首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aggregate income of oil-exporting countries relative to that of oil-poor countries has been remarkably constant in recent decades, despite the existence of structural gaps in productivity growth rates. This stylized fact is rationalized in an endogenous growth model of asymmetric trade where resource-poor and resource-rich economies display productivity differences but stable income shares due to terms-of-trade dynamics. The model yields two testable predictions that deserve empirical scrutiny: (i) the asymmetric impact, between exporters and importers, of national taxes on resource use on income shares and (ii) the inverse relation between terms-of-trade dynamics and total factor productivity growth.  相似文献   

2.
This paper investigates the impact of changes in environmental policy stringency on industry- and firm-level productivity growth in a panel of OECD countries. To test the strong version of the Porter Hypothesis (PH), we extend a neo-Schumpeterian productivity model to allow for effects of environmental policies. We use a new environmental policy stringency (EPS) index and let the effect of countries׳ environmental policies vary with the pollution intensity of the industry and with the countries’ and firms’ technological advancement. A tightening of environmental policy is associated with a short-term increase in industry-level productivity growth in the most technologically-advanced countries. This effect diminishes with the distance to the global productivity frontier, eventually becoming insignificant. For the average firm, no evidence of PH is found. However, the most productive firms see a temporary boost in productivity growth, while the less productive ones experience a productivity slowdown.  相似文献   

3.
Resource Depletion and Sustainability in Small Open Economies   总被引:1,自引:0,他引:1  
Exogenous price changes affect the amount that a small country exporting natural resource commodities must invest to sustain its consumption level. The necessary amount is given by the difference between Hotelling rent and the discounted sum of future terms-of-trade effects (capital gains). The latter term is found to be large relative to the former in the case of petroleum depletion in Indonesia. This suggests that resource-rich countries will need to invest more than previously expected to sustain their consumption levels, if natural resource prices continue their long-term historical decline.  相似文献   

4.
This paper presents a simple system for efficient regulation under asymmetric information. Each firm's income is controlled by a tax that depends on the firm's own output and on a parameter construed as a share permit. These “shares of total expected output” lower a firm's tax burden and are acquired in a competitive market. By employing this scheme, the planner only requires knowledge of marginal damage to induce the first-best outcome. Relative to a traditional cap-and-trade approach the system increases expected social welfare.  相似文献   

5.
We show the implications of the commonly observed age-related decline in aboveground productivity of forests, and hence forest age structure, on the carbon dynamics of European forests in response to historical changes in environmental conditions. Size-dependent carbon allocation in trees to counteract increasing hydraulic resistance with tree height has been hypothesized to be responsible for this decline. Incorporated into a global terrestrial biosphere model (the Lund-Potsdam-Jena model, LPJ), this hypothesis improves the simulated increase in biomass with stand age. Application of the advanced model, including a generic representation of forest management in even-aged stands, for 77 European provinces shows that model-based estimates of biomass development with age compare favorably with inventory-based estimates for different tree species. Model estimates of biomass densities on province and country levels, and trends in growth increment along an annual mean temperature gradient are in broad agreement with inventory data. However, the level of agreement between modeled and inventory-based estimates varies markedly between countries and provinces. The model is able to reproduce the present-day age structure of forests and the ratio of biomass removals to increment on a European scale based on observed changes in climate, atmospheric CO2 concentration, forest area, and wood demand between 1948 and 2000. Vegetation in European forests is modeled to sequester carbon at a rate of 100 Tg C/yr, which corresponds well to forest inventory-based estimates.  相似文献   

6.
This paper presents a simple system for efficient regulation under asymmetric information. Each firm's income is controlled by a tax that depends on the firm's own output and on a parameter construed as a share permit. These “shares of total expected output” lower a firm's tax burden and are acquired in a competitive market. By employing this scheme, the planner only requires knowledge of marginal damage to induce the first-best outcome. Relative to a traditional cap-and-trade approach the system increases expected social welfare.  相似文献   

7.
Pollution havens and industrial agglomeration   总被引:3,自引:0,他引:3  
This paper examines the pollution haven hypothesis using a spatial-economy model of two countries and two sectors. The manufacturing sector generates cross-border pollution which reduces cross-sectoral productivity of agricultural goods, and lowers local income. We derive a demand-reducing effect that discourages firms to move to the country with laxer environmental regulations, in the absence of any comparative advantage. Our analysis also demonstrates that manufacturing agglomeration forces can alleviate the pollution-haven effect: a pollution haven may not arise if environmental regulation is slightly more stringent in the larger country.  相似文献   

8.
Patterns of coexistence among competing species exhibiting size- and food-dependent growth remain largely unexplored. Here we studied mechanisms behind coexistence and shifts in competitive dominance in a size-structured fish guild, representing sprat and herring stocks in the Baltic Sea, using a physiologically structured model of competing populations. The influence of degree of resource overlap and the possibility of undergoing ontogenetic diet shifts were studied as functions of zooplankton and zoobenthos productivity. By imposing different size-dependent mortalities, we could study the outcome of competition under contrasting environmental regimes representing poor and favorable growth conditions. We found that the identity of the dominant species shifted between low and high productivity. Adding a herring-exclusive benthos resource only provided a competitive advantage over sprat when size-dependent mortality was high enough to allow for rapid growth in the zooplankton niche. Hence, the importance of a bottom-up effect of varying productivity was dependent on a strong top-down effect. Although herring could depress shared resources to lower levels than could sprat and also could access an exclusive resource, the smaller size at maturation of sprat allowed it to coexist with herring and, in some cases, exclude it. Our model system, characterized by interactions among size cohorts, allowed for consumer coexistence even at full resource overlap at intermediate productivities when size-dependent mortality was low. Observed shifts in community patterns were crucially dependent on the explicit consideration of size- and food-dependent growth. Accordingly, we argue that accounting for food-dependent growth and size-dependent interactions is necessary to better predict changes in community structure and dynamics following changes in major ecosystem drivers such as resource productivity and mortality, which are fundamental for our ability to manage exploitation of living resources in, e.g., fisheries.  相似文献   

9.
The present paper reports how stand size-structure dynamics due to competition between different-sized trees affect long-term forested water balance in Japanese cool-temperate planted stands (evergreen coniferous Cryptomeria japonica and deciduous coniferous Larix kaempferi stands) using a fully coupled multi-layered meteorological surface physics—terrestrial ecosystems model. The simulation captured the well-known annual variation in leaf area index (LAI) accurately with stand age in monocultured and even-aged stands; the occurrence of maximum LAI during the early growth stage and then a gradual decline followed by a steady state after the maximum LAI. The simulations also detected a high dependency of annual evapotranspiration (AETr) on LAI with stand age that is well known by prior observational researches. In the C. japonica (shade-tolerant late-successional species) stand, the relationship between annual net primary productivity of an individual tree (NPPind) and individual tree mass (w) changed from linear to a convex curve during self-thinning, indicating that the degree of asymmetric tree competition intensified with forest stand development. The higher degree of competitive asymmetry characterized by the convex-shaped NPPind-w relationship produced greater size inequality, i.e., the formation of trees stratified by height. Under such conditions, AETr and annual transpiration (ATr) were mainly regulated by larger trees. On the other hand, the NPPind-w relationships in the L. kaempferi (shade-intolerant early-successional species) stand were linear throughout the simulated period, indicating the lower degree of competitive asymmetry. Under such conditions, the growth of intermediate-sized trees was enhanced and these trees became a dominant source of AETr (and also ATr) during self-thinning. Furthermore, the sensitivity analysis of the effects of ecophysiological parameters such as foliage profile (i.e., vertical distribution of leaf area density) of an individual tree (distribution pattern is described by the parameter η), the maximum carboxylation velocity (Vcmax0) and biomass allocation pattern of individual plant growth (μ1) on AETr, ATr and annual runoff (ARoff) showed that the temporal trends of AETr, ATr, ARoff and NPPind-w relationships were completely the same as those in the control simulations. However, the NPPind-w relationship during self-thinning indicated higher degrees of competitive asymmetry when η or Vcmax0 were greater than those in the control simulation and generated greater AETr and ATr and thus smaller ARoff. We found that more asymmetric tree competition brings about greater size inequality between different-sized trees and thus more evapotranspiration and less runoff in a forest stand. Overall, our simulation approach revealed that not only LAI dynamics but also plant competition, and thus size-structure dynamics, in a forest ecosystem are essential to long-term future projections of forested water balance.  相似文献   

10.
Abstract:  Human population and development activities affect the rate of deforestation in biodiversity hotspots. We quantified the effect of human population growth and development on rates of deforestation and analyzed the relationship between these causal factors in the 1980s and 1990s. We compared the averages of population growth, human development index (HDI, which measures income, health, and education), and deforestation rate and computed correlations among these variables for countries that contain biodiversity hotspots. When population growth was high and HDI was low there was a high rate of deforestation, but when HDI was high, rate of deforestation was low, despite high population growth. The correlation among variables was significant for the 1990s but not for the 1980s. The relationship between population growth and HDI had a regional pattern that reflected the historical process of development. Based on the changes in HDI and deforestation rate over time, we identified two drivers of deforestation: policy choice and human-development constraints. Policy choices that disregard conservation may cause the loss of forests even in countries that are relatively developed. Lack of development in other countries, on the other hand, may increase the pressure on forests to meet the basic needs of the human population. Deforestation resulting from policy choices may be easier to fix than deforestation arising from human development constraints. To prevent deforestation in the countries that have such constraints, transfer of material and intellectual resources from developed countries may be needed. Popular interest in sustainable development in developed countries can facilitate the transfer of these resources.  相似文献   

11.
Gouhier TC  Guichard F 《Ecology》2007,88(3):647-657
In marine systems, the occurrence and implications of disturbance-recovery cycles have been revealed at the landscape level, but only in demographically open or closed systems where landscape-level dynamics are assumed to have no feedback effect on regional dynamics. We present a mussel metapopulation model to elucidate the role of landscape-level disturbance cycles for regional response of mussel populations to onshore productivity and larval transport. Landscape dynamics are generated through spatially explicit rules, and each landscape is connected to its neighbor through unidirectional larval dispersal. The role of landscape disturbance cycles in the regional system behavior is elucidated (1) in demographically open vs. demographically coupled systems, in relation to (2) onshore reproductive output and (3) the temporal scale of landscape disturbance dynamics. By controlling for spatial structure at the landscape and metapopulation levels, we first demonstrate the interaction between landscape and oceanographic connectivity. The temporal scale of disturbance cycles, as controlled by mussel colonization rate, plays a critical role in the regional behavior of the system. Indeed, fast disturbance cycles are responsible for regional synchrony in relation to onshore reproductive output. Slow disturbance cycles, however, lead to increased robustness to changes in productivity and to demographic coupling. These testable predictions indicate that the occurrence and temporal scale of local disturbance-recovery dynamics can drive large-scale variability in demographically open systems, and the response of metapopulations to changes in nearshore productivity.  相似文献   

12.
A country's macroeconomic policies have two basic objectives: to provide its citizens with a means to make a better living and a preferable environment. For the past decades, accompanying its fantastic economic growth, fast-developing Asia has become one of the major contributors to the increase of global carbon dioxide emissions. This paper analyzes productivity growth of ten Asian countries, namely, China, Japan, the NIEs and the ASEAN-4, by examining their outputs from economic performance and environmental impact standpoints. Productivity growth and its components are calculated using the Malmquist index. There appears to be a widening gap between the productivity growth trends without/with CO2 emissions of the ten Asian economies. This implies that the factor of productivity could be over-emphasized at great cost to the environment. A cross-country comparison analysis, considering CO2 emissions, shows that the productivity of China and ASEAN-4 deteriorated while the productivity growth of Japan and NIEs performed much better.  相似文献   

13.
《Ecological modelling》2005,187(4):491-512
Two long-term mechanistic models of grazing systems in the semi-arid succulent Karoo have been used to study factors that influence vegetation changes, livestock productivity and sustainability of the ecosystem. In this region of low and highly variable rainfall, goats and sheep feed on vegetation comprising perennial shrubs and annuals. A previously published model of the Namaqualand system (the “standard” model) explicitly simulates three guilds of perennial shrubs, a guild of annuals, forage consumption, growth of goats and goat reproductive and survival rates. The model also simulates variable rainfall and predicts that, if no steps are taken to control the goat population, stock numbers will vary widely between years and the population of the different plant guilds will fluctuate. Plots of model output indicate that the system is driven by rainfall. Temporal changes in the relative abundance of each guild vary with different sequences of rainfall having similar long-term mean and variability. A single run of the model may display equilibrial, disequilibrial and threshold behaviour. Thus, the system exhibits complex dynamics. If animal numbers are held constant at the long-term average of variable stock or at the recommended stocking rate then the cover of palatable shrubs decreases and that of toxic plants increases substantially. A “simplified” model based on an aggregated forage variable and equilibrium dynamics is inadequate to describe the behaviour of this system.  相似文献   

14.
Economic land use, ecosystem services and microfounded species dynamics   总被引:1,自引:0,他引:1  
In an integrated economy–ecosystem model humans choose their land use and leave the residual land as habitat for three species forming a food chain. The size of habitat determines the diversity and abundance of species. That biodiversity generates, in turn, a flow of ecosystem services with public-good characteristics for human consumption. The ecosystem submodel yields (rather than assumes!) population growth functions with each species’ growth depending on the size of habitat. First the relationship between habitat and species growth (sustenance, decline and extinction) is explored. The laissez-faire economy is shown to result in an underprovision of habitat making the case for land use restrictions for nature protection. The optimal land use policy is characterized with full regard of ecosystem dynamics. Finally, labor-augmenting technical change is introduced to generate ever increasing pressure towards further habitat reductions. In the laissez-faire economy the habitat is consequently squeezed to zero in the long-run so that all species are doomed. Social optimality demands, however, to refrain from using all land for economic purposes despite ever growing labor productivity.  相似文献   

15.
Phytoplankton-grazer dynamics are often characterized by long transients relative to the length of the growing season. Using a phytoplankton-grazer model parameterized for Daphnia pulex with either flexible or fixed algal carbon:nutrient stoichiometry, we explored how nutrient and light supply (the latter by varying depth of the mixed water column) affect the transient dynamics of the system starting from low densities. The system goes through an initial oscillation across nearly the entire light-nutrient supply space. With flexible (but not with fixed) algal stoichiometry, duration of the initial algal peak, timing and duration of the subsequent grazer peak, and timing of the algal minimum are consistently accelerated by nutrient enrichment but decelerated by light enrichment (decreasing mixing depth) over the range of intermediate to shallow mixing depths. These contrasting effects of nutrient vs. light enrichment are consequences of their opposing influences on food quality (algal nutrient content): algal productivity and food quality are positively related along a nutrient gradient but inversely related along a light gradient. Light enrichment therefore slows down grazer growth relative to algal growth, decelerating oscillatory dynamics; nutrient enrichment has opposite effects. We manipulated nutrient supply and mixing depth in a field enclosure experiment. The experimental results were qualitatively much more consistent with the flexible than with the fixed stoichiometry model. Nutrient enrichment increased Daphnia peak biomass, decreased algal minimum biomass, decreased the seston C:P ratio, and accelerated transient oscillatory dynamics. Light enrichment (decreasing mixing depth) produced the opposite patterns, except that Daphnia peak biomass increased monotonously with light enrichment, too. Thus, while the model predicts the possibility of the "paradox of energy enrichment" (a decrease in grazer biomass with light enrichment) at high light and low nutrient supply, this phenomenon did not occur in our experiment.  相似文献   

16.
Although interwetland dispersal is thought to play an important role in regional persistence of pond‐breeding amphibians, few researchers have modeled amphibian metapopulation or source‐sink dynamics. Results of recent modeling studies suggest anthropogenic stressors, such as pollution, can negatively affect density and population viability of amphibians breeding in isolated wetlands. Presumably population declines also result in reduced dispersal to surrounding (often uncontaminated) habitats, potentially affecting dynamics of nearby populations. We used our data on the effects of mercury (Hg) on the American toad ( Bufo americanus) as a case study in modeling the effects of anthropogenic stressors on landscape‐scale amphibian dynamics. We created a structured metapopulation model to investigate regional dynamics of American toads and to evaluate the degree to which detrimental effects of Hg contamination on individual populations can disrupt interpopulation dynamics. Dispersal from typical American toad populations supported nearby populations that would otherwise have been extirpated over long time scales. Through support of such sink populations, dispersal between wetland‐associated subpopulations substantially increased overall productivity of wetland networks, but this effect declined with increasing interwetland distance and decreasing wetland size. Contamination with Hg substantially reduced productivity of wetland‐associated subpopulations and impaired the ability of populations to support nearby sinks within relevant spatial scales. Our results add to the understanding of regional dynamics of pond‐breeding amphibians, the wide‐reaching negative effects of environmental contaminants, and the potential for restoration or remediation of degraded habitats. Evaluación de los Efectos de Estresantes Antropogénicos sobre la Dinámica Fuente‐Vertedero en Anfibios que se Reproducen en Charcas  相似文献   

17.
Seasonal patterns of climate and vegetation growth are expected to be altered by global warming. In alpine environments, the reproduction of birds and mammals is tightly linked to seasonality; therefore such alterations may have strong repercussions on recruitment. We used the normalized difference vegetation index (NDVI), a satellite-based measurement that correlates strongly with aboveground net primary productivity, to explore how annual variations in the timing of vegetation onset and in the rate of change in primary production during green-up affected juvenile growth and survival of bighorn sheep (Ovis canadensis), Alpine ibex (Capra ibex), and mountain goats (Oreamnos americanus) in four different populations in two continents. We indexed timing of onset of vegetation growth by the integrated NDVI (INDVI) in May. The rate of change in primary production during green-up (early May to early July) was estimated as (1) the maximal slope between any two successive bimonthly NDVI values during this period and (2) the slope in NDVI between early May and early July. The maximal slope in NDVI was negatively correlated with lamb growth and survival in both populations of bighorn sheep, growth of mountain goat kids, and survival of Alpine ibex kids, but not with survival of mountain goat kids. There was no effect of INDVI in May and of the slope in NDVI between early May and early July on juvenile growth and survival for any species. Although rapid changes in NDVI during the green-up period could translate into higher plant productivity, they may also lead to a shorter period of availability of high-quality forage over a large spatial scale, decreasing the opportunity for mountain ungulates to exploit high-quality forage. Our results suggest that attempts to forecast how warmer winters and springs will affect animal population dynamics and life histories in alpine environments should consider factors influencing the rate of changes in primary production during green-up and the timing of vegetation onset.  相似文献   

18.
《Ecological modelling》2005,186(4):447-469
Based on empirical findings in a natural black alder ecosystem in Northern Germany we developed an individual based model that integrates components of a black alder ecosystem interacting on different levels of organisation. The factors determining seasonal fine root biomass development of forest ecosystems are not yet fully understood.We used an object oriented model approach to investigate this complex matter for black alder trees. Processes like growth, storage, respiration, transport, nutrient mineralisation and uptake as well as interactions among these factors are described on the level of functionally differentiated plant organs (fine roots, coarse roots, stem, branches, leaves) and soil units. The object structure of the model is determined by spatial relations between plant modules as well as between plant modules and their local environment modules.As results of model application we found that (i) on the organ level, spatio-temporal plasticity of (root) growth allocation is related to spatio-temporal variation of resource availability, (ii) on the plant level, balanced root:shoot growth appears in response to variation of available resources light and nutrients, (iii) on the population level, tree stand development (population structure, self-thinning) resulted from coexistence and competition between plant individuals.For the understanding of the root compartment it seems relevant that the model implementation of local scale fine root dynamics is consistent with a self-organised large scale spatial heterogeneity of fine root activity pattern. On the other hand, fine-root dynamics cannot be explained as a result of autonomous dynamics. A reference to above-ground processes is a necessary condition and the overall plant seems to act as an integrator providing boundary conditions for local activity pattern. At the same time fine-root characteristics are of some importance for properties on hierarchically higher levels, e.g. co-existence in a tree population or element cycling in the ecosystem.As a conclusion, modelling of the spatio-temporal dynamics of tree root systems appears as a paradigmatic example of scale and organisation level integrating processes.  相似文献   

19.
This article proposes to use nutrient-orientated environmental efficiency (EE) measures to construct a nutrient total factor productivity index (NTFP). Since nutrient-orientated EE measures are consistent with the materials balance principle, NTFP index is superior to other existing TFP indexes. An empirical study on the environmental performance of an agricultural sector in 30 OECD countries from 1990 to 2003 yielded several important findings. First, these countries should be able to produce current outputs with at least 50% less aggregate eutrophying power, implying that they should have been able to substantially reduce the potential for eutrophication. Second, traditional TFP has grown by 1.6% per annum due to technical progress; however, there are lags in the responses of several countries to this technical progress. Third, environmental TFP has grown at a slower rate than traditional TFP growth due to reductions in nutrient-orientated allocative efficiency. Finally, changes in input combinations could have significantly improved environmental efficiency and productivity. These findings favor policy interventions and faster technological transfer to improve environmental performance.  相似文献   

20.
This article proposes to use nutrient-orientated environmental efficiency (EE) measures to construct a nutrient total factor productivity index (NTFP). Since nutrient-orientated EE measures are consistent with the materials balance principle, NTFP index is superior to other existing TFP indexes. An empirical study on the environmental performance of an agricultural sector in 30 OECD countries from 1990 to 2003 yielded several important findings. First, these countries should be able to produce current outputs with at least 50% less aggregate eutrophying power, implying that they should have been able to substantially reduce the potential for eutrophication. Second, traditional TFP has grown by 1.6% per annum due to technical progress; however, there are lags in the responses of several countries to this technical progress. Third, environmental TFP has grown at a slower rate than traditional TFP growth due to reductions in nutrient-orientated allocative efficiency. Finally, changes in input combinations could have significantly improved environmental efficiency and productivity. These findings favor policy interventions and faster technological transfer to improve environmental performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号