首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aerobic biodegradation of dichloroethylenes in surface and subsurface soils   总被引:5,自引:0,他引:5  
Klier NJ  West RJ  Donberg PA 《Chemosphere》1999,38(5):1175-1188
Laboratory studies were conducted to examine the aerobic biodegradation of dichloroethylenes (cis-1,2-DCE, trans-1,2-DCE and 1,1-DCE) in soil and groundwater. Authentic surface and subsurface materials with no reported DCE exposure history were used. All DCE isomers were observed to biodegrade to varying degrees in the soils examined. Use of radiolabeled [14C] test chemicals allowed correlation of DCE disappearance with mineralization to 14CO2. Study results indicate that naturally occurring microorganisms in soil and groundwater are capable of degrading cis-1,2-, trans-1,2- and 1,1-DCE without laboratory supplementation of exogenous organic nutrients, or previous exposure history. The data further suggest that degradative potential may vary with soil type, DCE isomer structure, and concentration.  相似文献   

2.
The objective of this investigation was to evaluate the anaerobic biodegradability of benzene, toluene, ethylbenzene, ortho-, meta- and para-xylene (BTEX) and trichloroethylene (TCE) in aquifer sediment down gradient of an unlined landfill. The major organic contaminants identified in the shallow unconfined aquifer are cis-dichloroethylene (c-DCE) and toluene. The biodegradative potential of the contaminated aquifer was measured in three sets of microcosms constructed using anaerobic aquifer sediment from three boreholes down gradient of the landfill. The degradability of BTEX and TCE was examined under ambient and amended conditions. TCE was degraded in microcosms with aquifer material from all three boreholes. Toluene biodegradation was inconsistent, exhibiting biodegradation with no lag in one set of microcosms but more limited biodegradation in two additional sets of microcosms. TCE exhibited an inhibitory effect on toluene degradation at one location. The addition of calcium carbonate stimulated TCE biodegradation which was not further stimulated by nutrient addition. TCE was converted to ethylene, a harmless byproduct, in all tests. Benzene, ethylbenzene and xylene isomers were recalcitrant in both ambient and amendment experiments. Biodegradation occurred under methanogenic conditions as methane was produced in all experiments. Bromoethane sulfonic acid (BES), a methanogenic inhibitor, inhibited methane and ethylene production and TCE biodegradation. The results indicate the potential for intrinsic bioremediation of TCE and toluene down gradient of the Wilder's Grove, North Carolina, landfill. The low concentrations of TCE in monitoring wells was consistent with its biodegradation in laboratory microcosms.  相似文献   

3.
Monitored natural attenuation (MNA) has recently emerged as a viable groundwater remediation technology in the United States. Area 6 at Dover Air Force Base (Dover, DE) was chosen as a test site to examine the potential for MNA of tetrachloroethene (PCE) and trichloroethene (TCE) in groundwater and aquifer sediments. A "lines of evidence" approach was used to document the occurrence of natural attenuation. Chlorinated hydrocarbon and biogeochemical data were used to develop a site-specific conceptual model where both anaerobic and aerobic biological processes are responsible for the destruction of PCE, TCE, and daughter metabolites. An examination of groundwater biogeochemical data showed a region of depleted dissolved oxygen with elevated dissolved methane and hydrogen concentrations. Reductive dechlorination likely dominated in the anaerobic portion of the aquifer where PCE and TCE levels were observed to decrease with a simultaneous increase in cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC), ethene, and dissolved chloride. Near the anaerobic/ aerobic interface, concentrations of cis-DCE and VC decreased to below detection limits, presumably due to aerobic biotransformation processes. Therefore, the contaminant and daughter product plumes present at the site appear to have been naturally atteuated by a combination of active anaerobic and aerobic biotransformation processes.  相似文献   

4.
Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan "does not degrade fast" with its primary biodegradation half-life of "weeks" and ultimate biodegradation half-life of "months". Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period.  相似文献   

5.
6.
The aerobic biodegradation of oxygen and nitrogen heterocycles and o-cresol by subsurface bacteria in groundwater from an oil contaminated site at Zealand, Denmark, was compared to the biodegradation of these compounds in laboratory adapted suspended and fixed-film cultures. The aquifer at the abstraction site had a relatively high redox potential, since it contained nitrate. The groundwater (i.e. without the soil phase) had a high biodegradation potential for dibenzofuran, indole, quinoline, flourenone and o-cresol. All the compounds were degraded in groundwater within 5–15 days from an initial concentration of about 0.5 mg L−1 in both mixed substrate and single substrate experiments with an initial ATP concentration of 0.2 ng mL−1. Pyrrole, however, was not degraded in groundwater within 55 days in the mixed substrate experiment and very slowly, after a lag period of 20 days, in the single substrate experiment. The biodegadability picture found for groundwater in the mixed substrate experiment was similar to the results found with laboratory adapted suspended and fixed-film cultures. None of the compounds had any inhibitory effect on the biodegradation of naphthalene.  相似文献   

7.
In situ, sequential, anaerobic to aerobic treatment of groundwater removed perchloroethene (PCE, 1.1 microM) and benzene (0.8 microM) from a contaminated aquifer. Neither aerobic nor anaerobic treatment alone successfully degraded both the chlorinated and non-chlorinated organic contaminants in the aquifer. After the sequential treatment, PCE, trichloroethene (TCE), vinyl chloride (VC), chloroethane (CA), and benzene were not detectable in groundwater. Desorption of residual aquifer contaminants was tested by halting the groundwater recirculation and analyzing the groundwater after 3 and 7 weeks. No desorption of the chlorinated contaminants or daughter products was observed in the treated portion of the aquifer. Sequential anaerobic to aerobic treatment was successful in remediating the groundwater at this test site and may have broad applications at other contaminated sites. Over the 4-year course of the project, the predominant microbial environment of the test site varied from aerobic to sulfate-reducing, to methanogenic, and back to aerobic conditions. Metabolically active microbial populations developed under all conditions, demonstrating the diversity and robustness of natural microbial flora in the aquifer.  相似文献   

8.
In situ sequential treatment of a mixed contaminant plume   总被引:1,自引:0,他引:1  
Groundwater plumes often contain a mixture of contaminants that cannot easily be remediated in situ using a single technology. The purpose of this research was to evaluate an in situ treatment sequence for the control of a mixed organic plume (chlorinated ethenes and petroleum hydrocarbons) within a Funnel-and-Gate. A shallow plume located in the unconfined aquifer at Alameda Point, CA, was found to contain up to 218,000 μg/l of cis-1,2 dichloroethene (cDCE), 16,000 μg/l of vinyl chloride (VC) and <1000 μg/l of 1,1 dichloroethene (1,1 DCE), trans-1,2 dichloroethene (trans-1,2 DCE) and trichloroethene (TCE). Total benzene, toluene, ethylbenzene and xylenes (BTEX) concentrations were <10,000 μg/l. Contaminated groundwater was funneled into a gate, 3.0 m wide, 4.5 m long and 6.0 m deep (keyed into the underlying aquitard) where treatment occurred. The initial gate segment consisted of granular iron, for the reductive dechlorination of the higher chlorinated ethenes. The second segment, the biosparge zone, promoted aerobic biodegradation of petroleum hydrocarbons and any remaining lesser-chlorinated compounds, stimulated by dissolved oxygen (DO) and carbon dioxide (CO2) additions via an in situ sparge system (CO2 was used to neutralize the high pH produced from reactions in the iron wall). Groundwater was drawn through the gate by pumping two wells located at the sealed, downgradient, end. Over a 4-month period an estimated 1350 g of cDCE flowed into the treatment gate and the iron wall removed 1230 g, or 91% of the mass. The influent mass of VC was 572 g and the iron wall removed 535 g, corresponding to 94% mass removal. The other chlorinated ethenes had significantly lower influent masses (3 to 108 g) and the iron wall removed the majority of the mass resulting in >96% mass removal for any of the compounds. In spite of these high removal percentages, laboratory column tests indicated that at these levels of chlorinated contaminants, surface saturation of the iron grains likely contributed to lower than expected reaction rates. In the biosparge zone, mass removal of cDCE appeared to occur predominantly by biodegradation (65%) with volatilization (35%) being an important secondary process. The dominant removal process for VC was volatilization (70%) although significant biodegradation was also indicated (30%). Laboratory microcosm results confirmed the potential for aerobic biodegradation of cDCE and VC. When average influent field concentrations for cDCE and VC were 220,000 and 46,000 μg/l, respectively, the sequential treatment unit removed 99.6% of the total mass and when the influent concentrations decreased to 26,000 and 19,000 μg/l for cDCE and VC, respectively, >99.9% removal within the treatment gate was attained. BTEX compounds were found to be significantly retarded in the iron treatment zone. Although they did eventually break through the granular iron, and into the gravel transition zone, none of these compounds was detected in the biosparge zone. No noticeable interferences between the anaerobic (reductive) and aerobic parts of the system occurred during testing. The results of this experiment show that in situ treatment sequences are viable, although further work is needed to optimize performance.  相似文献   

9.
Few techniques exist to measure the biodegradation of recalcitrant organic compounds such as chlorinated hydrocarbons (CHC) in situ, yet predictions of biodegradation rates are needed for assessing monitored natural attenuation. Traditional techniques measuring O2, CO2, or chemical concentrations (in situ respiration, metabolite and soil air monitoring) may not be sufficiently sensitive to estimate biodegradation rates for these compounds. This study combined isotopic measurements (14C and delta13C of CO2 and delta13C of CHCs) in conjunction with traditional methods to assess in situ biodegradation of perchloroethylene (PCE) and its metabolites in PCE-contaminated vadose zone sediments. CHC, ethene, ethane, methane, O2, and CO2 concentrations were measured over 56 days using gas chromatography (GC). delta13C of PCE, trichloroethylene (TCE) and cis-1,2-dichloroethylene (DCE), delta13C and 14C of vadose zone CO2 and sediment organic matter, and delta13C, 14C, and deltaD of methane were measured using a GC-isotope ratio mass spectrometer or accelerator mass spectrometer. PCE metabolites accounted for 0.2% to 18% of CHC concentration suggesting limited reductive dechlorination. Metabolites TCE and DCE were significantly enriched in (13)C with respect to PCE indicating metabolite biodegradation. Average delta13C-CO2 in source area wells (-23.5 per thousand) was significantly lower compared to background wells (-18.4 per thousand) indicating CHC mineralization. Calculated CHC mineralization rates were 0.003 to 0.01 mg DCE/kg soil/day based on lower 14C values of CO2 in the contaminated wells (63% to 107% modern carbon (pMC)) relative to the control well (117 pMC). Approximately 74% of the methane was calculated to be derived from in situ CHC biodegradation based on the 14C measurement of methane (29 pMC). 14C-CO2 analyses was a sensitive measurement for quantifying in situ recalcitrant organic compound mineralization in vadose zone sediments for which limited methodological tools exist.  相似文献   

10.
1,1-二氯乙烯降解菌的分离鉴定及降解特性   总被引:2,自引:1,他引:1  
从好氧活性污泥中分离得到一株能以1,1-二氯乙烯(1,1-DCE)作为惟一碳源和能源生长的革兰氏阴性菌株D-B,经鉴定属于产碱杆菌属(Alcaligenessp.)。当维持菌株D-B浓度一定时,1,1-DCE的去除率随着1,1-DCE浓度的增大先增加后降低,且降解过程主要发生在加入1,1-DCE后的3~5 h内。当1,1-DCE的初始浓度为300μg/L时去除率达到最大值85.32%。菌株D-B对1,1-DCE的降解符合Monod方程,饱和常数Ks=21.96 mg/L,1,1-DCE的最大比基质降解速率Vmax=50.76 mg/(L.h)。  相似文献   

11.
A batch experiment was conducted to compare PAH degradation in a polluted river sediment under aerobic and anaerobic conditions, and to investigate whether input of fresh organic material (cellulose) could enhance such degradation. All measurements were checked against abiotic control treatments to exclude artifacts of sample preparation and non-biological processes like aging. Three- and four-ring PAHs could be degraded by the indigenous microbial community under aerobic conditions, but anaerobic metabolism based on iron and sulphate reduction was not coupled with PAH degradation of even the simplest 3-ring compounds like phenanthrene. Cellulose addition stimulated both aerobic and anaerobic respiration, but had no effect on PAH dissipation. We conclude that natural attenuation of PAHs in polluted river sediments under anaerobic conditions is exceedingly slow. Dredging and biodegradation on land under aerobic conditions would be required to safely remediate and restore polluted sites.  相似文献   

12.
The biodegradation pathways of 1,1,2,2-tetrachloroethane (TeCA) and 1,1,2-trichloroethane (112TCA) and the associated microbial communities in anaerobic wetland sediments were evaluated using concurrent geochemical and genetic analyses over time in laboratory microcosm experiments. Experimental results were compared to in situ porewater data in the wetland to better understand the factors controlling daughter product distributions in a chlorinated solvent plume discharging to a freshwater tidal wetland at Aberdeen Proving Ground, Maryland. Microcosms constructed with wetland sediment from two sites showed little difference in the initial degradation steps of TeCA, which included simultaneous hydrogenolysis to 112TCA and dichloroelimination to 1,2-dichloroethene (12DCE). The microcosms from the two sites showed a substantial difference, however, in the relative dominance of subsequent dichloroelimination of 112TCA. A greater dominance of 112TCA dichloroelimination in microcosms constructed with sediment that was initially iron-reducing and subsequently simultaneously iron-reducing and methanogenic caused approximately twice as much vinyl chloride (VC) production as microcosms constructed with sediment that was methanogenic only throughout the incubation. The microcosms with higher VC production also showed substantially more rapid VC degradation. Field measurements of redox-sensitive constituents, TeCA, and its anaerobic degradation products along flowpaths in the wetland porewater also showed greater production and degradation of VC with concurrent methanogenesis and iron reduction. Molecular fingerprinting indicated that bacterial species [represented by a peak at a fragment size of 198 base pairs (bp) by MnlI digest] are associated with VC production from 112TCA dichloroelimination, whereas methanogens (190 and 307 bp) from the Methanococcales or Methanobacteriales family are associated with VC production from 12DCE hydrogenolysis. Acetate-utilizing methanogens (acetotrophs) appear to be involved in the biodegradation of VC. The relative abundance of Methanosarcinaceae, the only methanogen group with acetotrophic members, doubled in microcosms in which degradation of VC was observed. In addition, molecular analyses using primers specific for known dehalorespiring bacteria in the Dehalococcoides and Desulfuromonas groups showed the presence of these bacteria in microcosm slurry from the site that showed the highest VC production and degradation. Determination of biogeochemical controls and microbial consortia involved in TeCA degradation is leading to a better understanding of the heterogeneity in biodegradation rates and daughter product distribution in the wetland, improving capabilities for developing remediation and monitoring plans.  相似文献   

13.
The widespread use of tetrachloroethene (PCE) and trichloroethene (TCE) as dry cleaning solvents and degreasing agents for military and industrial applications has resulted in significant environmental contamination worldwide. Anaerobic biotransformation of PCE and TCE through reductive dechlorination frequently lead to the accumulation of dichloroethenes (DCEs), thus limiting the use of reductive dechlorination for the biotransformation of the compounds. In this study, seven bacteria indigenous to contaminated sites in Africa were characterized for DCE degradation under aerobic conditions. The specific growth rate constants of the bacterial isolates ranged between 0.346-0.552d(-1) and 0.461-0.667d(-1) in cis-DCE and trans-DCE, respectively. Gas chromatographic analysis revealed that up to 75% of the compounds were degraded within seven days with the degradation rate constants ranging between 0.167 and 0.198d(-1). The two compounds were also observed to be significantly degraded, simultaneously, rather than sequentially, when present as a mixture. Phylogenetic analysis of the 16S rRNA gene sequences of the bacterial isolates revealed their identity as well as their relation to other environmentally-important bacteria. The observed biodegradation of DCEs may contribute to PCE and TCE removal at the aerobic fringe of groundwater plumes undergoing reductive dechlorination in contaminated sites.  相似文献   

14.
A polyphasic approach based on cultivation and direct recovery of 16S rRNA gene sequences was utilized for microbial characterization of an aquifer contaminated with chlorinated ethenes. This work was conducted in order to support the evaluation of natural attenuation of chlorinated ethenes in groundwater at Area 6 at Dover Air Force Base (Dover, DE). Results from these studies demonstrated the aquifer contained relatively low biomass (e.g. direct microscopic counts of < 10(7) bacteria/g of sediment) comprised of a physiologically diverse group of microorganisms including iron reducers, acetogens, sulfate reducers, denitrifiers, aerobic and anaerobic heterotrophs. Laboratory microcosms prepared with authentic sediment and groundwater provided direct microbiological evidence that the mineralization of vinyl chloride and cis-dichloroethene as well as each step in the complete reductive dechlorination of tetracloroethene to ethene can occur in the Area 6 aquifer. Enrichment cultures capable of the oxidative degradation of cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC) were obtained from groundwater across the aquifer demonstrating the possible importance of direct, non-cometabolic oxidation of cis-DCE and VC in natural attenuation. Culture-independent analyses based upon recovery of 16S rRNA gene sequences revealed the presence of anaerobic organisms distributed primarily between two major bacterial divisions: the delta subdivision of the Proteobacteria and low-G + C gram positive. Recovery of sequences affiliated with phylogenetic groups containing known anaerobic-halorespiring organisms such as Desulfitobacterium, Dehalobacter, and certain groups of iron reducers provided qualitative support for a role of reductive dechlorination processes in the aquifer. This molecular data is suggestive of a functional linkage between the microbiology of the site and the apparent natural attenuation process. The presence and distribution of microorganisms were found to be consistent with a microbially driven attenuation of chlorinated ethenes within the aquifer and in accord with a conceptual model of aquifer geochemistry which suggest that both reductive and oxidative mechanisms are involved in heterogeneous, spatially distributed processes across the aquifer.  相似文献   

15.
A subsurface microbial community was isolated from a polluted site of Suquía River (Córdoba-Argentina), acclimated during 15 days in aerobic conditions using 1,2-dichlorobenzene (1,2-DCB) as the sole carbon source. From this acclimated community, we isolated and identified by 16S rDNA analysis a strain of Acidovorax avenae, which was able to perform the complete biodegradation of 1,2-DCB in two days affording stoichiometric amounts of chloride. This pure strain was also tested for biodegradation of chlorobenzene (CB); 1,3-DCB and 1,4-DCB, giving similar results to the experiments using 1,2-DCB. The aromatic-ring-hydroxylating dioxygenase (ARHDO) alpha-subunit gene core, encoding the catalytic site of the large subunit of chlorobenzene dioxygenase, was detected by PCR amplification and confirmed by DNA sequencing. These results suggest that the isolated strain of A. avenae could use a catabolic pathway, via ARHDO system, leading to the formation of chlorocatecols during the first steps of biodegradation, with further chloride release and subsequent paths that showed complete substrate consumption.  相似文献   

16.
The remediation of nitroaromatic contaminated groundwater is sometimes difficult because nitroaromatic compounds are resistant to biodegradation and, when they do transform, the degradation of the products may also be incomplete. A simple nitroaromatic compound, nitrobenzene, was chosen to assess the feasibility of an in situ multi-zone treatment system at the laboratory scale. The proposed treatment system consists of a zero valent granular iron zone to reduce nitrobenzene to aniline, followed by a passive oxygen release zone for the aerobic biodegradation of the aniline daughter product using pristine aquifer material from Canadian Forces Base (CFB) Borden, Ontario, as an initial microbial source. In laboratory batch experiments, nitrobenzene was found to reduce quickly in the presence of granular iron forming aniline, which was not further degraded but remained partially sorbed onto the granular iron surface. Aniline was found to be readily biodegraded with little metabolic lag under aerobic conditions using the pristine aquifer material. A sequential column experiment, containing a granular iron reducing zone and an aerobic biodegradation zone, successively degraded nitrobenzene and then aniline to below detection limits (0.5 microM) without any noticeable reduction in hydraulic conductivity from biofouling, or through the formation of precipitates.  相似文献   

17.
The potential for aerobic biodegradation of MTBE in a fractured chalk aquifer is assessed in microcosm experiments over 450 days, under in situ conditions for a groundwater temperature of 10 °C, MTBE concentration between 0.1 and 1.0 mg/L and dissolved O2 concentration between 2 and 10 mg/L. Following a lag period of up to 120 days, MTBE was biodegraded in uncontaminated aquifer microcosms at concentrations up to 1.2 mg/L, demonstrating that the aquifer has an intrinsic potential to biodegrade MTBE aerobically. The MTBE biodegradation rate increased three-fold from a mean of 6.6 ± 1.6 μg/L/day in uncontaminated aquifer microcosms for subsequent additions of MTBE, suggesting an increasing biodegradation capability, due to microbial cell growth and increased biomass after repeated exposure to MTBE. In contaminated aquifer microcosms which also contained TAME, MTBE biodegradation occurred after a shorter lag of 15 or 33 days and MTBE biodegradation rates were higher (max. 27.5 μg/L/day), probably resulting from an acclimated microbial population due to previous exposure to MTBE in situ. The initial MTBE concentration did not affect the lag period but the biodegradation rate increased with the initial MTBE concentration, indicating that there was no inhibition of MTBE biodegradation related to MTBE concentration up to 1.2 mg/L. No minimum substrate concentration for MTBE biodegradation was observed, indicating that in the presence of dissolved O2 (and absence of inhibitory factors) MTBE biodegradation would occur in the aquifer at MTBE concentrations (ca. 0.1 mg/L) found at the front of the ether oxygenate plume. MTBE biodegradation occurred with concomitant O2 consumption but no other electron acceptor utilisation, indicating biodegradation by aerobic processes only. However, O2 consumption was less than the stoichiometric requirement for complete MTBE mineralization, suggesting that only partial biodegradation of MTBE to intermediate organic metabolites occurred. The availability of dissolved O2 did not affect MTBE biodegradation significantly, with similar MTBE biodegradation behaviour and rates down to ca. 0.7 mg/L dissolved O2 concentration. The results indicate that aerobic MTBE biodegradation could be significant in the plume fringe, during mixing of the contaminant plume and uncontaminated groundwater and that, relative to the plume migration, aerobic biodegradation is important for MTBE attenuation. Moreover, should the groundwater dissolved O2 concentration fall to zero such that MTBE biodegradation was inhibited, an engineered approach to enhance in situ bioremediation could supply O2 at relatively low levels (e.g. 2–3 mg/L) to effectively stimulate MTBE biodegradation, which has significant practical advantages. The study shows that aerobic MTBE biodegradation can occur at environmentally significant rates in this aquifer, and that long-term microcosm experiments (100s days) may be necessary to correctly interpret contaminant biodegradation potential in aquifers to support site management decisions.  相似文献   

18.
The accumulation of dichloroethenes (DCEs) as dominant products of microbial reductive dechlorination activity in soil and water represent a significant obstacle to the application of bioremediation as a remedial option for chloroethenes in many contaminated systems. In this study, the effects of biostimulation and/or bioaugmentation on the biodegradation of cis- and trans-DCE in soil and water samples collected from contaminated sites in South Africa were evaluated in order to determine the possible bioremediation option for these compounds in the contaminated sites. Results from this study indicate that cis- and trans-DCE were readily degraded to varying degrees by natural microbial populations in all the soil and water samples tested, with up to 44% of cis-DCE and 41% of trans-DCE degraded in the untreated soil and water samples in two weeks. The degradation rate constants ranged significantly (P<0.05) between 0.0938 and 0.560 wk(-1) and 0.182 and 0.401 wk(-1), for cis- and trans-DCE, respectively, for the various treatments employed. A combination of biostimulation and bioaugmentation significantly increased the biodegradation of both compounds within two weeks; 14% for cis-DCE and 18% for trans-DCE degradation, above those observed in untreated soil and water samples. These findings support the use of a combination of biostimulation and bioaugmentation for the efficient biodegradation of these compounds in contaminated soil and water. In addition, the results clearly demonstrate that while naturally occurring microorganisms are capable of aerobic biodegradation of cis- and trans-DCE, biotransformation may be affected by several factors, including isomer structure, soil type, and the amount of nutrients available in the water and soil.  相似文献   

19.
The primary aerobic and anaerobic biodegradability at intermediate concentrations (50-5000 microg/l) of the antibiotics olaquindox (OLA), metronidazole (MET), tylosin (TYL) and oxytetracycline (OTC) was studied in a simple shake flask system simulating the conditions in surface waters. The purpose of the study was to provide rate data for primary biodegradation in the scenario where antibiotics pollute surface waters as a result of run-off from arable land. The source of antibiotics may be application of manure as fertilizer or excreta of grazing animals. Assuming first-order degradation kinetics, ranges of half-lives for aerobic degradation of the four antibiotics studied were 4-8 days (OLA), 9.5-40 days (TYL), 14-104 days (MET) and 42-46 days (OTC). OLA and OTC were degraded with no initial lag phase whereas lag phases from 2 to 34 days (MET) and 31 to 40 days (TYL) were observed for other substances. The biodegradation behaviour was influenced by neither the concentrations of antibiotics nor the time of the year and location for sampling of surface water. Addition of 1 g/l of sediment or 3 mg/l of activated sludge from wastewater treatment increased the biodegradation potential which is believed to be the result of increased bacterial concentration in the test solution. Biodegradation was significantly slower in tests conducted in absence of oxygen. Assessments of the toxic properties of antibiotics by studying the influence on the biodegradation rates of 14C-aniline at different concentrations of antibiotics showed that no tests were conducted at toxic concentrations.  相似文献   

20.
Laboratory evidence of MTBE biodegradation in Borden aquifer material   总被引:16,自引:0,他引:16  
Mainly due to intrinsic biodegradation, monitored natural attenuation can be an effective and inexpensive remediation strategy at petroleum release sites. However, gasoline additives such as methyl tert-butyl ether (MTBE) can jeopardize this strategy because these compounds often degrade, if at all, at a slower rate than the collectively benzene, toluene, ethylbenzene and the xylene (BTEX) compounds. Investigation of whether a compound degrades under certain conditions, and at what rate, is therefore important to the assessment of the intrinsic remediation potential of aquifers. A natural gradient experiment with dissolved MTBE-containing gasoline in the shallow, aerobic sand aquifer at Canadian Forces Base (CFB) Borden (Ontario, Canada) from 1988 to 1996 suggested that biodegradation was the main cause of attenuation for MTBE within the aquifer. This laboratory study demonstrates biologically catalyzed MTBE degradation in Borden aquifer-like environments, and so supports the idea that attenuation due to biodegradation may have occurred in the natural gradient experiment. In an experiment with batch microcosms of aquifer material, three of the microcosms ultimately degraded MTBE to below detection, although this required more than 189 days (or >300 days in one case). Failure to detect the daughter product tert-butyl alcohol (TBA) in the field and the batch experiments could be because TBA was more readily degradable than MTBE under Borden conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号