首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Results of groundwater and seawater analyses for radioactive ((3)H, (222)Rn, (223)Ra, (224)Ra, (226)Ra, and (228)Ra) and stable (D and (18)O) isotopes are presented together with in situ spatial mapping and time series (222)Rn measurements in seawater, direct seepage measurements using manual and automated seepage meters, pore water investigations using different tracers and piezometric techniques, and geoelectric surveys probing the coast. This study represents first time that such a new complex arsenal of radioactive and non-radioactive tracer techniques and geophysical methods have been used for simultaneous submarine groundwater discharge (SGD) investigations. Large fluctuations of SGD fluxes were observed at sites situated only a few meters apart (from 0cmd(-1) to 360cmd(-1); the unit represents cm(3)/cm(2)/day), as well as during a few hours (from 0cmd(-1) to 110cmd(-1)), strongly depending on the tidal fluctuations. The average SGD flux estimated from continuous (222)Rn measurements is 17+/-10cmd(-1). Integrated coastal SGD flux estimated for the Ubatuba coast using radium isotopes is about 7x10(3)m(3)d(-1) per km of the coast. The isotopic composition (deltaD and delta(18)O) of submarine waters was characterised by significant variability and heavy isotope enrichment, indicating that the contribution of groundwater in submarine waters varied from a small percentage to 20%. However, this contribution with increasing offshore distance became negligible. Automated seepage meters and time series measurements of (222)Rn activity concentration showed a negative correlation between the SGD rates and tidal stage. This is likely caused by sea level changes as tidal effects induce variations of hydraulic gradients. The geoelectric probing and piezometric measurements contributed to better understanding of the spatial distribution of different water masses present along the coast. The radium isotope data showed scattered distributions with offshore distance, which imply that seawater in a complex coast with many small bays and islands was influenced by local currents and groundwater/seawater mixing. This has also been confirmed by a relatively short residence time of 1-2 weeks for water within 25km offshore, as obtained by short-lived radium isotopes. The irregular distribution of SGD seen at Ubatuba is a characteristic of fractured rock aquifers, fed by coastal groundwater and recirculated seawater with small admixtures of groundwater, which is of potential environmental concern and has implications on the management of freshwater resources in the region.  相似文献   

2.
Submarine groundwater discharge (SGD), which includes fresh groundwater and recycled seawater, has been recognized as a widespread phenomenon that can provide important chemical elements to the ocean. Several studies have demonstrated that SGD may approach or even exceed freshwater sources in supplying nutrients to coastal zones. This work reports preliminary results of a study carried out in a series of small embayments of Ubatuba, S?o Paulo State, Brazil, covering latitudes between 23 degrees 26'S and 23 degrees 46'S and longitudes between 45 degrees 02'W and 45 degrees 11'W. The main aims of this research were to set up an analytical method to assess 222Rn and 226Ra activities in seawater samples and to apply the excess 222Rn inventories obtained to estimate SGD. Measurements made during the summer of 2001 included 222Rn and 226Ra in seawater, 226Ra in sediment, seawater and sediment physical properties, nutrients and seepage rates. A continuous 222Rn monitor was also used to determine in situ collection of data to study short-term changes at one location. All methods indicated significant inflow of subsurface fluids at rates in excess of several cm per day.  相似文献   

3.
A complex approach in characterisation of submarine groundwater discharge (SGD) off south-eastern Sicily comprising applications of radioactive and non-radioactive tracers, direct seepage measurements, geophysical surveys and a numerical modelling is presented. SGD fluxes in the Donnalucata boat basin were estimated by direct seepage measurements to be from 4 to 12Ls(-1), which are comparable with the total SGD flux in the basin of 17Ls(-1) obtained from radon measurements. The integrated SGD flux over the Donnalucata coast estimated on the basis of Ra isotopes was around 60m(3)s(-1) per km of the coast. Spatial variations of SGD were observed in the Donnalucata boat basin, the average (222)Rn activity concentration in seawater varied from approximately 0.1kBqm(-3) to 3.7kBqm(-3) showing an inverse relationship with salinity. The continuous monitoring carried out at the site closest to the coast has revealed an inverse relationship of (222)Rn activity concentration on the tide. The (222)Rn concentrations in seawater varied from 2.3kBqm(-3) during high tides to 4.8kBqm(-3) during low tides, thus confirming an influence of the tide on submarine groundwater discharge. Stable isotopes (delta(2)H and delta(18)O) showed that SGD samples consist up to 50% of groundwater. Geo-electrical measurements showed a spatial variability of the salt/fresh water interface and its complex transformation in the coastal zone. The presented results imply that in the studied Donnalucata site there are at least two different sources of SGD, one superficial, represented by mixed fresh water and seawater, and the second one which originates in a deeper limestone aquifer.  相似文献   

4.
The four naturally-occurring isotopes of radium were coupled with a previously evaluated hydrodynamic model to determine the apparent age of surface waters and to quantify submarine groundwater discharge (SGD) into the Venice Lagoon, Italy.Mean apparent age of water in the Venice Lagoon was calculated using the ratio of 224Ra to 228Ra determined from 30 monitoring stations and a mean pore water endmember. Average apparent age was calculated to be 6.0 d using Ra ratios. This calculated age was very similar to average residence time calculated for the same period using a hydrodynamic model (5.8 d).A mass balance of Ra was accomplished by quantifying each of the sources and sinks of Ra in the lagoon, with the unknown variable being attributed to SGD. Total SGD were calculated to be 4.1 ± 1.5, 3.8 ± 0.7, 3.0 ± 1.3, and 3.5 ± 1.0 × 1010 L d−1 for 223,224,226, 228Ra, respectively, which are an order of magnitude larger than total mean fluvial discharge into the Venice Lagoon (3.1 × 109 L d−1). The SGD as a source of nutrients in the Venice Lagoon is also discussed and, though significant to the nutrient budget, is likely to be less important as the dominant control on SGD is recirculated seawater rather than freshwater.  相似文献   

5.
Ra isotopes are a powerful tool for quantifying the flux of submarine groundwater discharge (SGD) into the sea. Previous studies of 223Ra and 224Ra mass balances in coastal embayments have shown that the Ra balance is dominated by supply via SGD, exchange with the open ocean and radioactive decay. The current study shows that a single time series over a tidal cycle at the principal inlet to Great South Bay (NY, US) is sufficient to determine the net flux of Ra across the inlet, and also can be used to estimate the decay of short-lived Ra in the bay. Estimates of the net Ra flux obtained from a single tidal time-series by using three different approaches agree with those determined from a more time-consuming survey of Ra within the bay, and may represent a first step of estimating SGD in bays and coastal lagoons.  相似文献   

6.
Radon-222 was measured in groundwater sources of Extremadura (Spain), analyzing 350 samples from private and public springs, wells, and spas by liquid scintillation counting (LSC) and gamma spectrometry. The 222Rn activity concentrations ranged from 0.24 to 1168 Bq L−1. The statistical analysis showed a log-normal distribution with a mean of (111 ± 7) Bq L−1 and a median of (36 ± 3) Bq L−1. A hydrogeological study revealed correlations between the activity concentration and the aquifer material's characteristics. A map of 222Rn in groundwater was elaborated and compared with the natural gamma radiation map for this region. About 35% of the samples showed 222Rn activity concentrations above the Euratom recommended limit of 100 Bq L−1. Three uranium series radionuclides (238U, 234U, and 226Ra) were also assayed by alpha-particle spectrometry, estimating the annual effective dose due to the presence of these natural radionuclides in drinking water.  相似文献   

7.
Considering the role of radon in epidemiology, an attempt was made to make a nation-wide map of indoor 222Rn and 220Rn for India. More than 5000 measurements have been carried out in 1500 dwellings across the country comprising urban and nonurban locations. The solid state nuclear track detectors based twin cup 222Rn/220Rn discrimination dosimeters were deployed for the measurement of indoor 222Rn, 220Rn and their progeny levels. The geometric means of estimated annual inhalation dose rate due to indoor 222Rn, 220Rn and their progeny in the dwellings was 0.94 mSvy−1 (geometric standard deviation 2.5). It was observed that the major contribution to the indoor inhalation dose was due to indoor 222Rn and its progeny. However, the contribution due to indoor 220Rn and its progeny was not trivial as it was found to be about 20% of the total indoor inhalation dose rates. The indoor 222Rn levels in dwellings was significantly different depending on the nature of walls and floorings.  相似文献   

8.
In order to contribute to a future waste management policy related to the presence of technologically enhanced natural occurring radioactive material (TENORM) in the Brazilian petroleum industry, the present work presents the chemical composition and the 226Ra and 228Ra content of sludge and scales generated during the offshore E and P petroleum activities in the Campos Basin, the primary offshore oil production region in Brazil.The 226Ra and 228Ra content on 36 sludge and scales samples were determined by gamma-spectrometry. Based on X-ray diffractometry results, a chemical analysis schema for these samples was developed. The results have shown that scales are 75% barium and strontium sulfates, with a mean 226Ra and 228Ra content of 106 kBq kg−1 and 78 kBq kg−1, respectively. On the other hand, sludge samples have a much more complex chemical composition than the scales. The 226Ra and 228Ra content in sludge also varies much more than the content observed in the scales samples and ranged from 0.36 to 367 kBq kg−1 and 0.25 to 343 kBq kg−1, respectively.  相似文献   

9.
A survey of radioactivity in groundwater (110 sites) was conducted as a precursor to providing a baseline of radiation exposure in rural and remote communities in Queensland, Australia, that may be impacted upon by exposure pathways associated with the supply, treatment, use and wastewater treatment of the resource. Radionuclides in groundwater, including 238U, 226Ra, 222Rn, 228Ra, 224Ra and 40K were measured and found to contain activity concentration levels of up to 0.71 BqL−1, 0.96 BqL−1, 108 BqL−1, 2.8 BqL−1, 0.11 BqL−1 and 0.19 BqL−1 respectively. Activity concentration results were classified by aquifer lithology, showing correlation between increased radium isotope concentration and basic volcanic host rock. The groundwater survey and mapping results were further assessed using an investigation assessment tool to identify seven remote or rural communities that may require additional radiation dose assessment beyond that attributed to ingestion of potable water.  相似文献   

10.
Natural radionuclides, such as 210Po and 210Pb were measured in the water samples collected from six stations at Kuala Selangor, Malaysia. Results for 210Po and 210Pb in dissolved and particulate phases have showed the difference in distribution and chemical behavior. The fluctuation activities of 210Po and 210Pb depend on wave action, geology and degree of fresh water input occurring at study areas and probably due to different sampling dates. The distribution coefficient, Kd, values of 210Po and 210Pb ranged from 2.0 × 103 l g−1 to 265.15 × 105 l g−1, and from 3.0 × 103 l g−1 to 558.16 × 105 l g−1, respectively. High Kd values of 210Po and 210Pb indicated that a strong adsorption of 210Po and 210Pb onto suspended particles, and the sinking of both nuclides on the seabed at study locations were controlled by the characteristics of suspended particles.  相似文献   

11.
This study investigates the contribution of radon (222Rn)-bearing water to indoor 222Rn in thermal baths. The 222Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM10 and PM2.5) and carbon dioxide (CO2) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m−3 of 222Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which 222Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average 222Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor 222Rn levels were influenced by the 222Rn concentrations in the hot spring water and the bathing times. The average 222Rn transfer coefficients from water to air were 6.2 × 10−4-4.1 × 10−3. The 24-h average levels of CO2 and PM10 in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM2.5. Radon and PM10 levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants.  相似文献   

12.
It is known that in soils and sediments moisture adsorbed on particle surfaces and in the pore system significantly affects the behaviour of recoiling radon (222Rn) atoms after decay of parent 226Ra, leading to increased 222Rn emanation. As a first step in an effort to characterize the 222Rn source term in mineralised sediments in the present study, complementing previous studies in the area, granitic esker sand samples were collected in order to test how moisture content affects 222Rn emanation at different grain size fractions. Emanation fractions measured for natural samples were compared with theoretical calculations. Six different grain size fractions were studied at 0%, 5% and 10% moisture contents relative to the mass of solids. In a further study necessary complementary information on the chemical and structural distribution of 226Ra was gained by selective leaching experiments. The results showed that 226Ra concentration increases from 50 Bq/kg at grain size 1-2 mm to 200 Bq/kg at grain size <0.063 mm. Respectively, the emanation factor increased from 0.12 to 0.30 at 5% moisture content. Both emanation factor and radium concentration increased significantly when grain size was below 0.125-0.250 mm. Above this fraction, the emanation fraction was approximately constant, 0.13 at 5% moisture content. In most of the grain size fractions, emanation reaches its maximum at 5% moisture content, being twice as high as in a dry sample. For the small particles (<0.063 mm) the 226Ra distribution is rather complex and depends on the mineral composition compared to larger particles wherein emanation from the internal pore system and the adjacent matrix is dominating over the contribution from external surface.  相似文献   

13.
The radon isotope 222Rn and salinity in coastal surface water were mapped on regional scales, to improve the understanding of coastal processes and their spatial variability. Radon was measured with a surface-towed, continuously recording multi-detector setup on a moving vessel. Numerous processes and locations of land-ocean interaction along the Central Great Barrier Reef coastline were identified and interpreted based on the data collected. These included riverine fluxes, terrestrially-derived fresh submarine groundwater discharge (SGD) and the tidal pumping of seawater through mangrove forests. Based on variations in the relationship of the tracers radon and salinity, some aspects of regional freshwater inputs to the coastal zone and to estuaries could be assessed. Concurrent mapping of radon and salinity allowed an efficient qualitative assessment of land-ocean interaction on various spatial and temporal scales, indicating that such surveys on coastal scales can be a useful tool to obtain an overview of SGD locations and processes.  相似文献   

14.
Submarine groundwater discharge (SGD) into the coastal zone has received increased attention in the last few years as it is now recognized that this process represents an important pathway for material transport. Assessing these material fluxes is difficult, as there is no simple means to gauge the water flux. To meet this challenge, we have explored the use of a continuous radon monitor to measure radon concentrations in coastal zone waters over time periods from hours to days. Changes in the radon inventories over time can be converted to fluxes after one makes allowances for tidal effects, losses to the atmosphere, and mixing with offshore waters. If one assumes that advective flow of radon-enriched groundwater (pore waters) represent the main input of 222Rn in the coastal zone, the calculated radon fluxes may be converted to water fluxes by dividing by the estimated or measured 222Rn pore water activity. We have also used short-lived radium isotopes (223Ra and 224Ra) to assess mixing between near-shore and offshore waters in the manner pioneered by. During an experiment in the coastal Gulf of Mexico, we showed that the mixing loss derived from the 223Ra gradient agreed very favorably to the estimated range based on the calculated radon fluxes. This allowed an independent constraint on the mixing loss of radon-an important parameter in the mass balance approach. Groundwater discharge was also estimated independently by the radium isotopic approach and was within a factor of two of that determined by the continuous radon measurements and an automated seepage meter deployed at the same site.  相似文献   

15.
Plants are unique in their ability to serve as in situ monitors for environmental genotoxins. We have used the alkaline comet assay for detecting induced DNA damage in Allium cepa to estimate the impact of high levels of natural radiation in the soils of inhabited zones of Ramsar. The average specific activity of natural radionuclides measured in the soil samples for 226Ra was 12,766 Bq kg−1 whereas in the control soils was in the range of 34–60 Bq kg−1. A positive strong significant correlation of the DNA damage in nuclei of the root cells of A. cepa seeds germinated in the soil of high background radiation areas with 226Ra specific activity of the soil samples was observed. The results showed high genotoxicity of radioactively contaminated soils. Also the linear increase in the DNA damage indicates that activation of repair enzymes is not triggered by exposure to radiation in HBRA.  相似文献   

16.
Radium isotopes are widely used in marine studies (eg. to trace water masses, to quantify mixing processes or to study submarine groundwater discharge). While 228Ra and 226Ra are usually measured using gamma spectrometry, short-lived Ra isotopes (224Ra and 223Ra) are usually measured using a Radium Delayed Coincidence Counter (RaDeCC). Here we show that the four radium isotopes can be analyzed using gamma spectrometry. We report 226Ra, 228Ra, 224Ra, 223Ra activities measured using low-background gamma spectrometry in standard samples, in water samples collected in the vicinity of our laboratory (La Palme and Vaccarès lagoons, France) but also in seawater samples collected in the plume of the Amazon river, off French Guyana (AMANDES project). The 223Ra and 224Ra activities determined in these samples using gamma spectrometry were compared to the activities determined using RaDeCC. Activities determined using the two techniques are in good agreement. Uncertainties associated with the 224Ra activities are similar for the two techniques. RaDeCC is more sensitive for the detection of low 223Ra activities. Gamma spectrometry thus constitutes an alternate method for the determination of short-lived Ra isotopes.  相似文献   

17.
The assembling of a system for field sampling and activity concentration measurement of radon dissolved in groundwater is described. Special attention is given in presenting the calibration procedure to obtain the radon activity concentration in groundwater from the raw counting rate registered in a portable scintillation detector and in establishing the precision of the activity concentration measurements. A field procedure was established and the system tested during one year of monthly observations of 222Rn activity concentration in groundwater drawn from two wells drilled on metamorphic rocks exposed at Eastern São Paulo State, Brazil. The observed mean 222Rn activity concentrations are 374 Bq/dm3 in one well and about 1275 Bq/dm3 in the other one. In both wells the 222Rn activity concentrations showed a seasonal variation similar to variations previously reported in the literature for the same region.  相似文献   

18.
Indoor and soil gas Radon (222Rn) concentration measurements were accomplished in two stages in Sivas, a central eastern city in Turkey. In the first stage, CR-39 passive nuclear track detectors supplied by the Turkish Atomic Energy Authority (TAEA) were placed in the selected houses throughout Sivas centrum in two seasons; summer and winter. Before the setup of detectors, a detailed questionnaire form was distributed to the inhabitants of selected houses to investigate construction parameters and properties of the houses, and living conditions of inhabitants. Detectors were collected back two months later and analysed at TAEA laboratories to obtain indoor 222Rn gas concentration values. In the second stage, soil gas 222Rn measurements were performed using an alphameter near the selected houses for the indoor measurements. Although 222Rn concentrations in Sivas were quite low in relation with the allowable limits, they are higher than the average of Turkey. Indoor and soil gas 222Rn concentration distribution maps were prepared seperately and these maps were applied onto the surface geological map. In this way, both surveys were correlated with the each other and they were interpreted in comparison with the answers of questionnaire and the geological setting of the Sivas centrum and the vicinity.  相似文献   

19.
An energy discriminate CR-39® nuclear track etch dosimeter for use in a 220Rn and 222Rn gas monitor has been developed and experimentally assessed. It utilises a thin film of Mylar® C to attenuate the alpha particle energies to allow only the damage tracks created by the 8.785 MeV alpha particles emitted from 212Po of the 232Th decay chain to be registered in the CR-39® plaque, allowing for the direct measurement of 220Rn gas concentrations. The dosimeter was developed through a combination of experimental investigations and theoretical simulations using the Monte Carlo ion transport modelling program Stopping and Range of Ions in Materials (SRIM 2008). A film thickness of 54 μm has been shown to attenuate all alpha energies less then 7.7 MeV.  相似文献   

20.
Multitracers were used to study water mixing in the Paraíba do Sul River estuary region in August 2007 (dry season) and March 2008 (rainy season) and to evaluate the reach of the river plume in the direction of the open ocean. Two sampling campaigns were carried out, each in a different season. Based on these results, it was possible to conclude that the multitracers used in this study (salinity, Si, Ba and U, as well as the radium isotopes 223Ra, 224Ra, 226Ra and 228Ra) presented satisfactory results toward defining the plume reach and determining the residence time and water-mixing processes in the estuary. A strong correlation was observed between tracers and the distance to the coast. During the low river water discharge period, the riverine water took about 10 days to reach open ocean waters (salinity ∼ 35). During the rainy period this value decreased to 6 days. Based on the radium results, it was possible to calculate diffusion coefficients (Kh) of 23 km2 d−1 and 38 km2 d−1 for 224Ra and 223Ra, respectively, during the dry season (winter). Values of 65 km2 d−1 and 68 km2 d−1 for 223Ra and 224Ra, respectively, were found for the rainy period (summer).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号