首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drinking water regulations in the United States and elsewhere are based on the occurrence of fecal indicator bacteria. Though not meeting all the criteria of an ideal indicator, nonpathogenic strains of Escherichia coli (E. coli) are used worldwide as an indicator of potential fecal contamination for drinking water and for distribution systems. This is, in part, because real illnesses are related to human pathogens, such as E. coli O157:H7, whose presence may be predicted better by E. coli than by total coliform bacteria. Our objective was to estimate the number of E. coli O157:H7 illnesses attributable to drinking water exposures in the United States and the feasible relationships between positive occurrences of the indicator bacteria E. coli and E. coli O157:H7 in drinking water. Results of the modeling indicate that in undisinfected drinking water systems, the ratio of bacterial indicator E. coli positives to E. coli O157:H7 organisms is estimated to be between 6:1 and 90:1 with few model parameters accounting for the vast majority of the uncertainty. These results provide context for considering the potential public health implications of a positive E. coli result from routine monitoring of undisinfected drinking water.  相似文献   

2.
Because the large rivers of the Seine watershed have a low microbiological water quality, the main sources of fecal contamination were investigated in the present study. The inputs of the point (wastewater treatment plants (WWTPs) effluents) and non-point sources (surface runoff and soil leaching) of fecal bacteria were quantified for Escherichia coli and intestinal enteroccoci used as bacterial indicators. In order to assess the contamination through non-point sources, fecal indicators abundance was estimated in samples collected in small streams located in rural areas upstream from all point sources; these small rivers were characterized by the land use of their watershed. Bacterial indicator numbers were also measured in effluents of WWTPs, some using classical treatment (settling followed by activated sludge process) and some using an additional disinfection stage (UV irradiation). These data were used to estimate the respective importance of each type of source at the scale of the whole Seine river watershed taking into account the land use and the population density. It shows the predominant importance of the point sources of fecal indicator bacteria at the scale of the whole watershed. In a scenario in which activated sludge treatment would be complemented with UV in all WWTPs located in this watershed, the non-point sources of fecal indicator bacteria would be dominant.  相似文献   

3.
Regulatory agencies are interested in a fecal indicator bacterium with a host range limited to humans because human fecal contamination represents the greatest hazard to humans, yet is a relatively easy nonpoint source to remedy. Watersheds with human fecal contamination could be given first priority for cleanup. A fecal indicator bacterium with a host range limited to humans and a few other warm-blooded animal species would also simplify microbial source tracking because only a few animal species would be required for any host origin database. The literature suggests that the fecal indicator bacterium Enterococcus faecalis has a limited host range. On this basis, we selected this bacterium for study. Of 583 fecal streptococcal isolates obtained on Enterococcosel agar from Canada goose, cattle, deer, dog, human, chicken, and swine, 392 were considered presumptive enterococci and were subsequently speciated with the API 20 Strep system. Of these isolates, 22 were Ent. durans (5.6%), 61 were Ent. faecalis (15.6%), 98 were Ent. faecium (25.0%), 86 were Ent. gallinarum (21.9%), and 125 were unidentified (31.9%). The host range of the Ent. faecalis isolates was limited to dogs, humans, and chickens. Media were developed to isolate and identify Ent. faecalis quickly from fecal samples and this scheme eliminated Ent. faecalis isolates from dogs. When the remaining Ent. faecalis isolates were ribotyped, it was possible to differentiate clearly among the isolates from human and chicken. It may be that combining the potentially limited host range of Ent. faecalis with ribotyping is useful for prioritizing watersheds with fecal contamination.  相似文献   

4.
ABSTRACT: Fecal contamination and organic pollution of an agricultural drainage in northeast Indiana was high. Bacterial counts (total coliform, TC; fecal coliform, FC; and fecal streptococcus, FS) and biochemical oxygen demand (BOD) were used to assess waste concentrations. Coliform counts indicated that sections of the drainage receiving septic effluent had waste concentrations far in excess of public health standards (mean FC = 550,000/100 ml). Areas of drainage remote from septic tank pollution were found to occasionally meet federal public health standards for whole body contact recreation but generally these areas had twice the allowable limit of 200 FC/100 ml. Bacterial contamination was highest during runoff events when the median values for TC, FC, and FS were 5, 3, and 17 times greater, respectively, than the median values during low stream discharge. Surface flows carried contaminants from unconfined livestock operations and fecally contaminated sediment was transported by high waters. During one runoff event a BOD loading of 36.7 kg/km2 was recorded and the peak BOD concentration observed was 16 mg/l. A discharge of liquid manure from a confined livestock operation caused a major fish kill. Pollution from septic tanks and unconfined livestock is greatest at high stream discharge when dilution reduces the impact on aquatic life.  相似文献   

5.
Fecal contamination of water bodies causes a public health problem and economic loss. To control such contamination management actions need to be guided by sound science. From 2007–2009 a study was undertaken to determine the sources of fecal bacteria contamination to the marine waters adjoining the Town of Wrightsville Beach, North Carolina, USA. The research effort included sampling for fecal coliform and Enterococcus bacteria, sampling for optical brighteners, dye studies, and use of molecular bacterial source tracking techniques including polymerase chain reaction (PCR) and terminal restriction fragment polymorphism (T-RFLP) fingerprinting of the Bacteroides–Prevotella group. Of the 96 samples collected from nine locations during the study, the water contact standard for Enterococcus was exceeded on 13 occasions. The T-RFLP fingerprint analyses demonstrated that the most widespread source of fecal contamination was human, occurring in 38% of the samples, with secondary ruminant and avian sources also detected. Optical brightener concentrations were low, reflecting a lack of sewage line leakage or spills. A lack of sewer leaks and lack of septic systems in the town pointed toward discharge from boat heads into the marine waters as the major cause of fecal contamination; this was supported by dye studies. Based on these data, the Town initiated action to have the U.S. Environmental Protection Agency declare the coastal waters (out to 3 nautical miles), the nearby Atlantic Intracoastal Waterway and its tributaries a no-discharge zone (NDZ) to alleviate the human fecal pollution. The Town garnered supporting resolutions from other local communities who jointly petitioned the North Carolina Department of Environmental and Natural Resources. This State regulatory agency supported the local government resolutions and sent an application for an NDZ to the EPA in April 2009. The EPA concurred, and in February 2010 the coastal waters of New Hanover County, NC, became the first marine area on the U.S. eastern seaboard between Delaware and the Florida Keys to be declared a no-discharge zone.  相似文献   

6.
Water quality and restoration in a coastal subdivision stormwater pond   总被引:1,自引:0,他引:1  
Stormwater ponds are commonly used in residential and commercial areas to control flooding. The accumulation of urban contaminants in stormwater ponds can lead to a number of water quality problems including high nutrient, chemical contaminant, and bacterial levels. This study examined the interaction between land use and coastal pond water quality in a South Carolina residential subdivision pond. Eutrophic levels of chlorophyll and phosphorus were present in all seasons. Harmful cyanobacterial blooms were prevalent during the summer months. Microcystin toxin and fecal coliform bacteria levels were measured that exceeded health and safety standards. Low concentrations of herbicides (atrazine and 2,4-D) were also detected during summer months. Drainage from the stormwater pond may transport contaminants into the adjacent tidal creek and estuary. A survey of residents within the pond's watershed indicated poor pet waste management and frequent use of fertilizers and pesticides as possible contamination sources. Educational and outreach activities were provided to community members to create an awareness of the water quality conditions in the pond. Pond management strategies were then recommended, and selected mitigation actions were implemented. Water quality problems identified in this study have been observed in other coastal stormwater ponds of varying size and salinity, leading this project to serve as a potential model for coastal stormwater pond management.  相似文献   

7.
Large-scale deposition of animal manure can result in contamination of surface and ground water and in potential transfer of disease-causing enteric bacteria to animals or humans. We measured total coliform bacteria (TC), fecal coliform bacteria (FC), NO3, NH4, total P, and PO4 in ground water flowing from basalt and sand aquifers, in wells into basalt and sand aquifers, in irrigation water, and in river water. Samples were collected monthly for 1 yr. Total coliform and FC numbers were always higher in irrigation water than in ground water, indicating that soil and sediment filtered most of these bacteria before they entered the aquifers. Total coliform and FC numbers in ground water were generally higher in the faster flowing basalt aquifer than in the sand aquifer, indicating that the slower flow and finer grain size may filter more TC and FC bacteria from water. At least one coliform bacterium/100 mL of water was found in ground water from both basalt and sand aquifers, indicating that ground water pumped from these aquifers is not necessarily safe for human consumption according to the American Public Health Association and the USEPA. The NO3 concentrations were usually higher in water flowing from the sand aquifer than in water flowing from the basalt aquifer or in perched water tables in the basalt aquifer. The PO4 concentrations were usually higher in water flowing from the basalt aquifer than in water flowing from the sand aquifer. The main concern is fecal contamination of these aquifers and health consequences that may arise from human consumption.  相似文献   

8.
Antibiotic resistance analysis (ARA) was used to determine if enterococci of human origin were present in a stream (Spout Run) that passes through a rural nonsewered community (Millwood, VA). Millwood consists of 82 homes, all served by individual septic systems, and Spout Run drains a 5,800-ha karst topography watershed that contains large populations of livestock and wildlife. Periodic monitoring by state regulatory officials had resulted in Spout Run being placed on the Virginia impaired stream list and Millwood being categorized as an at-risk community. Stream samples were collected monthly and analyzed for fecal coliforms and enterococci (May 1999-May 2000); ARA was performed on enterococci stream isolates on a quarterly basis. All 117 stream samples were positive for fecal coliforms, and 32% exceeded the Virginia recreational water standard (1,000 fecal coliforms/100 mL). A library of 1,174 known source Enterococcus isolate antibiotic resistance profiles was constructed, and yielded correct classification rates of 94.6% for 203 human isolates, 93.7% for 734 livestock isolates, and 87.8% for 237 wildlife isolates. Antibiotic resistance analysis of 2,012 enterococcal isolates recovered from stream samples indicated isolates of human origin appeared throughout the stream as it passed through Millwood, with a yearly average of approximately 10% human, 40% wildlife, and 50% livestock. There were no human origin isolates in samples collected upstream from Millwood, and the percent human origin isolates declined downstream from Millwood. While a human signature was found in Spout Run, it was small compared with the proportion of isolates from livestock and wildlife.  相似文献   

9.
Fecal contamination of water resources is evaluated by the enumeration of the fecal coliforms and Enterococci. However, the enumeration of these indicators does not allow us to differentiate between the sources of fecal contamination. Therefore, it is important to use alternative indicators of fecal contamination to identify livestock contamination in surface waters. The concentration of fecal indicators (, enteroccoci, and F-specific bacteriophages), microbiological markers (Rum-2-bac, Pig-2-bac, and ), and chemical fingerprints (sterols and stanols and other chemical compounds analyzed by 3D-fluorescence excitation-matrix spectroscopy) were determined in runoff waters generated by an artificial rainfall simulator. Three replicate plot experiments were conducted with swine slurry and cattle manure at agronomic nitrogen application rates. Low amounts of bacterial indicators (1.9-4.7%) are released in runoff water from swine-slurry-amended soils, whereas greater amounts (1.1-28.3%) of these indicators are released in runoff water from cattle-manure-amended soils. Microbial and chemical markers from animal manure were transferred to runoff water, allowing discrimination between swine and cattle fecal contamination in the environment via runoff after manure spreading. Host-specific bacterial and chemical markers were quantified for the first time in runoff waters samples after the experimental spreading of swine slurry or cattle manure.  相似文献   

10.
Given known limitations of current microbial source-tracking (MST) tools, emphasis on small, simple study areas may enhance interpretations of fecal contamination sources in streams. In this study, three MST tools-Escherichia coli repetitive element polymerase chain reaction (rep-PCR), coliphage typing, and Bacteroidales 16S rDNA host-associated markers-were evaluated in a selected reach of Plum Creek in south-central Nebraska. Water-quality samples were collected from six sites. One reach was selected for MST evaluation based on observed patterns of E. coli contamination. Despite high E. coli concentrations, coliphages were detected only once among water samples, precluding their use as a MST tool in this setting. Rep-PCR classification of E. coli isolates from both water and sediment samples supported the hypothesis that cattle and wildlife were dominant sources of fecal contamination, with minor contributions by horses and humans. Conversely, neither ruminant nor human sources were detected by Bacteroidales markers in most water samples. In bed sediment, ruminant- and human-associated Bacteroidales markers were detected throughout the interval from 0 to 0.3 m, with detections independent of E. coli concentrations in the sediment. Although results by E. coli-based and Bacteroidales-based MST methods led to similar interpretations, detection of Bacteroidales markers in sediment more commonly than in water indicates that different tools to track fecal contamination (in this case, tools based on Bacteroidales DNA and E. coli isolates) may have varying relevance to the more specific goal of tracking the sources of E. coli in watersheds. This is the first report of simultaneous, toolbox approach application of a library-based and marker-based MST analyses to flowing surface water.  相似文献   

11.
ABSTRACT: Fecal‐indicator bacteria were sampled at 14 stream sites in Anchorage, Alaska, USA, as part of a study to determine the effects of urbanization on water quality. Population density in the subbasins sampled ranged from zero to 1,750 persons per square kilometer. Higher concentrations of fecal‐coliform, E. coli, and enterococci bacteria were measured at the most urbanized sites. Although fecal‐indicator bacteria concentrations were higher in summer than in winter, seasonal differences in bacteria concentrations generally were not significant. Areas served by sewer systems had significantly higher fecal‐indicator bacteria concentrations than did areas served by septic systems. The areas served by sewer systems also had storm drains that discharged directly to the streams, whereas storm sewers were not present in the areas served by septic systems. Fecal‐indicator bacteria concentrations were highly variable over a two‐day period of stable streamflow, which may have implications for testing of compliance to water‐quality standards.  相似文献   

12.
ABSTRACT: Economic losses from ground water contamination were estimated in a central Pennsylvania community. The averting expenditures method was applied via a mail survey of households in which water contained the unregulated volatile organic chemical, perchloroethylene (PCE). Expenditures were estimated at $148,900 (1987 dollars) over the six-month contamination period or approximately $252 per household annually. These costs underestimate the lower bound measure of welfare losses to households from ground water contamination. An upper bound measure of welfare losses was estimated at $383 per household annually. These estimates do not represent the full economic losses resulting from ground water contamination since the study did not address municipal-level and business avoidance costs and losses from actual health effects, increased fear and anxiety, ecological damages, and nonuser ground water benefits. The results expand the existing empirical base of information about municipal-level responses and economic losses from ground water contamination to include household-level impacts. The findings indicate that households undertake substantial averting actions in response to ground water contamination and that such actions can have significant economic consequences. The extent and magnitude of avoidance costs documented suggests that policy-makers should give greater attention to this category of economic losses.  相似文献   

13.
Mine tailings are moderately to severely impacted sites that lack normal plant cover, soil structure and development, and the associated microbial community. In arid and semiarid environments, tailings and their associated contaminants are prone to eolian dispersion and water erosion, thus becoming sources of metal contamination. One approach to minimize or eliminate these processes is to establish a permanent vegetation cover on tailings piles. Here we report a revegetation trial conducted at a moderately impacted mine tailings site in southern Arizona. A salt and drought-tolerant plant, four-wing saltbush [Atriplex canescens (Pursh) Nutt.], was chosen for the trial. A series of 3 by 3 m plots were established in quadruplicate on the test site to evaluate growth of four-wing saltbush transplants alone or with compost addition. Results show that >80% of the transplanted saltbush survived after 1.5 yr in both treatments. Enumeration of heterotrophs and community structure analysis were conducted to monitor bacterial community changes during plant establishment as an indicator of plant and soil health. The bacterial community was evaluated using denaturing gradient gel electrophoresis (DGGE) analysis of 16S rDNA PCR gene products from tailings samples taken beneath transplant canopies. Significant differences in heterotrophic counts and community composition were observed between the two treatments and unplanted controls throughout the trial, but treatment effects were not observed. The results suggest that compost is not necessary for plant establishment at this site and that plants, rather than added compost, is the primary factor enhancing bacterial heterotrophic counts and affecting community composition.  相似文献   

14.
This paper introduces an integrated spatial and temporal modeling system developed mathematically for assessing microbial contaminants on animal-grazed farmlands. The model uses fecal coliform, specifically Escherichia coli, as an indicator of fecal contamination and describes the sources, sinks, transport processes, and fate of E. coli contaminants in catchments and associated streams. Spatial features include grazing location, land topography, distance to a nearby stream, and distance through the stream network to the outlet. Temporal features are population dynamics on the land surface, in flow, and on streambeds. The model applies the principles of conservation of mass balance on two different types of pools: grid cells on land surfaces and networked stream segments. The model aims to improve the prediction of the effects of different land management strategies on the fecal contamination of waterways. This is achieved by characterizing the movement of fecal contaminants from land to streams and in-stream mobilization. Processes of attenuation, diffusion, and transport govern the movement. Our study site is a hill land catchment with an area of 140 ha and is used exclusively for animal grazing. The model was calibrated with previous research results, and then tested using the data collected at the outlet of the catchment. The sensitivity of the model predictions was analyzed for different scenarios: effect of stock rate, attenuation rate, and flow volumes. The similar pattern between monitored and predicted E. coli concentration proved that the model captures the key features that control the population dynamics of fecal contaminants. Further experiments are required to expand the model's functionality for covering more mitigation options.  相似文献   

15.
Fecal bacteria have traditionally been used as indicator organisms to monitor the quality of recreational waters. Recent work has questioned the robustness of traditional indicators, particularly at seawater bathing beaches. For example, a study of Florida beaches found unexpectedly high abundances of Escherichia coli, fecal coliforms, and enterococci in beach sand. The aim of the present study was to explain these abundances by assessing the survival of E. coli and enterococci in beach sand relative to seawater. We used a combination of quantitative laboratory mesocosm experiments and field observations. Results suggested that E. coli and enterococci exhibited increased survivability and growth in sand relative to seawater. Because fecal bacteria are capable of replicating in sand, at least under controlled laboratory conditions, the results suggest that sand may be an important reservoir of metabolically active fecal organisms. Experiments with "natural" mesocosms (i.e., unsterilized sand or water rich in micropredators and native bacteria) failed to show the same increases in fecal indicators as was found in sterile sand. It is postulated that this was due to predation and competition with indigenous bacteria in these "natural" systems. Nonetheless, high populations of indicators were maintained and recovered from sand over the duration of the experiment as opposed to the die-off noted in water. Indicator bacteria may wash out of sand into shoreline waters during weather and tidal events, thereby decreasing the effectiveness of these indicators as predictors of health risk and complicating the interpretations for water quality managers.  相似文献   

16.
ABSTRACT: Many water bodies within the United States are contaminated by non‐point source (NPS) pollution, which is defined as those materials posing a threat to water quality arising from a number of individual sources and diffused through hydrologic processes. One such NPS pollutant that is of critical concern are pathogens derived from animal wastes, including humans. The potential presence of pathogens is identified by testing the water for fecal conform, a bacteria also associated with animal wastes. Water contaminated by animal wastes are most often associated with urban and agricultural areas, thus it is postulated that by utilizing land cover indicators, those water bodies that may be at risk of fecal coliform contamination may be identified. This study utilizes land cover information derived from the Multi‐Resolution Land Characterization (MRLC) project to analyze fecal coliform contamination in South Carolina. Also utilized are 14 digit hydro‐logic unit code (HUC) watersheds of the state, a digital elevation model, and test point data stating whether fecal coliform levels exceeded State Water Quality Standards. Proportions of the various land covers are identified within the individual watersheds and then analyzed using a logistic regression. The results reveal that watersheds with large proportions of urban land cover and agriculture on steep slopes had a very high probability of being impaired. (KEY TERMS: Geographic Information Systems; land use planning; nonpoint source pollution; statistical analysis; water quality; watershed management.)  相似文献   

17.
The coastal waters at many beaches in California and the United States are afflicted with fecal pollution, which poses a health risk for people exposed to the water through recreational activities such as swimming, surfing, and diving. Identifying sources of pollution is complicated by oceanographic transport/mixing processes and the nonconservative behavior of microorganisms exposed to sunlight and hostile marine conditions. This article investigates the variation of fecal indicator bacteria (FIB) concentrations in the surf zone and the adjacent coastal marsh by applying autocorrelation and cross-correlation analyses that illustrate solar and tidal modulations. A steady state bioreactor model was developed to explain solar inactivation in the surf zone, whereas a dynamic model was applied to explain tidally influenced disturbances in the coastal marsh. These models applied to intensive monitoring datasets on FIB and environmental variables have provided insights into the biologic and physical processes controlling coastal water quality, specifically the influence of sunlight and tides on bacterial levels.  相似文献   

18.
Phosphorus characteristics of dairy feces affected by diets   总被引:2,自引:0,他引:2  
Phosphorus (P) surplus on dairy farms, especially confined operations, contributes to P buildup in soils with increased potential for P loss to waters. One approach to reduce P surplus and improve water quality is to optimize P feeding and improve P balance on farms. Here we report how varying P concentrations in lactating cow diets affects the amount as well as the chemical forms and fraction distribution of P in fecal excretion, and the environmental implications of this effect. Analysis of fecal samples collected from three independent feeding trials indicates that increasing dietary P levels through the use of P minerals not only led to a higher concentration of acid digest total phosphorus (TP) in feces, but more importantly increased the amount and proportion of P that is water soluble and thus most susceptible to loss in the environment. For instance, with diets containing 3.4, 5.1, or 6.7 g P kg(-1) feed dry matter (DM), the water-soluble fraction of fecal P was 2.91, 7.13, and 10.46 g kg(-1) fecal DM, respectively, accounting for 56, 77, and 83% of acid digest TP. The other fecal P fractions (those soluble in dilute alkaline and acid extractants) remained small and were unaffected by dietary P concentration. Excess P in the P supplemented diets was excreted in feces as water-soluble forms. A simple measure of inorganic phosphorus (Pi) in a single water extract is highly responsive to changes in diet P concentrations and hence can be indicative of dietary P status. A fecal P indicator concept is proposed and discussed.  相似文献   

19.
Potable and equitable drinking water (DW) is a fundamental human right and essential for human health. This study is conducted to assess the groundwater and jar water quality of the roadside restaurants and tea stalls used for drinking by the local people around the Gazipur City area in Bangladesh. Water samples from 173 restaurants and tea stalls are collected. The physico-chemical and biological parameters are analyzed according to the guidelines and standards. The results illustrate that the color, EC, and Mn of 41%, 80%, and 62% of the samples, respectively, exceed the WHO and Environmental Conservation Rules (ECR) standards. In addition, E. coli and total coliform exceeding the threshold standards are found in 47% and 64% of the water samples, respectively. The contamination of DW by fecal coliforms is confirmed and supported by prior studies, which indicates that the DW supplied in restaurants and tea stalls are unsafe because of the possible presence of pathogens. These may cause potential health hazards to consumers from various water-borne diseases. Poor sanitation, unhygienic practices, and improper disposal of wastewater are responsible for the microbial contamination of DW. So, the authorities in charge of these places should take the right regulatory steps, such as regular sanitation inspections, DW quality monitoring, hand-washing practices, and better sanitation in these places.  相似文献   

20.
Natural (estradiol, estrone, testosterone, estriol) and synthetic hormones (ethinylestradiol) are constantly excreted into the environment from human and animal sources but little is known of their transport. The purpose of this study was to determine how far along a 100 km river course that hormones could be detected after contamination with sewage effluent or fishpond effluent. Fourteen sites in the Lower Jordan River drainage were sampled (two sites above the sewage effluent contamination, eight sites below the contamination and four tributaries) before and after the dry season of 2002 (Spring and Fall). Samples were tested for testosterone, estrogen (estrone and estradiol combined), estriol, ethinylestradiol, ammonia and fecal coli. It was found that the fecal coli count dropped exponentially (from 250,000 to 60/100 ml3) and the ammonia dropped from 15 to less than 1mg/l over the initial 25 km stretch. Over the same stretch, the hormone values declined by half from their maximum values for testosterone (3.3 ng/l), estriol (8.8 ng/l), ethinylestradiol (6.1 ng/l), and estrogen (4.9 ng/l). From 67 to 100 km mark, testosterone (4.8 ng/l) and estrogen (2.4 ng/l) were still elevated while ethinylestradiol and estriol were >or=1.5 ng/l. The high level of testosterone and estrogen between 67 and 100 km marks was probably due to major discharge from fishponds between 23 and 27 km marks. Levels of ethinylestradiol above 1 ng/l, a level which can affect fish, was seen in 70% (12/16) of the samples tested. The data suggest that hormones in readily measured quantities can be transported considerable distances from the source of pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号