首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
膜电解工艺处理碱性含铜蚀刻废液   总被引:1,自引:0,他引:1  
实验对碱性含铜蚀刻废液膜电解工艺处理的可行性开展相关研究,考察了槽电压、电解时间和阳极液pH值等因素对膜电解电流效率的影响,并确定了最佳工艺条件:槽电压3.10 V、电解时间2 h、阳极液初始pH值9.20。在上述最优工艺条件下,膜电解电流效率达91.5%。实验结果表明,该工艺操作方便、简单可行,是处理蚀刻废液、回收铜的有效方法,具有一定的应用价值。  相似文献   

2.
液晶显示器(LCD)是电视、电脑和手机等电子产品的重要部件,资源化回收所含的稀有金属铟具有重要意义。结果表明:(1)采用溴化法浸出LCD中的铟,在采用Br2、溴化钠及硫酸质量浓度分别为20、16、55.2g/L的溴水浸出剂、浸出时间3h、温度50℃的条件下,铟浸出率可达99.2%。(2)采用双极室阴离子膜电解槽电解回收Br2,当电解电压为1.8V、电解时间为300min时,采用四氯化碳对浸出液中未参加反应的Br2进行萃取回收,Br2的回收率为83.5%;电解阴极液中的Fe3+被还原为Fe2+以达到屏蔽目的,电解240min后Fe2+生成量达1 801mg/L,转化率为90.9%。(3)采用氢氧化钠沉淀法粗提取铟,当pH为4.78时,沉淀物的主要成分为In(OH)3,滤渣中In3+占总金属离子质量的47.9%,铟的回收率为94.8%。  相似文献   

3.
以多孔石墨电极为阴极 ,电解时在阴极通以氧气或空气 ,电解生成的过氧化氢与阳极溶解的Fe2 +进行随后化学反应 ,现场生成羟基自由基 (Fenton试剂 ) ,进而对有机染整工业废水进行降解脱色反应。以可见光吸收谱图表征了工业染料废水经电解槽处理后吸光度的变化 ,以重铬酸钾法测试染料处理后的COD。实验结果表明 ,COD的去除率大于 80 % ,染料的脱色率达 1 0 0 % ,若将电解电流密度控制在 1 0mA/cm2 以下 ,槽电压可控制在 5V以内。实验结果表明 ,向阴极多孔石墨电极中通入空气与通入氧气的效果一致。  相似文献   

4.
Fe/C微电解 絮凝沉淀法处理电镀废水中铜的研究   总被引:2,自引:2,他引:0  
利用Fe/C微电解-絮凝沉淀法去除青岛某电子有限公司电镀废水中Cu2+。通过正交与单因素实验,考察了废水初始pH,Fe/C,Fe投加量,反应时间对Cu2+处理效果的影响。实验结果表明:在初始pH=4、Fe/C(质量)=2/1、Fe投加量=60 g/L、反应时间=60 min的实验条件下,絮凝出水Cu2+含量由641.78 mg/L降至0.32 mg/L,还原率高达99.95%,同时COD去除率23.57%。出水Cu2+含量达到山东省半岛流域水污染物综合排放Ⅰ级标准。  相似文献   

5.
电-Fenton法处理4-氯酚废水   总被引:6,自引:0,他引:6  
采用电解法对 4 氯酚废水进行了处理。以活性炭纤维 (ACF)为阴极 ,铁为阳极 ,并向阴极不断通入空气 ,电解过程中生成的H2 O2 与阳极溶解的Fe2 + 形成Fenton(芬顿 )试剂 ,Fenton试剂在电解的过程中可以产生大量活性羟基·OH ,能够很好地氧化降解废水中的 4 氯酚。在最佳试验条件下 :室温 ,氯酚浓度为 5 0mg/L ,电解时间为 6 0min ,pH值为4 5 ,电流密度为 15 38A/m2 ,Na2 SO4浓度为 3g/L时 ,4 氯酚去除率为 85 70 %。  相似文献   

6.
采用铁炭微电解-Fenton联合工艺深度处理制药废水生化出水,探讨了初始pH、曝气量、反应时间等因素对微电解出水Fe2+和Fe3+变化规律、COD降解速率以及后续Fenton氧化效果的影响,为优化微电解-Fenton氧化联合工艺提出了微电解间歇加酸的理论。间歇加酸可提高微电解系统中COD降解速率和Fe2+含量,使后续Fenton氧化无需投加FeSO4·7H2O即可达到较好的COD去除效果。结果表明,当初始pH=2.5,曝气量为0.6 m3/h,间歇加酸30 min/次,微电解反应2 h,出水投加1 mL/L的H2O2进行Fenton氧化2 h,COD总去除率可达81.33%;间歇加酸30 min/次可将微电解反应2 h出水Fe2+浓度从50 mg/L提高至151 mg/L,COD降解速率从10.6 mg COD/(L·h)提高至22.2 mg COD/(L·h)。  相似文献   

7.
隔膜电解法回收利用电厂锅炉EDTA清洗废水研究   总被引:1,自引:0,他引:1  
以涂Ir/Sn钛网板作阳极,以不锈钢网板作阴极,采用隔膜电解法处理电厂锅炉EDTA清洗废水.实验结果表明,电流、阴极电解液初始pH值和Fe/EDTA摩尔比对粉末铁析出速率影响较大,粉末铁电解析出的适宜条件是电解电流为1.0 A、阴极电解液初始pH值为5.6、阴极电解液Fe/EDTA摩尔比足够高.采用隔膜电解结合反渗透膜系统处理电厂锅炉EDTA清洗废水,可同时高效回收纳米级粉末铁和EDTA.  相似文献   

8.
铁炭微电解预处理电路板废水   总被引:3,自引:0,他引:3  
采用铁炭微电解法预处理电路板废水.结果表明,在进水pH为2.00、铁炭质量比为4:1、振荡时间为20 min的铁炭微电解静态实验最佳条件下,絮凝出水COD去除率为30%;在进水pH为2.00、铁炭质量比为4:1、水力停留时间为50 min的铁炭微电解柱动态实验最佳条件下,连续曝气.絮凝出水COD为11021 mg/L,COD去除率约为34%,BOD5/COD从0.12上升到0.32,可生化性提高,Cu2+质量浓度从9.11 mg/L下降至0.76 mg/L,降低了废水的生物毒性,为生化处理创造了条件.  相似文献   

9.
微生物燃料电池近年来被证实可以用来同步脱氮,然而微生物燃料电池中阴阳极室通常以不同成分的污水作为底物。为了实现废水脱氮,往往需要进行出水调配或停曝等复杂的操作。为解决上述问题,本研究构建了阴极硝化耦合阳极反硝化的四室微生物燃料电池(four chamber microbial fuel cell,FC-MFC),阳极室与阴极室之间用阳离子交换膜(cation exchange membrane,CEM)与阴离子交换膜(anion exchange membrane,AEM)进行交替分隔。在浓度差作用下离子进行定向迁移,最终实现阳极室有机物和氨氮的同步去除。探讨了阳极COD(即进水碳氮比)对FC-MFC产电及污染物去除效果的影响,并分析FC-MFC的氮去除途径。结果表明:随着阳极室COD的增加,各MFC模块的产电周期、峰值输出电压和最大功率密度随之增加,同时阳极室COD和TN的去除率也呈上升趋势,该系统对高碳氮比污水具有良好的抵抗负荷。当进水COD和NH4+-N质量浓度分别为1 100 mg·L-1和100 mg·L  相似文献   

10.
水体硝酸盐污染已成为一个日益严重的问题。以多孔Fe和Fe-Si合金为阴极,Ti/IrO_2为阳极构建电解系统,对模拟废水(100 mg·L~(-1)NO_3~--N+500 mg·L~(-1)NaCl+500 mg·L~(-1)Na2SO4)进行电解以去除其中的硝酸根离子,并研究了多孔Fe-Si合金在电解过程中的稳定性。实验结果表明,增大电流密度有利于提高NO_3~--N和总氮的去除效率。当电流密度为40 mA·cm~(-2)时,以多孔Fe为阴极,几乎无副产物产生,NO_3~--N和总氮去除率均为94.3%,但电解完成之后Fe电极腐蚀严重,溶液中铁离子浓度达1 418 mg·L~(-1)。而以多孔Fe-Si为阴极时,随合金中硅含量增加,NO_3~--N和总氮去除率均呈下降趋势,但电极稳定性显著提高,电解完成之后溶液中Fe离子浓度显著下降。当Fe-Si合金中硅原子百分比为50%时,NO_3~--N和总氮去除率均为78.8%,此时溶液中Fe离子浓度仅为41 mg·L~(-1)。多孔Fe-Si合金作为阴极还原硝酸根离子时,具有较高的硝酸根去除率和良好的稳定性,应用前景较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号