首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light-saturation curves for photosynthesis by reef-building corals have previously been simulated by three functions: the right rectangular hyperbola, a simple exponential function, and the hyperbolic tangent function. Studies of photosynthesis by other organisms have also frequently considered the application of a rectilinear function. This communication analyzes lightsaturation curves for photosynthesis by the Atlantic rose coral Manicina aerolata, the Atlantic staghorn coral Acropora cervicornis, and the Pacific staghorn coral A. formosa. It also analyzes light-saturation curves for calcification by A. cervicornis and A. formosa. This communication demonstrates that the two most accurate functions (as measured by coefficients of determination) are the simple exponential function and the hyperbolic tangent function. The hyperbolic tangent function is preferred because parameter estimates obtained with this function have narrower confidence intervals than those obtained through the application of the simple exponential function. The hyperbolic tangent function can also be used successfully to simulate light-saturation curves for light-enhanced calcification.  相似文献   

2.
The establishment of symbiosis in early developmental stages is important for reef-building corals because of the need for photosynthetically derived nutrition. Corals spawn eggs and sperm, or brood planula larvae and shed them into the water. Some coral eggs or planulae directly inherit symbiotic dinoflagellates (Symbiodinium spp.) from their parents, while others acquire them at each generation. In most species examined to date, the larvae without dinoflagellates (aposymbiotic larvae) can acquire symbionts during the larval stage, but little is known regarding the timing and detailed process of the onset of symbiosis. We examined larval uptake of symbiotic dinoflagellates in nine species of scleractinian corals, the onset of symbiosis through the early larval stages, and the distribution pattern of symbionts within the larval host, while living and with histology, of two acroporid corals under laboratory conditions. The larvae acquired symbiotic dinoflagellates during the planktonic phase in all corals examined which included Acropora digitifera, A. florida, A. intermedia, A. tenuis, Isopora palifera, Favia pallida, F. lizardensis, Pseudosiderastrea tayamai, and Ctenactis echinata. The larvae of A. digitifera and A. tenuis first acquired symbionts 6 and 5 days after fertilization, respectively. In A. digitifera larvae, this coincided with the formation of an oral pore and coelenteron. The number of symbiotic dinoflagellates increased over the experimental periods in both species. To test the hypothesis that nutrients promotes symbiotic uptake, the number of incorporated dinoflagellates was compared in the presence and absence of homogenized Artemia sp. A likelihood ratio test assuming a log-linear model indicated that Artemia sp. had a significantly positive effect on symbiont acquisition. These results suggest that the acquisition of symbiotic dinoflagellates during larval stages is in common with many coral species, and that the development of both a mouth and coelenteron play important roles in symbiont acquisition.  相似文献   

3.
It is currently widely accepted that the hermatypic coral fauna in the Eastern Pacific Ocean underwent massive extinction during the mid-Tertiary, with subsequent transoceanic colonizatiion by planulae from the Indo-West Pacific region during periods of favorable conditions. We suggest that the available evidence does not strongly support this biogeographic hypothesis; moreover, we contend that it is untestable in its present form. In its place we propose an alternative hypothesis based upon modification of a previously widespread, pan-Tethyan coral biota which has since been modified by tectonic events, speciations, and extinctions.Order of authorship was determined by the toss of a coin.  相似文献   

4.
N. Lindquist 《Marine Biology》1996,126(4):745-755
Risk of larval mortality is an underlying theme in debates and models concerning the ecology and evolution of the differing reproductive characteristics among marine benthic invertebrates. In these discussions, predation is often assumed to be a major source of larval mortality. Previous studies, focused primarily on planktotrophic larvae, suggested that marine larvae generally were susceptible to, and poorly defended against, planktivorous fishes and invertebrates. Larval-planktivore interactions involving larger and more conspicuous lecithotrophic larvae that are typical of many brooding sessile invertebrates have not been well studied. This lack of data for diverse larval types has hindered testing broad generalities about marine larvae and planktivore prey-preferences. This study demonstrates that lecithotrophic larvae of many Caribbean and temperate western Atlantic invertebrates are distasteful to co-occurring corals and anemones. These larval predators frequently rejected larvae of sponges (6 of 9 species), gorgonians (7 of 9 species), corals (3 of 3 species), hydroids (2 of 2 species) and a bryozoan. Larvae of three temperate colonial ascidians were readily consumed. Frequencies of survivorship for larvae captured but rejected by corals and anemones were generally high and, in 20 of 24 assays, were not statistically different from those of unattacked control larvae. Levels of metamorphosis (when it occurred) of rejected larvae also rarely differed significantly from those of unattacked controls. These results provide further evidence that larval palatability to predators may not be as high as once thought, particularly for brooded larvae of sessile colonial invertebrates. The means by which larvae may avoid or deter predators, and the demographic consequences for marine invertebrates and for the evolution of invertebrate life-history patterns, need to be assessed.  相似文献   

5.
Harland  A. D.  Davies  P. S. 《Marine Biology》1995,123(4):715-722
Dark respiration of the symbiotic sea anemone Anemonia viridis (Forskäl) was observed to increase by 34% when anemones were exposed to hyperoxic sea water (150% oxygen saturation) overnight, and by 39% after exposure to 6 h in the light at a saturating irradiance of 300 E m-2 s-1 at normoxia (100% oxygen saturation). No increase due to light stimulation was observed in aposymbiotic control anemones. In darkness, the oxygen concentration of the coelenteric fluid was hypoxic. However, within 10 min of anemones being illuminated, coelenteric fluid was hyperoxic, and it remained elevated throughout a 12 h light period. When measured over a 24 h period (12 h light: 12 h dark), the dark respiration rate increased gradually over the first 6 h of the light period until it was 35% above the dark night-time resting rate. It remained elevated throughout the remaining light period and for 2 h into the following dark period, after which it fell back to the resting rate. Gross photosynthesis (P gross) increased significantly when anemones were exposed to either hyperoxia (150% oxygen saturation) or 300 E m-2 s-1 at normoxia. This increase was not observed when symbiotic anemones were illuminated at a low-light intensity of 100 E m-2 s-1. The results of this study suggest that respiration in the dark is limited by oxygen diffusion and that normal respiration is restored in the daytime by utilisation of the oxygen released by photosynthesis. Furthermore, it appears that the increased respiration following exposure to high-light intensities provides a CO2-rich intracellular environment which further enhances the photosynthetic rate of the zooxanthellae.  相似文献   

6.
Acroporid corals are the main reef-building corals that provide three-dimensional habitats for other reef organisms, but are decreasing on many reefs worldwide due to natural and anthropogenic disturbances. In this study, temporal patterns of larval settlement and survivorship of two broadcast-spawning acroporid coral species, Acropora muricata and A. valida, were examined through laboratory rearing experiments to better understand the potential for larval dispersal of this important coral group. Many larvae were attached (but not metamorphosed) to settlement tiles on the first examination 3–4 days after spawning (AS). The first permanent larval settlement (i.e. metamorphosed and permanently settled juvenile polyps) occurred at 5–6 days AS, and most larval settlement (85–97% of total) occurred within 9–10 days AS. Larval survivorship decreased substantially to around 50% by the first week of the experiment and to approximately 10% by the second to third week. The rates of larval attachment, settlement, and the initial drop in survivorship of larvae suggest that effective dispersal of some acroporid species may largely be completed within the first few weeks AS.  相似文献   

7.
Massive colonies of the reef-building coral genus Porites were collected at inshore, midshelf and shelf-edge reefs in the central section of the Great Barrier Reef in November 1987. These colonies were comprised of 4 species: P. lobata, P. lutea, P. solida and P. mayeri. X-radiographs made of skeletal slices cut from the skeletons displayed the annual density-banding pattern characteristic of massive corals, and appeared to show corallites within each slice. The average age of the 36 colonies was 41±12 yr (mean±SD). The images of corallites displayed by the X-radiographs were not images of actual corallites, but approximated the position and size of actual corallites. Consequently, X-radiographs provide information about the formation and growth trajectories of corallites, and about the history of the polyps which deposited the corallites. Individual corallites were always normal to the growth surface. The growth surface of the colonies became bumpy when they reached 50 to 80 mm in height and, as a result, corallites took on a fan-shaped arrangement within a bump. New corallites were initiated at the summit of each bump and grew upwards and outwards. Thus, growth of colonies resulted in corallites becoming increasingly displaced from the summit of a bump. The X-radiographs showed that corallite growth becomes occluded at the bottom of valleys between adjacent bumps. Corallite growth then stops and the associated polyps are probably resorbed. Annual density banding showed that the average age of polyps in these colonies was 2 to 3 yr, average life expectancy 5 yr, and that no polyp was likely to be older than 8 yr. Small but significant variations in polyp longevity between corals from different reefs were probably associated with significant differences in bumpiness of growth surfaces. Even in Porites colonies which have been growing for several centuries, polyp longevity is likely to be 5 yr.  相似文献   

8.
Photosynthesis and respiration rates of the reef corals Pocillopora damicornis (Linn.), Montipora verrucosa (Lamarck), Porites compressa Dana and Fungia scutaria Lamarck were measured under controlled temperatures. Results indicate that coral metabolism is closely adapted to ambient temperature conditions. Tropical corals measured at Enewetak, Marshall Islands, showed greater primary production compared to maintenance requirements at elevated temperatures than did subtropical varieties of the same species in Hawaii. Photosynthesis: respiration (P:R) ratios were significantly and negatively related with temperature between 18° and 31°C for all Hawaiian corals, whereas at Enewetak this ratio generally showed a curvilinear relationship for this temperature range. Extrapolations of P:R regressions on temperatures to a value of 2.0 (estimated as a minimum required for long-term functional autotrophy) coincide for Hawaiian specimens with published upper lethal temperatures. Extrapolation of P:R regressions for Enewetak specimens at temperatures above 25°C suggests lethal temperatures for these corals to be 2 to 5 C° higher than for Hawaiian corals, in good agreement with recent experimental findings. Interspecific differences in P:R temperature regressions for Hawaiian corals correlating with upper lethal temperature tolerances are described.Contribution No. 505 of the Hawaii Institute of Marine Biology.  相似文献   

9.
Mechanisms of photoadaptation of photosynthesis have been studied in three strains of the symbiotic dinoflagellate Symbiodinium microadriaticum. Algal strains isolated from the clam Tridacna maxima, the sea anemone Aiptasia pulchella, and the scleractinian coral Montipora verrucosa were maintained in the defined medium ASP-8A, and were grown at irradiances ranging from 22 to 248 μE m-2 s-1 on a 14 h:10 h (light:dark) photoperiod at 26°C. All algal cultures were analysed during log-phase of growth. At all light levels, rates of cell division and photosynthesis were determined, as were cell volumes, pigmentation (including chlorophyll a, chlorophyll c 2, peridinin, β-carotene and xanthophylls), and carbon and nitrogen content. Low light-induced changes in pigmentation were evident to varying degrees in all three algal strains, although alterations in the photosynthesis-irradiance relations were distinctly different in each strain. The algae from T. maxima show the least photoadaptive capability, and seem to photoadapt by changing photosynthetic unit (PSU) size. Algae from A. pulchella appear to adapt by changing PSU number, while algae from M. verrucosa appear to photoadapt by changes in the activities of CO2-fixing enzymes or electron transport systems. These are the first observations that demonstrate functional differences in different strains of S. microadriaticum. The adaptive capabilities of the algae appear to correlate well with the ecological distribution of their respective hosts. The study was made from July 1981 through December 1982.  相似文献   

10.
Given the threats of greenhouse gas emissions and a changing climate to marine ecosystems, there is an urgent need to better understand the response of not only adult corals, which are particularly sensitive to environmental changes, but also their larvae, whose mechanisms of acclimation to both temperature increases and ocean acidification are not well understood. Brooded larvae from the reef coral Pocillopora damicornis collected from Nanwan Bay, Southern Taiwan, were exposed to ambient or elevated temperature (25 or 29 °C) and pCO2 (415 or 635 μatm) in a factorial experiment for 9 days, and a variety of physiological and molecular parameters were measured. Respiration and rubisco protein expression decreased in larvae exposed to elevated temperature, while those incubated at high pCO2 were larger in size. Collectively, these findings highlight the complex metabolic and molecular responses of this life history stage and the need to integrate our understanding across multiple levels of biological organization. Our results also suggest that for this pocilloporid larval life stage, the impacts of elevated temperature are likely a greater threat under near-future predictions for climate change than ocean acidification.  相似文献   

11.
The effect of the selective photosynthesis inhibitors Monuron (CMU), Diuron (DCMU) and methyl viologen on intact algal-marine invertebrate symbiotic associations was studied. CMU or DCMU (5x10-4M) completely inhibited photosynthesis, both in intact branches, and in suspensions of isolated zooxanthellae from the reef-building coral Pocillopora damicornis. The inhibitory effect was totally reversible in 1 to 3 h after removal of the inhibitor. Similar inhibition of photosynthesis occurred in 8 other marine coelenterates symbiotic with zooxanthellae, and in 1 marine gastropod symbiotic with functional chloroplasts. Neither CMU nor DCMU appeared to affect behavior of the various hosts, such as swimming, phototaxis, phototropism, photoreception, tentacle contraction, ciliary beating and locomotion. Methyl viologen, however, was ineffective in inhibiting photosynthesis in intact P. damicornis at low concentrations, and lethal to the tissues at high concentrations. These observations indicate that CMU and DCMU are potential useful tools for investigation of symbiotic associations. DCMU (5x10-4M) also reversibly inhibited light-enhanced calcification in P. damicornis. This strongly suggests that light-enhanced calcification is largely photosynthesis dependent, and probably not dependent on some other photobiological effect.Contribution No. 385, Hawaii Institute of Marine Biology, University of Hawaii  相似文献   

12.
Oxygen and pH microelectrodes were used to investigate the microenvironment of the planktonic foraminifer Orbulina universa and its dinoflagellate endosymbionts. A diffusive boundary layer surrounds the foraminiferal shell and limits the O2 and proton transport from the shell to the ambient seawater and vice versa. Due to symbiont photosynthesis, high O2 concentrations of up to 206% air saturation and a pH of up to 8.8, i.e. 0.5 pH units above ambient seawater, were measured at the shell surface of the foraminifer at saturating irradiances. The respiration of the host–symbiont system in darkness decreased the O2 concentration at the shell surface to <70% of the oxygen content in the surrounding air-saturated water. The pH at the shell surface dropped to 7.9 in darkness. We measured a mean gross photosynthetic rate of 8.5 ± 4.0 nmol O2 h−1 foraminifer−1. The net photosynthesis averaged 5.3 ± 2.7 nmol O2 h−1. In the light, the calculated respiration rates reached 3.9 ± 1.9 nmol O2 h−1, whereas the dark respiration rates were significantly lower (1.7 ± 0.7 nmol O2 h−1). Experimental light–dark cycles demonstrated a very dynamic response of the symbionts to changing light conditions. Gross photosynthesis versus scalar irradiance curves (P vs E o curves) showed light saturation irradiances (E k) of 75 and 137 μmol photons m−2 s−1 in two O. universa specimens, respectively. No inhibition of photosynthesis was observed at irradiance levels up to 700 μmol photons m−2 s−1. The light compensation point of the symbiotic association was 50 μmol photons m−2 s−1. Radial profile measurements of scalar irradiance (E o) inside the foraminifera showed a slight increase at the shell surface up to 105% of the incident irradiance (E d). Received: 26 January 1998 / Accepted: 11 April 1998  相似文献   

13.
Effects of ambient ultraviolet light on the survivorship of eggs and planulae larvae was investigated for three species of broadcast-spawning reef corals, Acropora palmata, Montastraea annularis, and M. franksi. Eggs and larvae from these corals contain high concentrations of lipids (60–70% by weight) and float in surface waters for 3–4 days following spawning. Larvae originating from colonies living at deeper sites on the reef exhibited significantly lower survivorship than conspecifics originating from parents in shallow water when experimentally exposed for up to 4 days to ambient surface levels of ultraviolet radiation (UVR). Concentrations of the UVR-protective compounds correlated positively with survival and matched concentrations found in parent colonies, implying that higher concentrations of ultraviolet B protective compounds are responsible for greater survival of eggs and larvae from shallow compared to deeper-dwelling parents. Ultraviolet B appears to be responsible for most of the observed differences in larval survivorship with ultraviolet A playing a minor or insignificant role. Data presented here indicate that coral recruits on Caribbean reefs and elsewhere may originate primarily from adult colonies dwelling in shallow water.Communicated by P.W. Sammarco, Chauvin  相似文献   

14.
Larval dispersal and recruitment are important in determining adult coral distribution; however, few studies have been made of coral larval dispersal. This study examined the larval behavior, survivorship competency periods and settlement of two brooding corals, Heliopora coerulea and Pocillopora damicornis, in relation to different potential larval dispersal patterns. We also examined the lipid content of H. coerulea as a means of flotation and a source of energy. Planulae of H. coerulea were on average 3.7 mm in length, lacked zooxanthellae, and were mostly benthic, probably because of restricted movement and low lipid content (54% by dry weight). Planulae of P. damicornis were on average 1.0 mm in length, had zooxanthellae and swam actively. The competency period of H. coerulea was shorter (30 days) than that of P. damicornis (100 days). Forty percent of H. coerulea planulae crawled onto the substrata within 1 h of release, and 47% settled within 6 h. By contrast, fewer than 10% of P. damicornis planulae crawled onto the substrata within the first hour and 25% settled within 6 h of release. The planulae of H. coerulea may have a narrower dispersal range than those of P. damicornis, settling and recruiting near parent colonies. Thus, brooding corals exhibit variations in larval dispersal patterns, which are characterized by their position in the water column and competency periods.  相似文献   

15.
Jones RI  Carter CE  Kelly A  Ward S  Kelly DJ  Grey J 《Ecology》2008,89(3):857-864
Reports of unexpectedly 13C-depleted chironomid larvae in lakes have led to an hypothesis that significant transfer of detrital organic matter to chironomid larvae may occur via methane-cycle bacteria. However, to date little is known of how such transfer might vary across species and lakes. We gathered data from 87 lakes to determine how widespread this phenomenon might be and to define boundaries for its likely magnitude. Carbon stable isotope values of chironomid larvae varied greatly between taxa. Very marked 13C-depletion was evident only in certain taxa, especially Chironomus plumosus, C. anthracinus, and C. tenuistylus, all characteristic of eutrophic or dystrophic lakes and known to be tolerant of low oxygen conditions. Furthermore, marked 13C-depletion was only found in larvae from lakes in which late-summer hypolimnetic oxygen depletion near the sediment surface was below an apparent threshold concentration of 2-4 mg O2/L. Similarly, application of a two-source mixing model suggested that methanotrophic bacteria made the greatest contribution to profundal chironomid growth (0-70% of larval carbon) when the late-summer oxygen concentration dropped below approximately 2 mg O2/L. Our study demonstrates that methane-derived carbon is an important, but often neglected, contribution to the flux of carbon through the food webs of many productive or dystrophic lakes.  相似文献   

16.
Hill  R.  Schreiber  U.  Gademann  R.  Larkum  A. W. D.  Kühl  M.  Ralph  P. J. 《Marine Biology》2004,144(4):633-640
Heterogeneity in photosynthetic performance between polyp and coenosarc tissue in corals was shown using a new variable fluorescence imaging system (Imaging-PAM) with three species of coral, Acropora nobilis, Cyphastrea serailia and Pocillopora damicornis. In comparison to earlier studies with fibre-optic microprobes for fluorescence analysis, the Imaging-PAM enables greater accuracy by allowing different tissues to be better defined and by providing many more data points within a given time. Spatial variability of photosynthetic performance from the tip to the distal parts was revealed in one species of branching coral, A. nobilis. The effect of bleaching conditions (33°C vs. 27°C) was studied over a period of 8 h. Marked changes in fluorescence parameters were observed for all three species. Although a decline in PSII (effective quantum yield) and Yi (the first effective quantum yield obtained from a rapid light curve) were observed, P. damicornis showed no visual signs of bleaching on the Imaging-PAM after this time. In A. nobilis and C. serailia, visual signs of bleaching over the 8 h period were accompanied by marked changes in F (light-adapted fluorescence yield), NPQ (non-photochemical quenching) and E k (minimum saturating irradiance), as well as PSII and Yi. These changes were most marked over the first 5 h. The most sensitive species was A. nobilis, which after 8 h at 33°C had reached a PSII value of almost zero across its whole surface. Differential bleaching responses between polyps and coenosarc tissue were found in P. damicornis, but not in A. nobilis and C. serailia. NPQ increased with exposure time to 33°C in both the latter species, accompanied by a decreasing E k, suggesting that the xanthophyll cycle is entrained as a mechanism for reducing the effects of the bleaching conditions.Communicated by L. Hagerman, Helsingør  相似文献   

17.
The extent to which behaviour affects the dispersal of pelagic larvae in reef fishes has been a topic of major discussion among marine ecologists. Here, we experimentally quantified the extent to which the displacement of late-stage larvae of Abudefduf saxatilis is due to active movement (i.e. swimming) and drifting. We consider drifting as the component of larval displacement accounted for by the current. Drifting was quantified by comparing larval displacement to the displacement of passive particles in an extended flow chamber that gave larvae the free choice of swimming (i.e. swim with or against the current or not swim at all). We also determine whether drifting results from currents exceeding larval swimming capabilities or from the behavioural choice of larvae of not to swim against adverse currents. To do this, we compare the speeds of larval swimming in the extended flow chamber to those obtained in a smaller chamber in which larvae are behaviourally forced to swim due to space constraints and a retaining fence (most available data on larval swimming is based on this sort of chamber). Within the extended chamber, larvae tended to face the current and swim slower than it. This resulted in a net displacement increasingly determined by drifting. We also found that in the extended chamber, larvae swam at speeds between one and six times slower than the speeds they achieved in the “behaviourally modifying” smaller chamber. This suggests that the net displacement in the extended chamber was in part due to the behavioural choice of the larvae of not to swim. The importance of this “behavioural drifting” is discussed in terms of energy savings required for successful completion of the larval period and post-settlement survival. The idea that larvae may modulate their swimming behaviour raises caution for the use of published data regarding swimming capabilities of reef fish larvae when assessing the extent to which these fish actively affect their dispersal.  相似文献   

18.
In order to examine the effect of light level on the storage lipids of the symbiotic sea anemoneAnemonia virudis (Forskäl), anemones were exposed to three experimental light regimes of 10, 100 and 300 E m-2s-1. Anemones were fed once a week. After 30 d there were no significant differences in the total lipid levels between anemones at any of the light intensities. However, after 60 d lipids had increased in proportion to light level in both the animal-tissue and zooxanthellae compartments. The higher levels of total lipid were in part due to increases in storage lipid (wax esters and triglycerides). Wax ester levels increased in the animal tissues but remained constant in the zooxanthellae, whereas triglycerides increased in both compartments. In contrast to fed anemones, starved anemones which were maintained at 300 E m-2s-1 for 30 or 60 d did not show a statistically significant change in lipid levels at 60 d, although a slight increase in the lipid level was observed. However, there was a significant increase in the storage lipids, which suggested that the non-storage phospholipids and structural lipids had declined as a result of cellular catabolism. The composition of the wax esters and triglycerides of both fed and starved anemones was analysed and compositional changes were observed at higher light intensities.  相似文献   

19.
To test whether coral planulae recruit randomly to different coral reef habitats or have specific substratum preferences, the settling behavior of planulae from two shallow water coral species from Pago Bay, Guam (13°25.02N, 144°47.30E) were examined in the laboratory in June and July of 1995. Goniastrea retiformis is generally restricted to the shallow reef front (<10 m depth) in areas dominated by crustose coralline algae (CCA), while Stylaraea punctata is abundant on inner reef flats were CCA coverage is low and sand and carbonate rubble covered by biofilms is common. When presented with four substrata (1) carbonate rock scrubbed free of biofilm and dried as a control, (2) the CCA Hydrolithon reinboldii, (3) the CCA Peyssonelia sp., and (4) naturally conditioned carbonate rubble covered by a biofilm, G. retiformis larvae showed a significant preference for H. reinboldii, and S. punctata larvae for the carbonate biofilm treatment. The preference shown by S. punctata larvae for biofilmed surfaces did not diminish with increasing larval age up to 11 days. These results suggest that the larvae of both species are capable of habitat selection, and that the preferred substrata among those tested bears a relationship to the habitats in which adult colonies were found. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
During the last 20 yr the western half of the Dutch Wadden Sea has undergone significant eutrophication: concentrations of P and N compounds and planktonic algae have roughly doubled, as has primary production. Though oxygen levels are often low in summer, anoxic areas are small and rare due to strong tidal mixing. During the 1970 to 1990 period, macrozoobenthos was sampled annually at 15 stations at Balgzand, a 50-km2 tidal-flat area in the westernmost part of the Wadden Sea. Not only did the estimates of total numbers, biomass, and production double during these two decades, but significant changes in the composition of the benthic community were observed, too: (1) the numerical proportion of polychaetes increased at the expense of molluscs and crustaceans, (2) the overall mean weight per individual of the macrozoobenthos decreased (numbers of individuals of small-sized species increased more rapidly than those of large-sized species), and (3) though absolute numbers and biomass of all feeding types increased, the share of carnivores declined and that of deposit feeders increased; the proportion of suspension feeders showed little change. This study refers to true macrobenthos only (1-mm sieve) and further excludes two taxa (Corophium spp. andHydrobia ulvae) which occasionally exercised an undue influence on numbers. Mass mortalities caused by low oxygen concentrations were of a small-scale nature only. Total number of species fluctuated without a clear trend. As a consequence of the increasing numerical densities, trends in species numbers were slightly increasing when expressed per unit of area and slightly decreasing when estimated per 100 individuals (by rarefaction).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号