首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张菊  林瑜  乔玉红  杨怀金  叶芝祥 《环境工程》2017,35(10):100-104
为研究成都市西南郊区PM_(2.5)中碳组分浓度的季节变化及污染特征,分析了PM_(2.5)中有机碳(OC)、元素碳(EC)的含量。结果表明:颗粒物PM_(2.5)、总碳(TC)、有机碳(OC)月平均质量浓度夏季比秋季略高;OC/EC平均比值在夏季和秋季分别为2.47和2.18,说明均有二次有机碳(SOC)的生成;OC和EC在夏秋季均有较强的相关性(夏季R~2为0.77,秋季R~2为0.79);SOC在夏、秋季的月平均浓度分别为4.02,2.76μg/m~3;降雨在一定程度上降低了PM_(2.5)的浓度。  相似文献   

2.
西安冬春季PM10中碳气溶胶的昼夜变化特征   总被引:3,自引:0,他引:3  
为探讨西安市大气碳气溶胶的季节变化和昼夜变化特征及来源,于2006-12-19~2007-01-21(冬季)和2007-04-01~2007-04-30(春季)连续采集了大气可吸入颗粒物(PM10)样品,并采用IMPROVE热光分析法分析了其中有机碳(OC)和元素碳(EC)的昼夜浓度.结果显示,冬季白天PM10及其中OC和EC的平均浓度分别为455.0、62.4和7.5μg/m3,夜晚的平均浓度分别为448.7、66.1和6.9μg/m3,对应春季白天的平均浓度分别为397.9、26.7和6.9μg/m3,夜晚分别为362.1、31.9和8.6μg/m3.冬季白天OC与EC的相关系数为0.44,较之春季0.81要差,主要与冬季采暖期燃料的多样性有关.碳气溶胶组分中,冬季白天和晚上二次有机碳气溶胶(SOC)的平均浓度为8.9和10.2μg/m3,远高于春季(2.8和3.4μg/m3),说明冬季较高的OC排放及较低的大气扩散能力利于碳气溶胶中SOC的生成.对碳气溶胶8种组分的因子分析结果表明,冬季燃煤排放及郊区的生物质排放对碳气溶胶有重要的贡献,而春季机动车的贡献明显增加.  相似文献   

3.
南京大气PM2.5中碳组分观测分析   总被引:17,自引:1,他引:16       下载免费PDF全文
为了解南京地区大气细颗粒物及化学成分在灰霾期间的污染水平及可能来源,于2007年6月至2008年5月,采集PM2.5样品,并测定了其中有机碳(OC)和元素碳(EC)的含量.并考察了有机碳和元素碳的季节变化特征,比较分析了南京地区灰霾与非灰霾期间含碳气溶胶的污染特征.结果显示,南京大气中PM2.5、OC和EC浓度变化范围分别是12.1~287.1,2.6~47.0和1.0~33.6mg/m3,其中夏季PM2.5(109.6mg/m3)和OC(20.8mg/m3)的值在四个季度中最高,呈现出夏季>秋季>冬季>春季的季节变化特征;EC则具有秋季>春季>冬季>夏季的季节变化特征. 霾日的OC、EC、总碳含量(TC)浓度及OC与EC比值分别是非霾日的2.0、1.8、1.9和1.7倍.后向轨迹分析表明,在有利的天气背景下,具有丰富水汽和污染物的混合气团最易使南京产生霾天气.  相似文献   

4.
为更加准确地估算环境受体PM2.5中SOC(二次有机碳)的质量浓度,于2015年6-8月利用在线监测仪器同步采集小时分辨率的PM2.5及OC(有机碳)和EC(元素碳)样品数据,分析碳气溶胶的变化特征,并尝试运用改进的EC示踪法估算ρ(SOC).结果表明:天津市区夏季ρ(PM2.5)为(70.9±46.0)μg/m3,ρ(OC)和ρ(EC)分别为(7.6±3.1)(2.2±1.5)μg/m3,占ρ(PM2.5)的11.8%±4.6%和3.1%±1.4%,OC/EC(质量浓度之比,下同)的平均值为4.0±2.0.ρ(OC)与ρ(EC)之间的Pearson相关系数(R)仅为0.66,说明OC和EC的来源较为复杂,SOC的产生可能是重要影响因素.ρ(NO2)与OC/EC呈显著负相关(R=-0.47,P < 0.01),并且OC/EC(4.0)相对较低,说明天津市区机动车可能对碳气溶胶具有重要影响.ρ(SO2)与ρ(OC)、ρ(EC)的相关性较低(R均为0.33,P均小于0.01),说明天津市区碳气溶胶可能受燃煤源的影响较低.改进的EC示踪法主要是利用O3和CO、EC作为光化学反应和一次源排放的指标,并结合ρ(OC)、ρ(EC)和OC/EC的变化特征,逐步筛选一次排放源主导的时间段的ρ(OC)和ρ(EC)数据,然后利用最小二乘法拟合获得ρ(OC)和ρ(EC)的线性方程,最后进行ρ(SOC)和ρ(POC)(POC为一次有机碳)的估算.天津市区夏季ρ(SOC)的平均值为(2.5±2.0)μg/m3,分别占ρ(OC)和ρ(PM2.5)的28.8%±15.0%和3.7%±3.6%;ρ(POC)的平均值为(5.2±1.7)μg/m3,分别占ρ(OC)和ρ(PM2.5)的71.2%±15.0%和8.1%±5.2%,说明天津市区夏季有机碳的主要来源是一次排放源.研究显示,相比于EC示踪法,改进的EC示踪法估算的ρ(SOC)明显降低,ρ(POC)明显升高.AT(大气温度)对ρ(SOC)的影响较为显著,而WS(风速)对ρ(POC)的影响较为显著.   相似文献   

5.
天津秋冬季PM2.5碳组分化学特征与来源分析   总被引:13,自引:2,他引:11       下载免费PDF全文
霍静  李彭辉  韩斌  陆炳  丁潇  白志鹏  王斌 《中国环境科学》2011,31(12):1937-1942
为研究天津大气PM2.5中有机碳和元素碳的特征,于2009年9月4日到2010年2月25日在天津3个监测点位采集PM2.5样品,分析了PM2.5颗粒中元素碳和有机碳的含量特征、与气象条件的相互关系、以及碳组分的来源.结果表明3个监测点位PM2.5的平均质量浓度为123.85μg/m3;TC的平均浓度为18.76μg/m3,其中OC的平均浓度为14.48μg/m3,EC的平均浓度为4.27μg/m3,日均OC和EC浓度分别占PM2.5的11.7%和3.5%.秋季SOC的估算值为5.1μg/m3, 占OC的40.7%、PM2.5的4.3%;冬季SOC的估算值为6.5μg/m3, 占OC的35.7%,PM2.5的4.9%.观测期间EC与温度呈比较好的负相关关系; OC、EC、TC的浓度与风速有较好的负相关性.48h后推气流轨迹结果显示局地盘旋的气流(L)和来自天津北方或西北方区域气流(N/NW)有较高的碳组分浓度;天津大气PM2.5中碳组分受包括生物质燃烧、汽车排放、燃煤和道路扬尘混合来源影响.  相似文献   

6.
2014年1月-2014年12月期间,在大连市对PM2.5的质量浓度和含碳气溶胶进行了在线连续观测,获得了不同季节的含碳气溶胶的变化特征.观测结果显示:大连市PM2.5中有机碳(OC)和元素碳(EC)的年平均质量浓度分别为6.9 μg/m3和2.9 μg/m3,OC和EC浓度之和占PM2.5的18%,表明碳质气溶胶是大连市大气细粒子中的重要组分.OC和EC的比值表明机动车尾气、燃煤排放和船舶排放是大连市PM2.5中OC和EC的主要来源.重污染过程期间OC/EC的比值和PM2.5的变化趋势呈负相关关系可以作为判定外来污染输送的一个重要指标.  相似文献   

7.
为研究郴州市PM2.5中碳组分的污染特征及来源,于2016年7月-2017年4月分4个季度典型时段采集郴州市环境大气中的PM2.5,测定了样品中OC(有机碳)和EC(元素碳)的质量浓度,对碳气溶胶污染水平、时空分布、SOC(二次有机碳)以及OC和EC相关性等特征进行了分析,并分析了碳组分的来源.结果表明:郴州市ρ(PM2.5)年均值为(40.2±19.0)μg/m3,ρ(OC)、ρ(EC)占比分别为15.7%和7.2%;ρ(OC)与ρ(EC)相关性分析显示二者来源较为一致,但春季、夏季差异相对较大;ρ(SOC)全年估算值为1.84 μg/m3,占ρ(OC)的29.11%,夏季较高的温度和较低的相对湿度导致夏季ρ(SOC)的估算偏低.结合碳组分丰度分析、PCA(主成分分析)和PMF(正矩阵因子分解分析)结果发现,燃煤/道路尘、机动车排放和生物质燃烧对PM2.5中TC(总碳)的影响最为明显,贡献率分别为49.25%~56.71%、19.79%~25.36%和9.35%~13.69%.反向轨迹聚类结果显示,广东珠三角区域的汽油车排放、道路尘和生物质燃烧对郴州市PM2.5中碳组分有较大的影响,而燃煤和柴油车的贡献主要来源于本地.研究显示,郴州市PM2.5中碳组分污染较为严重,应重点加强本地燃煤和柴油车的控制.   相似文献   

8.
廊坊市是北京市及周边传输通道“2+26”城市之一.为研究廊坊市开发区冬季颗粒物中碳组分污染特征,于2018年1月5日—2月5日在廊坊市开发区国控点位同步开展PM2.5及PM10样品采集,使用DRI分析OC(有机碳)与EC(元素碳)的质量浓度.结果表明:廊坊开发区冬季ρ(PM2.5)、ρ(PM10)分别为(54.5±46.0)(91.0±58.2)μg/m3.PM2.5中ρ(OC)、ρ(EC)分别为14.64、3.54 μg/m3,PM10中分别为17.07、4.58 μg/m3;PM2.5、PM10中ρ(OC)与ρ(EC)相关性均较好,R2均为0.91(P < 0.01),表明二者具有相似的来源;在PM2.5和PM10中OC/EC〔ρ(OC)/ρ(EC),下同〕分别为4.46和4.16,ρ(SOC)(SOC为二次有机碳)分别为6.15和5.88 μg/m3,分别占ρ(OC)的42.1%和37.7%,表明二次污染较严重.碳组分丰度及主成分分析结果表明,PM2.5与PM10中碳组分来源基本一致,主要来源于汽车尾气、水溶性极性化合物、生物质燃烧及燃煤的混合源,柴油车排放,以及道路扬尘.后向气流轨迹聚类结果表明,颗粒物及碳组分质量浓度受途径内蒙古自治区及河北省中部、北京市南部气团的影响较大;对于碳组分来源,道路扬尘及汽车尾气受气团传输的影响较大,而生物质燃烧、燃煤等受气团传输的影响较小.研究显示,汽车尾气、燃烧源及道路扬尘为廊坊市开发区冬季碳组分的主要来源.   相似文献   

9.
采用安德森撞击式分级采样器采集2008-06-01~2008-09-30不同粒径的大气颗粒物样品,并用美国沙漠所DRI(desert research institute)的Model 2001A热光碳分析仪对其中的元素碳和有机碳进行了分析.结果表明,平均有56%、55%和73%的PM、OC和EC富集于粒径<2.1 μ...  相似文献   

10.
南京市PM2.1中有机碳和元素碳污染特征及影响因素   总被引:6,自引:0,他引:6       下载免费PDF全文
采用DRI Model 2001A热/光碳分析仪测定了2011年南京市区(南师)和郊区工业区(南化)大气气溶胶细粒子(PM2.1)中有机碳(OC)和元素碳(EC)的含量,并对两地的OC、EC污染特征进行了评价,分析了细粒子中含碳物质的来源.结果显示,在PM2.1中,南京市市区OC、EC的年平均浓度分别为12.79,3.18μg/m3,郊区工业区分别为13.44,3.74μg/m3,工业区污染更加严重.市区和工业区冬春季OC、EC含量较高且冬季OC、EC相关性较高,这与冬季燃煤量增加,并且受内陆西风及逆温的影响,污染物集中在南京市上空不易扩散有关;夏季两地OC、EC含量及相关性均达到最低,可能由于夏季降雨频繁,加上台风作用,稀释和清除了部分污染物.应用OC/EC比值法对市区和郊区工业区二次有机碳(SOC)含量进行了估算,两地均是夏季SOC占TOC比例最高,分别为46.63%、45.65%,SOC主要来自于光化学反应,可见在光照充裕、辐射强烈的夏季更加有助于SOC的生成.  相似文献   

11.
为研究浙江省嘉兴市冬季PM、污染气体和含碳气溶胶在不同空气质量等级下的分布特征,于2013年11月28日—12月28日使用SHARP测尘仪、热电EMS系统和Sunset在线OCEC分析仪观测了PM(PM10和PM2.5)、污染气体(SO2、NO2、CO和O3)和含碳气溶胶〔OC(有机碳)、EC(元素碳)和TC(总碳)〕的质量浓度,结合气象数据和HYSPLIT模式,分析了霾污染过程中大气污染物浓度变化、日变化及其来源特征.结果表明:嘉兴市冬季霾天ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)、ρ(O3)、ρ(OC)、ρ(EC)、ρ(POC)和ρ(SOC)分别为167.90、248.86、77.79、、97.16、28.50、27.09、7.72、7.50和19.59 μg/m3,ρ(CO)为1.47 mg/m3,分别是空气质量为良时的3.00、2.50、1.29、1.84、0.86、2.59、2.19、2.13、2.82和1.50倍.降雨对不同大气污染物的清除作用不同,对粗粒子的清除作用较大,而对二次产物O3的影响较小.高ρ(PM)是造成能见度降低的主要原因,随着污染程度的加剧,PM中细粒子占比越来越高,在严重污染过程中ρ(PM2.5)/ρ(PM10)可达70.31%,比空气质量为良时高14.04%;不同污染气体的日变化不同,OC和EC的来源逐渐趋于一致,ρ(SOC)呈现出积累-爆发-积累-爆发的往复过程,边界层的日变化对污染物浓度的影响逐渐减弱.研究显示,随着霾污染的加剧,SOC气溶胶占比逐渐增加、EC和POC等一次碳气溶胶占比逐渐降低.   相似文献   

12.
为分析天津市典型城区大气碳质颗粒物的粒径分布及其来源,于2009年12月—2010年11月采用9级惯性撞击式分级采样器对大气颗粒物进行采样,采用热光碳分析仪分析了颗粒物中的EC(元素碳)和OC(有机碳)的质量浓度. 结果表明:天津市典型城区大气颗粒物中EC和OC主要存在于细颗粒物中,在≤2.1μm的4个细粒径段中,ρ(EC)的加和年均值为(2.6±0.9)μg/m3,占PM9(空气动力学直径≤9.0μm)ρ(TEC)的72%;ρ(OC)为(21.5±7.7)μg/m3,占PM9中ρ(TOC)的60%. ρ(EC)和ρ(OC)季节变化显著,在≤2.1μm粒径段中,春、夏、秋、冬季的ρ(EC)分别为(1.7±0.3)、(2.1±0.4)、(3.1±0.5)和(3.7±0.5)μg/m3;ρ(OC)分别为(17.6±0.4)、(14.4±1.1)、(21.9±1.8)和(32.1±2.5)μg/m3. ρ(EC)峰值分别出现在≤0.43、>0.65~1.1和>4.7~5.8μm 3个粒径段,其中最高值出现在≤0.43μm粒径段;ρ(OC)峰值分别出现在>0.65~1.1和>4.7~5.8μm 2个粒径段,最高值出现在>0.65~1.1μm粒径段. 天津市典型城区细颗粒物中的OC、EC主要来自燃煤、机动车和烹饪排放,粗颗粒物中的OC、EC则更多来自于路面和建筑扬尘.   相似文献   

13.
Carbonaceous aerosols in PM10 and pollution gases in winter in Beijing   总被引:1,自引:0,他引:1  
An intensive observation of organic carbon (OC) and element carbon (EC) in PM10 and gaseous materials (SO2, CO, and O3,) was conducted continuously to assess the characteristics of wintertime carbonaceous aerosols in an urban area of Beijing, China. Results showed that the averaged total carbon (TC) and PM10 concentrations in observation period are 30.2±120.4 and 172.6±198.3 μ/m3, respectively. Average OC concentration in nighttime (24.9±19.6 μ/m3) was 40% higher than that in daytime (17.7±10.9 μ/m3). Average EC concentrations in daytime (8.8±15.2 μ/m3) was close to that in nighttime (8.9±15.1 μ/m3). The OC/EC ratios in nighttime ranging from 2.4 to 2.7 are higher than that in daytime ranging from 1.9 to 2.0. The concentrations of OC, EC, PM10 were low with strong winds and high with weak winds. The OC and EC were well correlated with PM10, CO and SO2, which implies they have similar sources. OC and EC were not well correlated with O3. By considering variation of OC/EC ratios in daytime and night time, correlations between OC and O3, and meteorological condition, we speculated that OC and EC in Beijing PM10 were emitted as the primary particulate form. Emission of motor vehicle with low OC/EC ratio and coal combustion sources with high OC/EC ratio are probably the dominant sources for carbonaceous aerosols in Beijing in winter. A simple method was used to estimate the relative contribution of sources to carbonaceous aerosols in Beijing PM10. Motor vehicle source accounts for 80% and 68%, while coal combustion accounts for 20% and 32% in daytime and nighttime, respectively in Beijing. Averagely, the motor vehicle and coal combustion accounted for 74% and 26%, respectively, for carbonaceous aerosols during the observation period. It points to the motor vehicle is dominant emission for carbonaceous aerosols in Beijing PM10 in winter period, which should be paid attention to control high level of PM10 in Beijing effectively.  相似文献   

14.
乌鲁木齐市PM_(2.5)和PM_(2.5~10)中碳组分季节性变化特征   总被引:2,自引:0,他引:2  
2011年1月至12月在乌鲁木齐市区用膜采样法采集了大气PM_(2.5)和PM_(2.5~10)样品,并利用热光/碳分析仪测定了其中有机碳(OC)和元素碳(EC)的质量浓度.通过OC与EC的粒径分布特征、比值和相关性的分析,初步分析了乌鲁木齐市大气可吸入颗粒物中碳质气溶胶污染特征,并用OC/EC比值法估算了二次有机碳(SOC)的浓度.结果表明,PM_(2.5)和PM_(2.5~10)的年平均质量浓度分别为92.8μg/m~3和64.7μg/m~3.PM_(2.5)中OC和EC的年平均浓度分别为13.85μg/m~3和2.38μg/m~3,PM_(2.5~10)中OC和EC的年平均浓度分别为2.63μg/m~3和0.57μg/m~3.OC和EC四季变化趋势基本一致,季浓度最高.碳组分主要集中于PM_(2.5)中,OC/EC比值范围为3.62~11.21.夏季和秋季的PM_(2.5)和PM_(2.5~10)中OC和EC的相关性较好(R20.65).估算得出的PM_(2.5)和PM_(2.5~10)中SOC的估算浓度为2.31~11.98μg/m~3和0.38~1.49μg/m~3.  相似文献   

15.
为研究菏泽市冬季大气颗粒物中碳组分的污染特征和来源,于2016年1月采集菏泽市冬季大气PM2.5和PM10样品,基于热光反射法分析样品中OC(有机碳)、EC(元素碳)及8个碳组分[OC1、OC2、OC3、OC4、EC1、EC2、EC3和OP(裂解碳)]的含量,并计算得到ρ(Char-EC)(Char-EC为燃料燃烧后固体残渣中的EC)和ρ(Soot-EC)(Soot-EC为燃烧后气相挥发物质再凝结形成的EC),以定性识别大气颗粒物中碳组分的来源.结果表明,菏泽市冬季大气颗粒物样品中碳组分浓度处于较高水平,PM2.5中的ρ(OC)、ρ(EC)分别为26.34、9.22 μg/m3,PM10中ρ(OC)、ρ(EC)分别为31.82、10.71 μg/m3.采样期间大气PM2.5中碳组分(OC、EC、OC1、OC2、OC3、OC4、EC1、EC2、EC3、Char-EC、Soot-EC)浓度与PM10中相应各组分浓度的比值均大于0.5(0.60~0.90),表明碳组分多集中于细粒子(PM2.5).大气颗粒物样品中各碳组分浓度具有明显空间差异,各点位大气PM2.5和PM10中ρ(OC)均显著高于ρ(EC)(T检验,P < 0.05).菏泽市冬季大气PM2.5和PM10中Char-EC/Soot-EC(二者质量浓度之比)分别为10.04、8.00,并且存在显著的空间差异性(T检验,P < 0.05).PMF(正定矩阵因子分解法)解析结果表明,菏泽市冬季大气PM2.5和PM10中碳组分来源主要有4类,包括两类柴油车(1类排放的碳组分中以EC2为主,定义为柴油车-1;1类排放的碳组分中以EC3为主,定义为柴油车-2)、汽油车、生物质燃烧和燃煤混合源,对大气PM2.5中碳组分的分担率分别为13.98%、5.13%、24.47%、41.97%,对大气PM10中碳组分的分担率分别为16.08%、8.21%、18.34%、47.35%.可见,菏泽市冬季大气PM2.5和PM10中碳的主要来源是柴油车、汽油车、生物质燃烧和燃煤.   相似文献   

16.
黄山夏季大气颗粒物中碳粒径分布特征及其输送潜在源区   总被引:2,自引:0,他引:2  
采用Anderson 9级撞击式采样器和DRI Model 2001A 热/光碳分析仪对2014年6月30日~7月27日期间黄山光明顶大气气溶胶中有机碳(OC)和元素碳(EC)的质量浓度进行分析,并结合二次离子和后向轨迹讨论其潜在来源.结果表明,黄山光明顶OC、EC的平均质量浓度在PM1.1中分别为(2.89±1.40),(0.14±0.19)μg/m3,在PM2.1中分别为(3.76±2.05),(0.17±0.24)μg/m3,在PM9.0中分别为(5.60±2.96),(0.18± 0.25)μg/m3.OC和EC主要富集在£0.43μm段,占PM9.0中OC、EC质量浓度的25.97%和51.10%.观测期间EC来自外部输送,OC既存在外部输送也存在局地贡献.根据后向轨迹模式,观测期间碳质颗粒的外部输送主要来源为东部城市群以及西北地区和武汉一带.  相似文献   

17.
采集了山西大同市、宁武县和河曲县煤层自燃区12个点位PM10样品,采用Analysensysteme GmbH Vario E1型元素分析仪分析了PM10中有机碳(OC)和元素碳(EC)组分,探讨了煤层自燃区OC、EC污染特征、总碳气溶胶(TCA)对PM10的贡献、OC/EC比值.结果表明, PM10、OC、EC的质量浓度范围分别为114~401,22.9~68.1,21.9~70.7μg/m3.不同区域PM10、OC和EC污染水平差异较大,河曲县PM10污染最为严重,宁武县碳污染水平最高.露头煤层自燃区PM10低于采空自燃区,而对于OC和EC则相反.TCA对PM10的贡献高达63.82%,且露头煤层自燃区TCA对PM10的贡献比采空自燃区高.不同采样点OC/EC值介于0.7~1.6之间,小于前人结论中相似源OC/EC值.二次有机碳( SOC)污染较小.  相似文献   

18.
沈嵩  刘蕾  温维  邢奕  苏伟  孙嘉祺 《环境工程》2022,40(2):71-80
为研究《打赢蓝天保卫战三年行动计划》等政策实施后北京及其周边区域夏季环境PM2.5含碳组分特征及来源,2019年7月分别在北京城区与河北郊区的2个站点同步连续采集大气PM2.5样品,利用热光碳分析仪分别测定了有机碳(OC)和元素碳(EC)及其组分的质量浓度;通过最小OC/EC比值法、最小相关系数法估算了二次有机碳(SOC)浓度;利用主成分分析、后向轨迹分析等方法探究了含碳气溶胶的来源。结果表明:夏季北京城区PM2.5中ρ(OC)和ρ(EC)平均分别为(6.34±0.64),(1.96±0.29)μg/m3,分别占ρ(PM2.5)的18.65%和5.78%;河北郊区PM2.5中ρ(OC)与ρ(EC)平均分别为(6.29±0.79),(3.54±0.63)μg/m3,分别占ρ(PM2.5)的17.69%和9.53%。2种方法估算出北京城区的ρ(SOC)分别为(3.35±0.59),3.98μg/m3,分别占ρ(OC)的(51.77±6.97)%和68.48%;河北郊区的ρ(SOC)分别为(3.28±0.69),4.17μg/m3,分别占ρ(OC)的(62.42±9.62)%和68.32%。此外,夏季北京城区与河北郊区均存在较为严重的二次污染;北京城区含碳组分主要污染源是混合机动车排放、道路扬尘及燃烧源;而工业燃煤排放、机动车尾气及扬尘是河北郊区含碳组分的主要污染源。后向轨迹分析发现,夏季气团轨迹主要来自东南、西南及偏南方向,且对北京城区与河北郊区2个区域PM2.5中碳组分的影响较大。  相似文献   

19.
杭州市冬季环境空气PM2.5中碳组分污染特征及来源   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究杭州市PM2.5中碳组分特征,于2013年12月-2014年2月在7个常规点位和2个对照点同步采集PM2.5样品,分析其污染特征及来源.结果表明:杭州市冬季有机碳(OC)、元素碳(EC)、二次有机碳(SOC)的平均质量浓度分别为(23.7±7.5)(5.0±2.4)和(9.2±4.5)μg/m3,OC/EC[ρ(OC)/ρ(EC)]和SOC/OC[ρ(SOC)/ρ(OC)]的平均值分别为5.3±1.9和0.4±0.2.对照点ρ(OC)、ρ(EC)、ρ(SOC)和OC/EC、SOC/OC分别为常规点位的0.8、0.6、1.2、1.2和1.3倍.采样期间,常规点位和对照点ρ(OC)和ρ(EC)的日均值具有相同的时间变化趋势.对照点ρ(OC)和ρ(EC)的相关性(0.49)低于常规点位(0.61),对照点PM2.5中OC和EC的来源差异性更明显.8个碳组分的丰度分析表明,常规点位和对照点PM2.5中碳组分的来源基本一致,主要来源于道路尘、燃煤、机动车和生物质燃烧.绝对主因子分析法源解析结果表明,杭州市冬季PM2.5中总碳(TC)的主要来源中,燃煤/汽油车排放/道路尘、柴油车排放和生物质燃烧的分担率为79.1%、13.1%和3.5%.   相似文献   

20.
The chemical characteristics (water-soluble ions and carbonaceous species) of PM2:5 in Guangzhou were measured during a typical haze episode. Most of the chemical species in PM2:5 showed significant di erence between normal and haze days. The highest contributors to PM2:5 were organic carbon (OC), nitrate, and sulfate in haze days and were OC, sulfate, and elemental carbon (EC) in normal days. The concentrations of secondary species such as, NO3??, SO4 2??, and NH4 + in haze days were 6.5, 3.9, and 5.3 times higher than those in normal days, respectively, while primary species (EC, Ca2+, K+) show similar increase from normal to haze days by a factor about 2.2–2.4. OC/EC ratio ranged from 2.8 to 6.2 with an average of 4.7 and the estimation on a minimum OC/EC ratio showed that SOC (secondary organic carbon) accounted more than 36.6% for the total organic carbon in haze days. The significantly increase in the secondary species (SOC, NO3??, SO4 2??, and NH4 +), especially in NO3??, caused the worst air quality in this region. Simultaneously, the result illustrated that the serious air pollution in haze episodes was strongly correlated with the meteorological conditions. During the sampling periods, air pollution and visibility had a good relationship with the air mass transport distance; the shorter air masses transport distance, the worse air quality and visibility in Guangzhou, indicating the strong domination of local sources contributing to haze formation. High concentration of the secondary aerosol in haze episodes was likely due to the higher oxidation rates of sulfur and nitrogen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号