main targets of subsistence hunting in the Neotropics. Extinction of seed-dispersing frugivores may result in pronounced changes in the demographic and genetic structure of tree species in Neotropical forests.  相似文献   

17.
Bushmeat Markets on Bioko Island as a Measure of Hunting Pressure   总被引:4,自引:0,他引:4  
Abstract: Counts of the number of animal carcasses arriving at Malabo market, Bioko Island, Equatorial Guinea, were made during two, 8-month study periods in 1991 and 1996. Comparisons of the availability and abundance of individual species between years showed that more species and more carcasses appeared in 1996 than in 1991. In biomass terms, the increase was significantly less, only 12.5%, when compared with almost 60% more carcasses entering the market in 1996. A larger number of carcasses of the smaller-bodied species (i.e., rodents and the blue duiker [ Cephalophus monticola ] ) were recorded in 1996 than in 1991. Although an additional four species of birds and one squirrel were recorded in 1996, these were less important in terms of their contribution to biomass or carcass numbers. Concurrently, there was a dramatic reduction in the larger-bodied species, Ogilby's duiker ( C. ogilbyi ) and seven diurnal primates. We examined these changes, especially the drop in the number of larger animals. We considered the possible following explanations: (1) the number of hunters dropped either because of enforced legislation or scarcity of larger prey; (2) a shift in the use of hunting techniques occurred (   from shotguns to snares); or (3) consumer demand for primate and duiker meat dropped, which increased demand for smaller game. Our results suggest that the situation in Bioko may be alarmingly close to a catastrophe in which primate populations of international conservation significance are being hunted to dangerously low numbers. Although there is still a need for surveys of actual densities of prey populations throughout the island, working with the human population on Bioko to find alternatives to bushmeat is an urgent priority.  相似文献   

18.
Several small populations of Hawaiian monk seals ( Monachus schauinslani ) exhibit male-biased adult sex ratios and "mobbing," an aggressive behavior in which adult males injure and often kill adult females and immature seals of both sexes during mating attempts. Mobbing appears to be limiting the growth of some populations of this endangered species. The frequency of mobbing deaths appears to increase as a population's sex ratio becomes increasingly male-biased, although the exact relationship between these two variables (the mobbing response) is unknown. We developed a stochastic demographic model of a small Hawaiian monk seal population using several different assumptions about the mobbing response. We used the model to explore the origins of male-biased sex ratios in monk seal populations and to determine whether it was possible, given the lack of data on the mobbing response, to evaluate the probable effects of alternative management strategies to address the mobbing problem. Small populations (100 to 200 seals) and those with slower growth rates were more likely to develop male-biased adult sex ratios. Almost all of our modeling scenarios supported the immediate removal of males from populations where mobbing occurs. Our conclusions were relatively unaffected when the assumptions regarding the mobbing response were varied. Thus, a model was helpful even when apparently crucial data were unavailable.  相似文献   

19.
Abstract:  The interaction between land-use change and the sustainability of hunting is poorly understood but is critical for sustaining hunted vertebrate populations and a protein supply for the rural poor. We investigated sustainability of hunting in an Amazonian landscape mosaic, where a small human population had access to large areas of both primary and secondary forest. Harvestable production of mammals and birds was calculated from density estimates. We compared production with offtake from three villages and used catch-per-unit-effort as an independent measure of prey abundance. Most species were hunted unsustainably in primary forest, leading to local depletion of the largest primates and birds. The estimated sustainable supply of wild meat was higher for primary (39 kg · km−2· yr−1) than secondary forest (22 kg · km−2· yr−1) because four species were absent and three species at low abundance in secondary forests. Production of three disturbance-tolerant mammal species was 3 times higher in secondary than in primary forest, but hunting led to overexploitation of one species. Our data suggest that an average Amazonian smallholder would require ≥3.1 km2 of secondary regrowth to ensure a sustainable harvest of forest vertebrates. We conclude that secondary forests can sustainably provide only 2% of the required protein intake of Amazonian smallholders and are unlikely to be sufficient for sustainable hunting in other tropical forest regions.  相似文献   

20.
Abstract:  Birds are frequently used as indicators of ecosystem health and are the most comprehensively studied class in the animal kingdom. Nevertheless, a comprehensive, interspecific assessment of the correlates of avian genetic diversity is lacking, even though indices of genetic diversity are of considerable interest in the conservation of threatened species. We used published data on variation at microsatellite loci from 194 bird species to examine correlates of diversity, particularly with respect to conservation status and population size. We found a significant decline in mean heterozygosity with increasing extinction risk, and showed, by excluding species whose heterozygosity values were calculated with heterospecific primers, that this relationship was not dependent on ascertainment bias. Results of subsequent regression analyses suggested that smaller population sizes of threatened species were largely responsible for this relationship. Thus, bird species at risk of extinction are relatively depauperate in terms of neutral genetic diversity, which is expected to make population recovery more difficult if it reflects adaptive genetic variation. Conservation policy will need to minimize further loss of diversity if the chances of saving threatened species are to be maximized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号