首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Source types or source regions contributing to the concentration of atmospheric fine particles measured at Brigantine National Wildlife Refuge, NJ, were identified using a factor analysis model called Positive Matrix Factorization (PMF). Cluster analysis of backward air trajectories on days of high- and low-factor concentrations was used to link factors to potential source regions. Brigantine is a Class I visibility area with few local sources in the center of the eastern urban corridor and is therefore a good location to study Mid-Atlantic regional aerosol. Sulfate (expressed as ammonium sulfate) was the most abundant species, accounting for 49% of annual average fine mass. Organic compounds (22%; expressed as 1.4 x organic carbon) and ammonium nitrate (10%) were the next abundant species. Some evidence herein suggests that secondary organic aerosol formation is an important contributor to summertime regional aerosol. Nine factors were identified that contributed to PM2.5 mass concentrations: coal combustion factors (66%, summer and winter), sea salt factors (9%, fresh and aged), motor vehicle/mixed combustion (8%), diesel/Zn-Pb (6%), incinerator/industrial (5%), oil combustion (4%), and soil (2%). The aged sea salt concentrations were highest in springtime, when the land breeze-sea breeze cycle is strongest. Comparison of backward air trajectories of high- and low-concentration days suggests that Brigantine is surrounded by sources of oil combustion, motor vehicle/mixed combustion, and waste incinerator/industrial emissions that together account for 17% of PM2.5 mass. The diesel/Zn-Pb factor was associated with sources north and west of Brigantine. Coal combustion factors were associated with coal-fired power plants west and southwest of the site. Particulate carbon was associated not only with oil combustion, motor vehicle/mixed combustion, waste incinerator/industrial, and diesel/Pb-Zn, but also with the coal combustion factors, perhaps through common transport.  相似文献   

2.
Approximately 750 total suspended particulates (TSPs) and coarse particulate matter (PM10) filter samples from six urban sites and a background site and >210 source samples were collected in Jiaozuo City during January 2002 to April 2003. They were analyzed for mass and abundances of 25 chemical components. Seven contributive sources were identified, and their contributions to ambient TSP/PM10 levels at the seven sites in three seasons (spring, summer, and winter days) and a "whole" year were estimated by a chemical mass balance (CMB) receptor model. The spatial TSP average was high in spring and winter days at a level of approximately 530 microg/m(3) and low in summer days at 456 microg/m(3); however, the spatial PMo0 average exhibited little variation at a level of approximately 325 microg/m(3), and PM10-to-TSP ratios ranged from 0.58 to 0.81, which suggested heavy particulate matter pollution existing in the urban areas. Apportionment results indicated that geological material was the largest contributor to ambient TSP/PM10 concentrations, followed by dust emissions from construction activities, coal combustion, secondary aerosols, vehicle movement, and other industrial sources. In addition, paved road dust and re-entrained dust were also apportioned to the seven source types and found soil, coal combustion, and construction dust to be the major contributors.  相似文献   

3.
Black carbon (BC), an important component ofthe atmospheric aerosol, has climatic, environmental, and human health significance. In this study, BC was continuously measured using a two-wavelength aethalometer (370 nm and 880 nm) in Rochester; New York, from January 2007 to December 2010. The monitoring site is adjacent to two major urban highways (I-490 and I-590), where 14% to 21% of the total traffic was heavy-duty diesel vehicles. The annual average BC concentrations were 0.76 microg/m3, 0.67 microg/m3, 0.60 microg/m3, and 0.52 microg/m3 in 2007, 2008, 2009, and 2010, respectively. Positive matrix factorization (PMF) modeling was performed using PM2.5 elements, sulfate, nitrate, ammonia, elemental carbon (EC), and organic carbon (OC) data from the US. Environmental Protection Agency (EPA) speciation network and Delta-C (UVBC370nm-BC880nm) data. Delta-C has been previously shown to be a tracer of wood combustion factor It was used as an input variable in source apportionment models for the first time in this study and was found to play an important role in separating traffic (especially diesel) emissions from wood combustion emissions. The result showed the annual average PM2.5 concentrations apportioned to diesel emissions in 2007, 2008, 2009, and 2010 were 1.34 microg/m3, 1.25 microg/m3, 1.13 microg/m3, and 0.97 microg/m3, respectively. The BC conditional probability function (CPF) plots show a large contribution from the highway diesel traffic to elevated BC concentrations. The measurements and modeling results suggest an impact of the US Environmental Protection Agency (EPA) 2007 Heavy-Duty Highway Rule on the decrease ofBC and PM2.5 concentrations during the study period.  相似文献   

4.
At urban areas in south Europe atmospheric aerosol levels are frequently above legislation limits as a result of road traffic and favourable climatic conditions for photochemical formation and dust suspension. Strategies for urban particulate pollution control have to take into account specific regional characteristics and need correct information concerning the sources of the aerosol.With these objectives, the ionic and elemental composition of the fine (PM2.5) and coarse (PM2.5–10) aerosol was measured at two contrasting sites in the centre of the city of Oporto, roadside (R) and urban background (UB), during two campaigns, in winter and summer.Application of Spatial Variability Factors, in association with Principal Component/Multilinear Regression/Inter-site Mass Balance Analysis, to aerosol data permitted to identify and quantify 5 main groups of sources, namely direct car emissions, industry, photochemical production, dust suspension and sea salt transport. Traffic strongly influenced PM mass and composition. Direct car emissions and road dust resuspension contributed with 44–66% to the fine aerosol and with 12 to 55% to the coarse particles mass at both sites, showing typically highest loads at roadside. In fine particles secondary origin was also quite important in aerosol loading, principally during summer, with 28–48% mass contribution, at R and UB sites respectively. Sea spray has an important contribution of 18–28% to coarse aerosol mass in the studied area, with a highest relative contribution at UB site.Application of Spatial Variability/Mass Balance Analysis permitted the estimation of traffic contribution to soil dust in both size ranges, across sites and seasons, demonstrating that as much as 80% of present dust can result from road traffic resuspension.  相似文献   

5.
Abstract

Source types or source regions contributing to the concentration of atmospheric fine particles measured at Brigantine National Wildlife Refuge, NJ, were identified using a factor analysis model called Positive Matrix Factorization (PMF). Cluster analysis of backward air trajectories on days of high- and low-factor concentrations was used to link factors to potential source regions. Brigantine is a Class I visibility area with few local sources in the center of the eastern urban corridor and is therefore a good location to study Mid-Atlantic regional aerosol. Sulfate (expressed as ammonium sulfate) was the most abundant species, accounting for 49% of annual average fine mass. Organic compounds (22%; expressed as 1.4 × organic carbon) and ammonium nitrate (10%) were the next abundant species. Some evidence herein suggests that secondary organic aerosol formation is an important contributor to summertime regional aerosol.

Nine factors were identified that contributed to PM2.5 mass concentrations: coal combustion factors (66%, summer and winter), sea salt factors (9%, fresh and aged), motor vehicle/mixed combustion (8%), diesel/Zn-Pb (6%), incinerator/industrial (5%), oil combustion (4%), and soil (2%). The aged sea salt concentrations were highest in springtime, when the land breeze-sea breeze cycle is strongest. Comparison of backward air trajectories of high- and low-concentration days suggests that Brigantine is surrounded by sources of oil combustion, motor vehicle/mixed combustion, and waste incinerator/industrial emissions that together account for 17% of PM2.5 mass. The diesel/Zn-Pb factor was associated with sources north and west of Brigantine. Coal combustion factors were associated with coal-fired power plants west and southwest of the site. Particulate carbon was associated not only with oil combustion, motor vehicle/mixed combustion, waste incinerator/industrial, and diesel/Pb-Zn, but also with the coal combustion factors, perhaps through common transport.  相似文献   

6.
Observations of the mass and chemical composition of particles less than 2.5 microm in aerodynamic diameter (PM2.5), light extinction, and meteorology in the urban Baltimore-Washington corridor during July 1999 and July 2000 are presented and analyzed to study summertime haze formation in the mid-Atlantic region. The mass fraction of ammoniated sulfate (SO4(2-)) and carbonaceous material in PM2.5 were each approximately 50% for cleaner air (PM2.5< 10 microg/m3) but changed to approximately 60% and approximately 20%, respectively, for more polluted air (PM2.5>30 microg/m3). This signifies the role of SO4(2-) in haze formation. Comparisons of data from this study with the Interagency Monitoring of Protected Visual Environments network suggest that SO4(2-) is more regional than carbonaceous material and originates in part from upwind source regions. The light extinction coefficient is well correlated to PM2.5 mass plus water associated with inorganic salt, leading to a mass extinction efficiency of 7.6 +/- 1.7 m2/g for hydrated aerosol. The most serious haze episode occurring between July 15 and 19, 1999, was characterized by westerly transport and recirculation slowing removal of pollutants. At the peak of this episode, 1-hr PM2.5 concentration reached approximately 45 microg/m3, visual range dropped to approximately 5 km, and aerosol water likely contributed to approximately 40% of the light extinction coefficient.  相似文献   

7.
Biomass burning is one of many sources of particulate pollution in Southeast Asia, but its irregular spatial and temporal patterns mean that large episodes can cause acute air quality problems in urban areas. Fires in Sumatra and Borneo during September and October 2006 contributed to 24-h mean PM10 concentrations above 150 μg m?3 at multiple locations in Singapore and Malaysia over several days. We use the FLAMBE model of biomass burning emissions and the NAAPS model of aerosol transport and evolution to simulate these events, and compare our simulation results to 24-h average PM10 measurements from 54 stations in Singapore and Malaysia. The model simulation, including the FLAMBE smoke source as well as dust, sulfate, and sea salt aerosol species, was able to explain 50% or more of the variance in 24-h PM10 observations at 29 of 54 sites. Simulation results indicated that biomass burning smoke contributed to nearly all of the extreme PM10 observations during September–November 2006, but the exact contribution of smoke was unclear because the model severely underestimated total smoke emissions. Using regression analysis at each site, the bias in the smoke aerosol flux was determined to be a factor of between 2.5 and 10, and an overall factor of 3.5 was estimated. After application of this factor, the simulated smoke aerosol concentration averaged 20% of observed PM10, and 40% of PM10 for days with 24-h average concentrations above 150 μg m?3. These results suggest that aerosol transport models can aid analysis of severe pollution events in Southeast Asia, but that improvements are needed in models of biomass burning smoke emissions.  相似文献   

8.
To identify major PM2.5 (particulate matter ≤2.5 μm in aerodynamic diameter) sources with a particular emphasis on the ship engine emissions from a major port, integrated 24 h PM2.5 speciation data collected between 2000 and 2005 at five United State Environmental Protection Agency's Speciation Trends Network monitoring sites in Seattle, WA were analyzed. Seven to ten PM2.5 sources were identified through the application of positive matrix factorization (PMF). Secondary particles (12–26% for secondary nitrate; 17–20% for secondary sulfate) and gasoline vehicle emissions (13–31%) made the largest contributions to the PM2.5 mass concentrations at all of the monitoring sites except for the residential Lake Forest site, where wood smoke contributed the most PM2.5 mass (31%). Other identified sources include diesel vehicle emissions, airborne soil, residual oil combustion, sea salt, aged sea salt, metal processing, and cement kiln. Residual oil combustion sources identified at multiple monitoring sites point clearly to the Port of Seattle suggesting ship emissions as the source of oil combustion particles. In addition, the relationship between sulfate concentrations and the oil combustion emissions indicated contributions of ship emissions to the local sulfate concentrations. The analysis of spatial variability of PM2.5 sources shows that the spatial distributions of several PM2.5 sources were heterogeneous within a given air shed.  相似文献   

9.
Chile is a fast-growing country with important industrial activities near urban areas. In this study, the mass and elemental concentrations of PM10 and PM2.5 were measured in five major Chilean urban areas. Samples of particles with diameter less than 10 microm (PM10) and 2.5 microm (PM2.5) were collected in 1998 in Iquique (northern Chile), Valparaiso, Vi?a del Mar, Rancagua (central Chile), and Temuco (southern Chile). Both PM10 and PM2.5 annual mean concentrations (PM10: 56.9-77.6 microg/m3; PM2.5: 22.4-42.6 microg/m3) were significantly higher than the corresponding European Union (EU) and U.S. Environmental Protection Agency (EPA) air quality standards. Moreover, the 24-hr PM10 and PM2.5 U.S. standards were exceeded infrequently for some of the cities (Rancagua and Valparaiso). Elements ranging from Mg to Pb were detected in the aerosol samples using X-ray fluorescence (XRF). For each of the five cities, factor analysis (FA) was applied to identify and quantify the sources of PM10 and PM2.5. The agreement between calculated and measured mass and elemental concentrations was excellent in most of the cities. Both natural and anthropogenic sources were resolved for all five cities. Soil and sea were the most important contributors to coarse particles (PM10-PM2.5), whereas their contributions to PM2.5 were negligible. Emissions from Cu smelters and oil refineries (and/or diesel combustion) were identified as important sources of PM2.5, particularly in the industrial cities of Rancagua, Valparaiso, and Vi?a del Mar. Finally, motor vehicles and wood burning were significant sources of both PM2.5 and PM10 in most of the cities (wood burning was not identified in Iquique).  相似文献   

10.
Samples of fine and coarse fractions of airborne particulate matter were collected at the Farm Gate area in Dhaka from July 2001 to March 2002. Dhaka is a hot spot area with very high pollutant concentrations because of the proximity of major roadways. The samples were collected using a "Gent" stacked filter unit in two fractions of 0- to 2.2-microm and 2.2- to 10-microm sizes. The samples were analyzed for elemental concentrations by particle-induced X-ray excitation (PIXE) and for black carbon by reflectivity methods, respectively. The data were analyzed by positive matrix factorization (PMF) to identify the possible sources of atmospheric aerosols in this area. Six sources were found for both the coarse and fine PM fractions. The data sets were also analyzed by an expanded model to explore additional sources. Seven and six factors were obtained for coarse and fine PM fractions, respectively, in these analyses. The identified sources are motor vehicle, soil dust, emissions from construction activities, sea salt, biomass burning/brick kiln, resuspended/fugitive Pb, and two-stroke engines. From the expanded modeling, approximately 50% of the total PM2.2 mass can be attributed to motor vehicles, including two-stroke engine vehicle in this hot spot in Dhaka, whereas the PMF modeling indicates that 45% of the total PM2.2 mass is from motor vehicles. The PMF2 and expanded models could resolve approximately 4% and 3% of the total PM2.2 mass as resuspended/fugitive Pb, respectively. Although, Pb has been eliminated from gasoline in Bangladesh since July 1999, there still may be substantial amounts of accumulated lead in the dust near roadways as well as fugitive Pb emissions from battery reclaimation and other industries. Soil dust is the largest component of the coarse particle fraction (PM2.2-10) accounting for approximately 71% of the total PM2.2-10 mass in the expanded model, whereas from the PMF modeling, the dust (undifferentiated) contribution is approximately 49%.  相似文献   

11.
This study is a part of an ongoing investigation of the types and locations of emission sources that contribute fine particulate air contaminants to Underhill, VT. The air quality monitoring data used for this study are from the Interagency Monitoring of Protected Visual Environments network for the period of 2001-2003 for the Underhill site. The main source-receptor modeling techniques used are the positive matrix factorization (PMF) and potential source contribution function (PSCF). This new study is intended as a comparison to a previous study of the 1988-1995 Underhill data that successfully revealed a total of 11 types of emission sources with significant contributions to this rural site. This new study has identified a total of nine sources: nitrate-rich secondary aerosol, wood smoke, East Coast oil combustion, automobile emission, metal working, soil/dust, sulfur-rich aerosol type I, sulfur-rich aerosol type II, and sea salt/road salt. Furthermore, the mass contributions from the PMF identified sources that correspond with sampling days with either good or poor visibility were analyzed to seek possible correlations. It has been shown that sulfur-rich aerosol type I, nitrate aerosol, and automobile emission are the most important contributors to visibility degradation. Soil/dust and sea salt/road salt also have an added effect.  相似文献   

12.
A detailed analysis of indoor/outdoor physicochemical aerosol properties has been performed. Aerosol measurements were taken at two dwellings, one in the city center and the other in the suburbs of the Oslo metropolitan area, during summer/fall and winter/spring periods of 2002-2003. In this paper, emphasis is placed on the chemical characteristics (water-soluble ions and carbonaceous components) of fine (PM2.5) and coarse (PM2.5-10) particles and their indoor/outdoor relationship. Results demonstrate that the carbonaceous species were dominant in all fractions of the PM10 particles (cut off size: 0.09-11.31 microm) during all measurement periods, except winter 2003, when increased concentrations of water-soluble inorganic ions were predominant because of sea salt transport. The concentration of organic carbon was higher in the fine and coarse PM10 fractions indoors, whereas elemental carbon was higher indoors only in the coarse fraction. In regards to the carbonaceous species, local traffic and secondary organic aerosol formation were, probably, the main sources outdoors, whereas indoors combustion activities such as preparation of food, burning of candles, and cigarette smoking were the main sources. In contrast, the concentrations of water-soluble inorganic ions were higher outdoors than indoors. The variability of water-soluble inorganic ion concentrations outdoors was related to changes in emissions from local anthropogenic sources, long-range transport of particles, sea salt emissions, and resuspension of roadside and soil dusts. In the indoor environment the infiltration of the outdoor air indoors was the major source of inorganic ions.  相似文献   

13.
Integrated ambient particulate matter < or =2.5 microm in aerodynamic diameter (PM2.5) samples were collected at a centrally located urban monitoring site in Washington, DC, on Wednesdays and Saturdays using Interagency Monitoring of Protected Visual Environments samplers. Particulate carbon was analyzed using the thermal optical reflectance method that divides carbon into four organic carbon fractions, pyrolyzed organic carbon, and three elemental carbon fractions. A total of 35 variables measured in 718 samples collected between August 1988 and December 1997 were analyzed. The data were analyzed using Positive Matrix Factorization and 10 sources were identified: sulfate (SO4(2-))-rich secondary aerosol I (43%), gasoline vehicle (21%), SO4(2-)-rich secondary aerosol II (11%), nitrate-rich secondary aerosol (9%), SO4(2-)-rich secondary aerosol III (6%), incinerator (4%), aged sea salt (2%), airborne soil (2%), diesel emissions (2%), and oil combustion (2%). In contrast to a previous study that included only total organic carbon and elemental carbon fractions, motor vehicles were separated into fractions identified as gasoline vehicle and diesel emissions containing carbon fractions whose abundances were different between the two sources. This study indicates that the temperature-resolved carbon fraction data can be utilized to enhance source apportionment, especially with respect to the separation of diesel emissions from gasoline vehicle sources. Conditional probability functions using surface wind data and deduced source contributions aid in the identifications of local sources.  相似文献   

14.
The sources of submicrometer particulate matter (PM1) remain poorly characterized in the industrialized city of Houston, TX. A mobile sampling approach was used to characterize PM1 composition and concentration across Houston based on high-time-resolution measurements of nonrefractory PM1 and trace gases during the DISCOVER-AQ Texas 2013 campaign. Two pollution zones with marked differences in PM1 levels, character, and dynamics were established based on cluster analysis of organic aerosol mass loadings sampled at 16 sites. The highest PM1 mass concentrations (average 11.6 ± 5.7 µg/m3) were observed to the northwest of Houston (zone 1), dominated by secondary organic aerosol (SOA) mass likely driven by nighttime biogenic organonitrate formation. Zone 2, an industrial/urban area south/east of Houston, exhibited lower concentrations of PM1 (average 4.4 ± 3.3 µg/m3), significant organic aerosol (OA) aging, and evidence of primary sulfate emissions. Diurnal patterns and backward-trajectory analyses enable the classification of airmass clusters characterized by distinct PM sources: biogenic SOA, photochemical aged SOA, and primary sulfate emissions from the Houston Ship Channel. Principal component analysis (PCA) indicates that secondary biogenic organonitrates primarily related with monoterpenes are predominant in zone 1 (accounting for 34% of the variability in the data set). The relevance of photochemical processes and industrial and traffic emission sources in zone 2 also is highlighted by PCA, which identifies three factors related with these processes/sources (~50% of the aerosol/trace gas concentration variability). PCA reveals a relatively minor contribution of isoprene to SOA formation in zone 1 and the absence of isoprene-derived aerosol in zone 2. The relevance of industrial amine emissions and the likely contribution of chloride-displaced sea salt aerosol to the observed variability in pollution levels in zone 2 also are captured by PCA.

Implications: This article describes an urban-scale mobile study to characterize spatial variations in submicrometer particulate matter (PM1) in greater Houston. The data set indicates substantial spatial variations in PM1 sources/chemistry and elucidates the importance of photochemistry and nighttime oxidant chemistry in producing secondary PM1. These results emphasize the potential benefits of effective control strategies throughout the region, not only to reduce primary emissions of PM1 from automobiles and industry but also to reduce the emissions of important secondary PM1 precursors, including sulfur oxides, nitrogen oxides, ammonia, and volatile organic compounds. Such efforts also could aid in efforts to reduce mixing ratios of ozone.  相似文献   


15.
Median atmospheric concentrations of Pb, Br, S, As, Se, and particulate matter (PM) decreased, and median concentrations of Sb, Cu, Zn, Fe, Ca, Cr and Ba increased in urban aerosol in downtown Budapest between 1996 and 2002. The changes in Pb and Br concentrations were unambiguously attributed to the phasing out of leaded gasoline. The increments were mainly related to and explained by non-exhaust vehicular emissions. The mechanical wear of asbestos-free brake linings of road vehicles contributed to the concentration of Cu and Sb on average by 69% and 66%, respectively in the PM10 size fraction. Tire rubber abrasion was a major source for atmospheric Zn; on average, non-crustal sources accounted for 67% of Zn in the PM10 size fraction. Contribution of the tire wear component to the PM10 mass was estimated to be 6% at most, while its contribution to organic aerosol was of the order of 15%.  相似文献   

16.
As part of a large exposure assessment and health-effects panel study, 33 trace elements and light-absorbing carbon were measured on 24-hr fixed-site filter samples for particulate matter with an aerodynamic diameter <2.5 microm (PM2.5) collected between September 26, 2000, and May 25, 2001, at a central outdoor site, immediately outside each subject's residence, inside each residence, and on each subject (personal sample). Both two-way (PMF2) and three-way (PMF3) positive matrix factorization were used to deduce the sources contributing to PM2.5. Five sources contributing to the indoor and outdoor samples were identified: vegetative burning, mobile emissions, secondary sulfate, a source rich in chlorine, and a source of crustal-derived material. Vegetative burning contributed more PM2.5 mass on average than any other source in all microenvironments, with average values estimated by PMF2 and PMF3, respectively, of 7.6 and 8.7 microg/m3 for the outdoor samples, 4 and 5.3 microg/m3 for the indoor samples, and 3.8 and 3.4 microg/m3 for the personal samples. Personal exposure to the combustion-related particles was correlated with outdoor sources, whereas exposure to the crustal and chlorine-rich particles was not. Personal exposures to crustal sources were strongly associated with personal activities, especially time spent at school among the child subjects.  相似文献   

17.
PM10 aerosols at McMurdo Station, Antarctica were sampled continuously during the austral summers of 1995–1996 and 1996–1997. PM10 (particles with aerodynamic diameters less than 10 μm) mass concentrations at Hut Point, located less than 1 km from downtown McMurdo, averaged 3.4 μg m−3, more than an order of magnitude lower than the USEPA annual average National Ambient Air Quality Standard (NAAQS) of 50 μg m−3. Concentrations of methanesulfonate and nitrate were similar to those measured at other Antarctic coastal sites. Non-sea-salt sulfate (NSS) concentrations on Ross Island were higher than those found at other coastal locations. The average elemental carbon concentration (129 ng m−3) downwind of the station was two orders of magnitude higher than those measured at remote coastal and inland Antarctic sites during summer. Average sulfur dioxide concentrations (746 ng m−3) were 3–44 times higher than those reported for coastal Antarctica. Concentrations of Pb and Zn were 17 and 46 times higher than those reported for the South Pole. A methanesulfonate to biogenic sulfate ratio (R) of 0.47 was derived that is consistent with the proposed temperature dependence of R.  相似文献   

18.
Abstract

This study is a part of an ongoing investigation of the types and locations of emission sources that contribute fine particulate air contaminants to Underhill, VT. The air quality monitoring data used for this study are from the Interagency Monitoring of Protected Visual Environments network for the period of 2001–2003 for the Underhill site. The main source-receptor modeling techniques used are the positive matrix factorization (PMF) and potential source contribution function (PSCF). This new study is intended as a comparison to a previous study of the 1988–1995 Underhill data that successfully revealed a total of 11 types of emission sources with significant contributions to this rural site. This new study has identified a total of nine sources: nitrate-rich secondary aerosol, wood smoke, East Coast oil combustion, automobile emission, metal working, soil/dust, sulfur-rich aerosol type I, sulfur-rich aerosol type II, and sea salt/road salt. Furthermore, the mass contributions from the PMF identified sources that correspond with sampling days with either good or poor visibility were analyzed to seek possible correlations. It has been shown that sulfur-rich aerosol type I, nitrate aerosol, and automobile emission are the most important contributors to visibility degradation. Soil/dust and sea salt/road salt also have an added effect.  相似文献   

19.
The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.  相似文献   

20.
Because the particulate organic carbon (OC) concentrations reported in U.S. Environment Protection Agency Speciation Trends Network (STN) data were not blank corrected, the OC blank concentrations were estimated using the intercept in particulate matter < or = 2.5 microm in aerodynamic diameter (PM2.5) regression against OC concentrations. The estimated OC blank concentrations ranged from 1 to 2.4 microg/m3 showing higher values in urban areas for the 13 monitoring sites in the northeastern United States. In the STN data, several different samplers and analyzers are used, and various instruments show different method detection limit (MDL) values, as well as errors. A comprehensive set of error structures that would be used for numerous source apportionment studies of STN data was estimated by comparing a limited set of measured concentrations and their associated uncertainties. To examine the estimated error structures and investigate the appropriate MDL values, PM2.5 samples collected at a STN site in Burlington, VT, were analyzed through the application of the positive matrix factorization. A total of 323 samples that were collected between December 2000 and December 2003 and 49 species based on several variable selection criteria were used, and eight sources were successfully identified in this study with the estimated error structures and min values among different MDL values from the five instruments: secondary sulfate aerosol (41%), secondary nitrate aerosol (20%), airborne soil (15%), gasoline vehicle emissions (7%), diesel emissions (7%), aged sea salt (4%), copper smelting (3%), and ferrous smelting (2%). Time series plots of contributions from airborne soil indicate that the highly elevated impacts from this source were likely caused primarily by dust storms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号